JPS6039596A - Method of removing transition metal from solution containingcomplexing agent - Google Patents
Method of removing transition metal from solution containingcomplexing agentInfo
- Publication number
- JPS6039596A JPS6039596A JP59144539A JP14453984A JPS6039596A JP S6039596 A JPS6039596 A JP S6039596A JP 59144539 A JP59144539 A JP 59144539A JP 14453984 A JP14453984 A JP 14453984A JP S6039596 A JPS6039596 A JP S6039596A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- edta
- exchange resin
- anion exchange
- loaded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/007—Recovery of isotopes from radioactive waste, e.g. fission products
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- External Artificial Organs (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は錯化剤含有溶液がら遷移金属を除去する方法に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing transition metals from solutions containing complexing agents.
原子炉の冷却系において、放射性元素を含む沈着物がし
ばしば生じる。、原子炉の冷却系を安全に維持し補修す
るためには、これらの放射性沈着物を除去する必要があ
る。これは例えば過マンガン酸アルカリの酸化性溶液を
使用し、次いでシュウ酸、クエン酸、及びエチレンジア
ミン四酢酸(EDTA)の汚染物除去溶液を使用するこ
とにより解決していた。EDTAは沈着物中の放射性元
素イオンと錯体を形成、し、沈着物を可溶化している。In the cooling systems of nuclear reactors, deposits containing radioactive elements often occur. , these radioactive deposits must be removed in order to safely maintain and repair nuclear reactor cooling systems. This has been solved, for example, by using an oxidizing solution of alkali permanganate, followed by a decontamination solution of oxalic acid, citric acid, and ethylenediaminetetraacetic acid (EDTA). EDTA forms a complex with radioactive element ions in the deposit and solubilizes the deposit.
汚染゛物除去溶液は冷却系と陽イオン交換樹脂とを循環
し、陽イオン交換樹脂は樹脂上で前記金属イオンとイオ
ン交換してEDTAを遊離さぜ、更に金属イオンの可溶
化に使用できるようにする。The contaminant removal solution is circulated through a cooling system and a cation exchange resin, which exchanges ions with the metal ions on the resin to liberate EDTA, which can then be used to solubilize the metal ions. Make it.
しかし、この方法の主要な問題点は、EDTAが金属イ
オン特に鉄イオン例えば第2鉄イオンを陽イオン交換樹
脂により容易にイオン交換しない魚である。従って、沈
着物中の金属イオンを可溶化するのに効果的でなくなる
まで、汚染物除去溶液中の金属イオン−EDTA銘体濃
皮体濃度する。However, a major problem with this method is that EDTA does not easily exchange metal ions, especially iron ions, such as ferric ions, with cation exchange resins. Therefore, the metal ion-EDTA concentration in the decontamination solution increases until it is no longer effective in solubilizing the metal ions in the deposit.
この濃度増加が起こったときは、新たにE D T A
を汚染物除去溶液に加える必要がある。すなわち、ED
TAが枯渇し、従って、さらにEDTAを添加しなけれ
ばならないがどうかを決定するために、汚染物除去溶を
絶えず監視しなければならない。When this concentration increase occurs, a new EDT A
must be added to the decontamination solution. That is, E.D.
The decontamination solution must be constantly monitored to determine if the TA is depleted and therefore more EDTA must be added.
さらに、EDTAの過剰な添加に非常に注意しなければ
ならない。すなわち、EDTAが金属イオンと錯体を形
成しなかった場合、E D TAはそれほど可溶性では
なく、沈殿したEDTA自体が冷却系から除去困難だか
らである。加えて、仮に過剰なEDTAが添加された場
合、EDTAの浪費であるばかりでなく、大量の放射性
廃棄物にEDTAを添加する以後の工程において余分な
EDTAを汚染物除去溶液から除去しなければならない
。Furthermore, one must be very careful about adding too much EDTA. That is, if EDTA does not form a complex with metal ions, EDTA is not very soluble and the precipitated EDTA itself is difficult to remove from the cooling system. In addition, if excess EDTA is added, not only is it a waste of EDTA, but the excess EDTA must be removed from the decontamination solution in subsequent steps when adding EDTA to large amounts of radioactive waste. .
従って本発明は、第2鉄イオン錯体形成反応の平衡定数
が少なくとも1022である錯化剤を含有する溶液がら
遷移金属を除去する方法において、陰イオン交換樹脂に
前記錯化剤又はその塩を負荷し、前記溶液を前記陰イオ
ン交換樹脂を通して循環させることを特徴とする錯化剤
含有溶液から遷移金属を除去する方法に存する。Therefore, the present invention provides a method for removing transition metals from a solution containing a complexing agent in which the equilibrium constant of the ferric ion complex formation reaction is at least 1022. and a method for removing transition metals from a complexing agent-containing solution, characterized in that the solution is circulated through the anion exchange resin.
錯化剤はエチレンジアミン四酢酸又はそのアルカリ金属
塩であるのが好ましい。Preferably, the complexing agent is ethylenediaminetetraacetic acid or an alkali metal salt thereof.
本発明者らは、選択された錯化剤を含む汚染物除去溶液
から遷移金属イオンを除去し、同時に該錯化剤を再生す
る方法を見出した。陽イオン交換樹脂を使用した従来方
法と異なり、本発明方法は陰イオン交換樹脂を使用する
。陰イオン交換樹脂上に例えばEDTA陰イオンを予め
負荷させておき、金属イオン−EDTA錯体ごとをED
TA負荷陰イオン交換樹脂上に沈着させ、・陰イオン交
換樹脂から新たなEDTAを溶液に放出させる。従って
、溶液中の錯体を形成していないEDTAの濃度は、か
なり一定に保たれ、溶液中のEDTA濃度を監視する、
すなわち新たなE L:) T Aを添加することは必
要ない。The inventors have discovered a method for removing transition metal ions from a decontamination solution containing a selected complexing agent while simultaneously regenerating the complexing agent. Unlike conventional methods that use cation exchange resins, the present method uses anion exchange resins. For example, an EDTA anion is preloaded onto an anion exchange resin, and each metal ion-EDTA complex is subjected to ED treatment.
Deposit on TA-loaded anion exchange resin and release fresh EDTA from the anion exchange resin into solution. Therefore, the concentration of uncomplexed EDTA in solution is kept fairly constant, and monitoring the EDTA concentration in solution,
That is, it is not necessary to add new E L:) T A.
このように本発明方法は、第2鉄イオン錯体生成反応に
おける平衡定数が1022以上である錯化剤(錯生成剤
)と遷移金属との錯体な含む種々の溶液に適用できる。As described above, the method of the present invention can be applied to various solutions containing a complex of a transition metal and a complexing agent (complex forming agent) whose equilibrium constant in the ferric ion complex formation reaction is 1022 or more.
このような錯化剤の例には、エチレンジアミン四酢fi
(EDTA)、トランス、1f2−ジアミ/シクロへA
サン四n1°酸(DCTA)、及びオキシビス(エチレ
ンジアミン四酢酸)などが含まれる。原子炉の汚染物除
去溶液に共通に見出される遷移金属には鉄、コバルト、
ニッケル、及びクロムが含まれる。溶液の温度は低くと
も4 (+ ’Cであるべきで、これはEDTAを溶液
中に溶解状態l二保ち沈殿するのを防ぐためである。し
かし、溶液の温度は約100℃以下であるべきで、温度
がこの温度より高いと陰イオン交換樹脂及び溶液中に使
用した錯化剤が分解するおそれがあるからである。溶液
のpHは特に限定はないが、存在する錯化剤の酸性のた
めにほとんどの汚染物除去溶液は代表的には2ないし2
.5である。Examples of such complexing agents include ethylenediaminetetraacetic acid fi
(EDTA), trans, 1f2-diami/cycloA
These include san tetran1° acid (DCTA) and oxybis (ethylenediaminetetraacetic acid). Transition metals commonly found in nuclear reactor decontamination solutions include iron, cobalt,
Contains nickel and chromium. The temperature of the solution should be at least 4'C to keep the EDTA dissolved in solution and prevent it from precipitating.However, the temperature of the solution should be below about 100C. This is because if the temperature is higher than this temperature, the anion exchange resin and the complexing agent used in the solution may decompose.The pH of the solution is not particularly limited, but the acidity of the complexing agent present may Therefore, most contaminant removal solutions typically contain 2 to 2
.. It is 5.
従って、本発明方法の第1工程において、陰イオン交換
樹脂にEDTAを負荷する。本発明においては任意の陰
イオン交換樹脂が適当であり、また使用できる。イオン
交換樹脂はEDTAのみを負荷すべきであり、他の付加
的な錯化剤を共に負荷すべきではない。これは、金属イ
オン−EDTA錯体が前記EDTA負荷陰イオン交換樹
脂に吸着されると、他の陰イオン[すなわちニトリロ三
酢酸(N T A >、クエン酸、又はシュウ酸1を放
出し、溶液中のEDTA濃度を低下させるためである。Therefore, in the first step of the method of the invention, the anion exchange resin is loaded with EDTA. Any anion exchange resin is suitable and can be used in the present invention. The ion exchange resin should be loaded only with EDTA and not with any other additional complexing agents. This is because when the metal ion-EDTA complex is adsorbed onto the EDTA-loaded anion exchange resin, it releases other anions [i.e., nitrilotriacetic acid (NT A >, citric acid, or oxalic acid 1) into the solution. This is to reduce the EDTA concentration of.
他の錯化剤例えばNTA、又は有機酸例えばクエン酸又
はシュウ酸はEDTAが形成する錯体に比べ遥かに弱い
遷移金属錯体を形成し、これらEDTA以外の錯化剤と
錯体を形成した金属は、陽イオン交換樹脂によって錯化
剤含有溶液から除去される。これはEDTA−金属錯体
の場合にはあてはまらないから、結果として慣用の除去
方法を使用したのでは金属イオンは溶液中に残る。Other complexing agents, such as NTA, or organic acids, such as citric acid or oxalic acid, form transition metal complexes that are much weaker than those formed by EDTA, and metals complexed with complexing agents other than EDTA are It is removed from the complexing agent-containing solution by the cation exchange resin. This is not the case for EDTA-metal complexes, and as a result, metal ions remain in solution when conventional removal methods are used.
EDTAの溶液を調製し、この溶液を陰イオン交換樹脂
に通過させることにより、最も便利にEDTAを陰イオ
ン交換If脂に負荷することができる。EDTAを陰イ
オン交換樹脂に負荷するのに、EDTA塩溶液、好適に
はアルカリ金属塩例えばEDTAナトリウムの使用が望
ましい。これは陰イオン交換樹脂が単なる水でなくて水
酸化ナトリウムを溶液中に放出するからである。NaO
Hはアルカリ性が強いので(pH約12〜14)、カラ
ムを出る溶液のpHは最初に上がった後でE D TA
ナトリウムのpH(pH約4〜5)に再び落ちる。EDTA can most conveniently be loaded onto an anion exchange If fat by preparing a solution of EDTA and passing this solution through an anion exchange resin. To load the anion exchange resin with EDTA, it is desirable to use an EDTA salt solution, preferably an alkali metal salt, such as sodium EDTA. This is because anion exchange resins release sodium hydroxide into solution rather than just water. NaO
Since H is highly alkaline (pH approximately 12-14), the pH of the solution exiting the column increases after the initial rise.
It drops again to a sodium pH (pH about 4-5).
これは、好適な強塩基陰イオン交換樹脂の僅かな水酸基
がEDTA陰イオンによって置換されるからである。こ
のように、樹脂を去る溶液のI) I−1を監視するこ
とによって、樹脂がいっ完全に負荷されたかを決定する
ことができる。pHが約6以下。This is because the few hydroxyl groups of the preferred strong base anion exchange resins are replaced by EDTA anions. Thus, by monitoring the I) I-1 of the solution leaving the resin, it can be determined whether the resin is fully loaded. pH is about 6 or less.
に落ちた後は、樹脂は完全にEDTA陰イオンで負荷さ
れたものと考えるべきである。一方、酸型のEDTAを
使用した場合、樹脂がI+1つ負荷したかを決定するの
がより困難である。これは、酸型のEDTAにはナトリ
ウムイオンが存在せず、カラムを去る溶液はほぼ中性の
pH(1+H約7)だからである。従って、カラムに供
給される溶液のpH値(約4.5)とカラムから流出す
る溶液のpH値(約7)との差はナトリウム塩を使用し
たときより着しく小さい。また、酸型のEDTAは水に
殆ど溶解しない。すなわち、溶液をより面状しなければ
ならないことを意味する。The resin should be considered completely loaded with EDTA anions. On the other hand, if the acid form of EDTA is used, it is more difficult to determine whether the resin is loaded with I+1. This is because there are no sodium ions present in the acid form of EDTA and the solution leaving the column is at approximately neutral pH (1+H approximately 7). Therefore, the difference between the pH value of the solution fed to the column (approximately 4.5) and the pH value of the solution leaving the column (approximately 7) is significantly smaller than when using sodium salts. Furthermore, acidic EDTA hardly dissolves in water. This means that the solution must be made more planar.
本発明の次ぎの工程において、金属イオン−EDTA錯
体を含む汚染物除去溶液をE D T ’Aを負荷した
陰イオン交換樹脂と原子炉の冷却系との間、又は汚染物
除去すべき冷却系の部分例えば加圧水型原子炉もしくは
沸騰水型原子炉の蒸気発生器を循環させる。Jk属イオ
ン−EDTA錯体はE D ’rA@イオン交換樹脂に
吸着するので、新たなEDTAが汚染物除去溶液中に放
出される。冷却系を出る溶液中の金属イオン濃度が冷却
系に入る溶液中の金属イオン濃度より実質的に大きくな
るまで溶液を循環させる。In the next step of the invention, a contaminant removal solution containing a metal ion-EDTA complex is placed between the anion exchange resin loaded with ED T'A and the cooling system of the nuclear reactor, or the cooling system to be decontaminated. For example, the steam generator of a pressurized water reactor or a boiling water reactor is circulated. As the Jk group ion-EDTA complex is adsorbed onto the ED'rA@ ion exchange resin, fresh EDTA is released into the decontamination solution. The solution is circulated until the metal ion concentration in the solution exiting the cooling system is substantially greater than the metal ion concentration in the solution entering the cooling system.
金属イオン−EDTA錯体が除去された後、EDTA及
び溶液中に残ったイオンは、新たな陰イオン交換樹脂又
は混合陰イオン−陽イオン交換樹脂に溶液を通過させる
ことにより除去し、結果として溶液は比較的純粋な水と
なる。予め負荷された陰イオン交換樹脂が金属イオン−
E D T 、〜銘木で飽和したと慇、この樹脂は放射
性廃棄物として廃棄される。After the metal ion-EDTA complex is removed, the EDTA and the remaining ions in the solution are removed by passing the solution through a fresh anion exchange resin or a mixed anion-cation exchange resin, so that the solution is The water will be relatively pure. Pre-loaded anion exchange resin absorbs metal ions.
EDT, ~ Once saturated with precious wood, this resin is discarded as radioactive waste.
以下実施例及び参考例に基づ慇本発明を説明する。The present invention will be explained below based on Examples and Reference Examples.
参考例
直径2 、5 am(1インチ)、長さ45 、’7
am(18インチ)のがラス製カラムに、粒子径15な
いし50メツシユの強塩基性ポリスチレン樹脂であるI
RA−400”陰イオン交換樹脂(R1+om nod
Haas社製商品名)100IIllを負荷した。E
I) T AのすFリウム塩100g/lの溶液を調製
した。。Reference example diameter: 2.5 am (1 inch), length: 45.7'
am (18 inches) is a glass column made of strong basic polystyrene resin with a particle size of 15 to 50 mesh.
RA-400” anion exchange resin (R1+om nod
100 IIll (trade name, manufactured by Haas) was loaded. E
I) A solution of 100 g/l of T A's Fium salt was prepared. .
pHが4.38であるこの溶液を上記カラムの上部から
1゛〜3陰イオン交換樹脂床体積(ベッド体81)/時
開の速度で注ぎ、カラム底部から流出する溶液のpHを
測定した。次の第1表に種々の陰イオン交換樹脂床の溶
液をカラムに流した後に、カラムから流出する溶液のp
Hを示す。This solution having a pH of 4.38 was poured from the top of the column at a rate of 1 to 3 anion exchange resin bed volumes (bed body 81)/hour, and the pH of the solution flowing out from the bottom of the column was measured. Table 1 below shows the p of the solution flowing out from the column after the solutions of various anion exchange resin beds are passed through the column.
Indicates H.
第1表 ベッド体fi’[p H O,511,85 1,012,86 1,512,9(3 2,012,36 2,56,56 3,0、、5,90 3,55,64 4,05,47 4,55,29 5,0* 5.15 6.0 5,07 ’ : pl(4,49の新たな溶液を調製したもの。Table 1 Bed body fi’ [p H O,511,85 1,012,86 1,512,9 (3 2,012,36 2,56,56 3,0,,5,90 3,55,64 4,05,47 4,55,29 5,0* 5.15 6.0 5,07 ' : pl (prepared a new solution of 4,49.
上記の表に示すように、最初の始動時間後、イオン交換
樹脂から流出する溶液のpHはイオン交換樹脂に注入さ
れる溶液の1114に近付いて落ちた。As shown in the table above, after the initial start-up time, the pH of the solution exiting the ion exchange resin dropped to near 1114 of the solution injected into the ion exchange resin.
これは、カラムがほとんどEDTAで飽和したこ ・と
を示す。This indicates that the column is almost saturated with EDTA.
実施例1
チオ尿素と思われる防止剤を含みクエン酸30%、シェ
ラ酸30%、及びE D T A 40%からなる商業
的に入手可能な汚染物除去試薬溶液の0.5重量%溶液
に鉄(マグネタイ)Fe30+からの鉄)それぞれ50
,100,150口)mを溶解して疑似使用済み汚染物
除去溶液を調製した。この3種の溶液それぞれと、参考
例で調製したE D TA負荷陰イオン交換樹脂とをビ
ーカー中54℃で混合した。5時間後にこれらの溶液を
試験し、それぞれ3.11、および46 ppmの鉄を
含んでいることを確認した。″これはEDTA負荷陰イ
オン交換樹脂が、成功裡に鉄を溶液から除去したことを
確認した。Example 1 A 0.5% by weight solution of a commercially available contaminant removal reagent solution consisting of 30% citric acid, 30% Scheric acid, and 40% EDT A containing an inhibitor believed to be thiourea. Iron (magnetite) iron from Fe30+) 50 each
, 100, 150) m to prepare a simulated used contaminant removal solution. Each of these three solutions and the EDTA-loaded anion exchange resin prepared in Reference Example were mixed in a beaker at 54°C. These solutions were tested after 5 hours and found to contain 3.11 and 46 ppm iron, respectively. ``This confirmed that the EDTA-loaded anion exchange resin successfully removed iron from solution.
実施例2
EDTA負荷陰イオン交換樹脂を参考例と同様に調製し
、このEDTA負荷陰イオン交換樹脂の試料100m1
を、直径2 、5 am(1インチ)、長さ45.7c
+n(18インチ)のガラス製カラムに負荷した。鉄8
0ppmを含む商業的に人手可f18な汚染上部から底
部に通過させ、カラムから流出した鉄、シュウ酸塩、ク
エン酸塩、及びE D T A濃度を測定した。次の表
にこれらの濃度を示す。Example 2 An EDTA-loaded anion exchange resin was prepared in the same manner as in the reference example, and a 100 ml sample of this EDTA-loaded anion exchange resin was
, diameter 2.5 am (1 inch), length 45.7 cm
A +n (18 inch) glass column was loaded. iron 8
A commercially available f18 contaminant containing 0 ppm was passed from top to bottom and iron, oxalate, citrate, and EDT A concentrations exiting the column were measured. The following table shows these concentrations.
第2表
上記の表に示されるように、最初の始動時間後EDTA
を負荷したカラムは成功裡に流出する溶液中め鉄を10
ppm以下に除去している。Table 2 EDTA after the initial start-up time as shown in the table above
The column loaded with 10% iron in the solution successfully flows out.
It is removed to below ppm.
第1頁の続き (l 明 者 ローレンス・フレデリ ック・ベツカー、ジュ ニアContinuation of page 1 (Illustrator Lawrence Frederi Beck Betzker, Ju near
Claims (1)
22である錯化剤を含有する溶液から遷移°金属を除去
する方法において、陰イオン交換樹脂に前記錯化剤又は
その塩を負荷し、前記溶液を前記陰イオン交換樹脂を通
して循環させることを待像とする錯化剤含有溶液から遷
移金属を除去する方法。The equilibrium constant of the ferric ion complex formation reaction is at least 10
In the method for removing transition metals from a solution containing a complexing agent as described in No. 22, an anion exchange resin is loaded with the complexing agent or a salt thereof, and the solution is circulated through the anion exchange resin. A method for removing transition metals from a complexing agent-containing solution.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US51356783A | 1983-07-14 | 1983-07-14 | |
US513567 | 1983-07-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6039596A true JPS6039596A (en) | 1985-03-01 |
Family
ID=24043815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59144539A Pending JPS6039596A (en) | 1983-07-04 | 1984-07-13 | Method of removing transition metal from solution containingcomplexing agent |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0135276B1 (en) |
JP (1) | JPS6039596A (en) |
KR (1) | KR910006798B1 (en) |
CA (1) | CA1229780A (en) |
DE (1) | DE3480446D1 (en) |
ES (1) | ES8607740A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63292094A (en) * | 1987-05-26 | 1988-11-29 | Ebara Kogyo Senjiyou Kk | Treatment of radioactive waste liquid containing chelate compound |
US7276679B2 (en) | 2004-08-09 | 2007-10-02 | Samsung Electronics Co., Ltd. | Microwave oven |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6375850B1 (en) * | 1999-01-21 | 2002-04-23 | United States Enrichment Corp. | Method for removing metals from a cleaning solution |
RU2458418C1 (en) * | 2012-01-10 | 2012-08-10 | Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" | Method for removing transition metals and radionuclides from solutions containing complexing agent |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5661991A (en) * | 1979-10-26 | 1981-05-27 | Toyo Jozo Co Ltd | Preparation of acyl-coenzyme a oxidase |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2077482B (en) * | 1980-06-06 | 1983-06-08 | Us Energy | Coolant system decontamination |
-
1984
- 1984-06-28 CA CA000457792A patent/CA1229780A/en not_active Expired
- 1984-07-11 EP EP84304725A patent/EP0135276B1/en not_active Expired
- 1984-07-11 DE DE8484304725T patent/DE3480446D1/en not_active Expired
- 1984-07-12 ES ES534265A patent/ES8607740A1/en not_active Expired
- 1984-07-13 KR KR1019840004109A patent/KR910006798B1/en active IP Right Grant
- 1984-07-13 JP JP59144539A patent/JPS6039596A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5661991A (en) * | 1979-10-26 | 1981-05-27 | Toyo Jozo Co Ltd | Preparation of acyl-coenzyme a oxidase |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63292094A (en) * | 1987-05-26 | 1988-11-29 | Ebara Kogyo Senjiyou Kk | Treatment of radioactive waste liquid containing chelate compound |
US7276679B2 (en) | 2004-08-09 | 2007-10-02 | Samsung Electronics Co., Ltd. | Microwave oven |
Also Published As
Publication number | Publication date |
---|---|
EP0135276A1 (en) | 1985-03-27 |
DE3480446D1 (en) | 1989-12-14 |
ES534265A0 (en) | 1986-06-01 |
CA1229780A (en) | 1987-12-01 |
KR850001623A (en) | 1985-03-30 |
ES8607740A1 (en) | 1986-06-01 |
KR910006798B1 (en) | 1991-09-02 |
EP0135276B1 (en) | 1989-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1165214A (en) | Nuclear reactor cooling system decontamination reagent regeneration | |
US3664870A (en) | Removal and separation of metallic oxide scale | |
JPS5848900A (en) | Chemical dissolution of oxide adhesion | |
EP0046029B1 (en) | An application technique for the descaling of surfaces | |
EP0154832A2 (en) | Decontamination using electrolysis | |
US4705573A (en) | Descaling process | |
US5434331A (en) | Removal of radioactive or heavy metal contaminants by means of non-persistent complexing agents | |
CA2208033A1 (en) | Process for decontaminating radioactive materials | |
US5024805A (en) | Method for decontaminating a pressurized water nuclear reactor system | |
JPS6039596A (en) | Method of removing transition metal from solution containingcomplexing agent | |
US5386078A (en) | Process for decontaminating radioactive metal surfaces | |
Murray | A chemical decontamination process for decontaminating and decommissioning nuclear reactors | |
CA1154180A (en) | Effluent treatment process and apparatus | |
GB2064852A (en) | Decontaminating reagents for radioactive systems | |
JP2925413B2 (en) | Treatment of radioactive liquid waste | |
US4340499A (en) | Method for treating radioactive solutions | |
JP2621866B2 (en) | Surface decontamination method | |
JPH0119473B2 (en) | ||
JPS6154500A (en) | Method of removing radioactive iodine | |
JPH04260495A (en) | Separation method for transition elements in solution | |
JP2938287B2 (en) | Treatment of radioactive liquid waste | |
JPS62130396A (en) | How to remove oxide film containing radioactive materials | |
JP3323856B2 (en) | Method for separating americium from a solution containing fission products, curium and americium | |
JPS58223797A (en) | Method of processing concentrated salt liquid waste containing radioactive material | |
Bradbury et al. | An application technique for the decontamination of nuclear reactors |