[go: up one dir, main page]

JPS6038831A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6038831A
JPS6038831A JP14632783A JP14632783A JPS6038831A JP S6038831 A JPS6038831 A JP S6038831A JP 14632783 A JP14632783 A JP 14632783A JP 14632783 A JP14632783 A JP 14632783A JP S6038831 A JPS6038831 A JP S6038831A
Authority
JP
Japan
Prior art keywords
film
region
substrate
oxide film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14632783A
Other languages
Japanese (ja)
Inventor
Kazuo Nojiri
野尻 一男
Katsuhiko Ito
勝彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14632783A priority Critical patent/JPS6038831A/en
Publication of JPS6038831A publication Critical patent/JPS6038831A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To further upgrade a higher integration of the IC by a method wherein an isolation region in a grooved isolation structure, wherein no bird's beak is generated, is formed at a part, where high integration is needed, and a thick oxide film is formed at a wide region other than the isolation region in such a way as to interposed between the grooved isolation structures. CONSTITUTION:A silicon dioxide film 2 is formed on the surface of a P type silicon semiconductor substrate 1, and after a silicon nitriding film 3 was formed thereon, grooves 4 are formed and the surface is partitioned into numerous regions. In addition to an element forming region 5, a region 6, where no element is formed, is also included. After an embedding material 9 consisting of such an insulator as a silicon dioxide, etc., was deposited on the whole surface of the substrate 1, the surface of the substrate 1 is flattened. After an oxidation-resistant silicon nitriding film 10 was deposited on the whole surface, a part corresponding to the region 6, where no element is formed, is selectively removed and a thick oxide film 11 is formed on the surface. The silicon nitriding film 10 and the silicon dioxide film 2 are removed, the silicon surface of the surface 1 is made to expose and an etching is performed on a part of the embedding material 9, where is appearing upwards from the substrate 1. As a result, the substrate 1 is completely flattened.

Description

【発明の詳細な説明】 [技術分野] この発明は、素子形成領域を電気的に分離するだめの素
子間分離技術、特に、高JJ、5積な半導体集積回路装
置(以下、ICという)にJ3いて、半導体基板の一面
に溝を掘り、その)1ζを絶縁物で埋めることによって
分離領域を構成する場合(以下、溝掘り分前構造という
)に適用して有効な技術に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an element isolation technology for electrically isolating element formation regions, particularly to high JJ, 5-product semiconductor integrated circuit devices (hereinafter referred to as ICs). J3 relates to a technique that is effective when applied to the case where an isolation region is formed by digging a trench on one surface of a semiconductor substrate and filling the trench (1ζ) with an insulator (hereinafter referred to as a "pre-grooving structure").

[背景技術] 従来、素子間分離技術としては、LOGO3(Loca
l 0xidation Of 5ilicon)法が
一般的である。
[Background technology] Conventionally, as an element isolation technology, LOGO3 (Loca
The 1 oxidation of 5 silicon) method is common.

しかし、このLOCO8法には、いわゆるバーズビーク
の発生があり、高集積化する上で問題が否めない。
However, this LOCO8 method has the occurrence of so-called bird's beak, which is an undeniable problem in achieving high integration.

その点、前記のような溝掘り分離構造は、バーズビーク
がほとんどなく、レジスト寸法との寸法変換差がほぼ0
であるため、高集積化にとってきわめて有効である。こ
れは、ドライエツチング、特に、サイドエツチングのほ
とんどない反応性イオンエツチングの利点によるところ
が大きい(以」二たとえば、日経エレクトロニクス、1
982年3月29日号、p90〜101参照)。
On that point, the grooved separation structure described above has almost no bird's beak and the dimensional conversion difference from the resist dimension is almost 0.
Therefore, it is extremely effective for high integration. This is largely due to the advantages of dry etching, especially reactive ion etching with almost no side etching.
(See March 29, 1998, p.90-101).

ところで、溝を絶縁物で埋めようとする場合、溝幅がた
とえば1.0〜2.5μm程度と狭い所は比較的容易に
埋めることができるが、溝幅が広い所、特に深さに比べ
て幅が広い所には表面にどうしても大きなくぼみが生じ
てしまうということが判った。ICにおいては、トラン
ジスタ等の各素子のレイアラ1〜上、特にチップの周辺
部などチップの選択された部分に、配線部を形成するた
めの広い分離領域をとらざるをえず、そのような広い分
離領域をいかに構成するかは製造面での大きなネックと
なる。
By the way, when trying to fill a trench with an insulator, it is relatively easy to fill a narrow trench, for example, about 1.0 to 2.5 μm, but it is relatively easy to fill a trench with a wide trench, especially when compared to the depth. It was found that large depressions inevitably appeared on the surface where the width was wide. In ICs, it is necessary to provide a wide isolation area for forming wiring sections on the layerer 1 to above of each element such as a transistor, especially in a selected part of the chip such as the periphery of the chip. How to configure the separation area is a major bottleneck in manufacturing.

[発明の目的コ この発明の目的は、溝掘り分離構造がもつ難点を解決し
、広い分離領域形成可能な溝掘り分離構造の技術を提供
することにある。
[Purpose of the Invention] An object of the present invention is to provide a technology for a grooved isolation structure that solves the difficulties of the grooved isolation structure and allows formation of a wide isolation region.

この発明の前記ならびにそのほかの「1的と新規な特徴
は、この明細書の記述および添イ1図面から明らかにな
るであろう。
The above-mentioned and other novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

[発明の概要] この出願において開示される発明のうち代表的なものの
概要を簡単に説明すれば、下記のとおりである。
[Summary of the Invention] A brief overview of typical inventions disclosed in this application is as follows.

すなわち、高集積を要する部分の素子間分離にはバーズ
ビークの発生のない溝掘り分1’l11構造を利用し、
さらに、それ以外の幅の広い領域の部分は溝掘り分離構
造およ、びLOCO8法による厚い選択酸化膜の組合わ
せによって構成する。しかもこの場合1幅の狭い溝掘り
分離構造の部分を先に形成し、その後で厚い選択酸化膜
を溝掘り分離構造が両端に位置するように形成する。し
たがって、厚い選択酸化膜の形成時、幅の狭い分離領域
の部分が選択酸化膜のバーズビークを受け入れることが
でき、幅の広い領域の部分全体にわたり、厚い選択酸化
膜をほぼ均一な厚さに形成することができる。
In other words, the grooved 1'l11 structure, which does not cause bird's beak, is used for isolation between elements in areas that require high integration.
Further, the other wide region portions are constructed by a combination of a trench isolation structure and a thick selective oxide film formed by the LOCO8 method. Moreover, in this case, a narrow trench isolation structure portion is formed first, and then a thick selective oxide film is formed so that the trench isolation structure is located at both ends. Therefore, when forming a thick selective oxide film, the narrow isolation region can accommodate the bird's beak of the selective oxide film, forming a thick selective oxide film with an almost uniform thickness over the entire wide region. can do.

[実施例コ 図面に示した実施例はMOS ICの製造に適用した場
合を示しており、第1図〜第6図は処理工程順に示した
処理途中の断面図である。
[Embodiment 2] The embodiment shown in the drawings shows a case in which it is applied to the manufacture of MOS IC, and FIGS. 1 to 6 are cross-sectional views during processing shown in the order of processing steps.

(第1図を参照して) まず、面方位(100)のP型シリコン半導体基板]−
の表面を熱酸化して、二酸化シリコン膜(SiO2膜)
2を形成し、その上にたとえばCVI)法によってシリ
コンティ1−ライド膜(S i 3 N4膜)3を形成
する。上層のシリコンナイトライド膜3は溝形成に対す
るマスク用であり、かつ後述する埋込み材料のエッチバ
ック時のストッパの役割をするものである。また下層の
二酸化シリコン膜2は基板1−のシリコンとシリコンテ
ィ1〜ライド膜3とが直接接触することによるストレス
軽減のためのものである。
(Refer to Figure 1) First, P-type silicon semiconductor substrate with plane orientation (100)]
The surface of the silicon dioxide film (SiO2 film) is thermally oxidized to form a silicon dioxide film (SiO2 film).
A silicon 1-ride film (S i 3 N4 film) 3 is formed thereon by, for example, the CVI method. The upper silicon nitride film 3 serves as a mask for groove formation, and also serves as a stopper during etching back of the buried material, which will be described later. The lower silicon dioxide film 2 is used to reduce stress caused by direct contact between the silicon of the substrate 1- and the silicon dioxide films 1-3.

次に、膜3,2に対し、分離領域を形成すべき部分を窓
開けし、窓開けした膜3,2をマスクとして反応性イオ
ンエツチングによって基板1の表面に溝4を形成する。
Next, a window is opened in the film 3, 2 at a portion where a separation region is to be formed, and a groove 4 is formed on the surface of the substrate 1 by reactive ion etching using the window-opened film 3, 2 as a mask.

溝4の幅は、次に行なう埋込みを容易にするためたとえ
ば】μrn程度とほぼ一定に設定される。このような溝
4によって基板1の表面は多数の領域に撮画されるが、
その中には素子形成領域5のほかに、素子を形成しない
領域6も含まれる。なお1反応性イオンエツチングにお
けるエツチング速度は、Si3N4はSiの1/lO程
度にすることができるので、溝4の深さを電気的分離に
必要な充分な深さにすることができる。深い溝4のエツ
チング完了時点では、マスクとしてのSi3N、膜3は
残るようにし、埋込み材料のエッチバックの時のストッ
パとする。
The width of the trench 4 is set to be approximately constant, for example, approximately .mu.rn, in order to facilitate the subsequent embedding. Although the surface of the substrate 1 is imaged in many areas by such grooves 4,
In addition to the element forming region 5, this includes a region 6 in which no element is formed. Incidentally, since the etching rate of Si3N4 in reactive ion etching can be made approximately 1/1O of that of Si, the depth of the groove 4 can be made sufficient for electrical isolation. When the etching of the deep groove 4 is completed, the Si3N film 3 is left as a mask and serves as a stopper when etching back the buried material.

(第2図を参照して) 次に、溝4の内面を軽く酸化することによってたとえば
厚さ数十nm程度のMい二酸化シリコン膜7を形成した
後、半導体基板1の上面全体にボロン等のP型不純物を
イオン打込みすることによって溝4の底部にP+型のチ
ャネルストッパ8を形成する。そして、溝4を含む基板
1の表面全体に、高温低圧でのCVD法あるいはプラズ
マCVD法などによる二酸化シリコン(SiO2)など
の絶縁物からなる埋込み材料9を堆積する。この堆積量
は、少なくとも溝4の幅の172以上の厚さが必要であ
る。
(Refer to FIG. 2) Next, by lightly oxidizing the inner surface of the groove 4, a M silicon dioxide film 7 having a thickness of, for example, several tens of nanometers is formed, and then the entire upper surface of the semiconductor substrate 1 is covered with boron, etc. A P+ type channel stopper 8 is formed at the bottom of the trench 4 by ion-implanting P type impurities. Then, a filling material 9 made of an insulator such as silicon dioxide (SiO2) is deposited over the entire surface of the substrate 1 including the groove 4 by high temperature and low pressure CVD or plasma CVD. This amount of deposition needs to be at least 172 times the width of the groove 4 or more.

(第3図を参照して) 埋込み材料9の堆積後、堆積した埋込み材料9を反応性
イオンエツチング等によってエッチバックし、基板1の
表面を平坦化する。この時Si3N4膜3がストッパの
役割をするので良好な平坦度が得られる。またこの場合
、溝4の幅を基板1の全面にわたって一定にしているの
で、堆積した埋込み材料9の表面は堆積後においてほぼ
平坦であり、上の表面平坦化処理は比較的容易である。
(See FIG. 3) After depositing the embedding material 9, the deposited embedding material 9 is etched back by reactive ion etching or the like to planarize the surface of the substrate 1. At this time, since the Si3N4 film 3 acts as a stopper, good flatness can be obtained. Further, in this case, since the width of the groove 4 is made constant over the entire surface of the substrate 1, the surface of the deposited embedding material 9 is substantially flat after the deposition, and the surface flattening process on the deposited material 9 is relatively easy.

なお場合によっては、堆積した埋込み材料9の上にレジ
ストあるいはSOG (スピンオングラス)を塗布して
から、前記等方性エツチングによって表面の平坦化をな
すのが良い。そうすれば、表面の平坦化をより有効に行
なうことができる。また、基板1の表面にSiO,zよ
りも高い硬度のSi3N4が残っているので、そのSi
3N4をストッパとして機能させることにより、表面平
坦化を機械的なポリッシングによって行なうこともでき
る。
In some cases, it is preferable to apply a resist or SOG (spin-on glass) on the deposited buried material 9 and then flatten the surface by the isotropic etching. In this way, the surface can be more effectively flattened. In addition, since Si3N4, which has a higher hardness than SiO,z, remains on the surface of the substrate 1, the Si
Surface flattening can also be achieved by mechanical polishing by using 3N4 as a stopper.

(第4図を参照して) 次に、表面平坦化処理を終えた基板1の表面へ、体に、
耐酸化性のシリコンティ1〜ライド膜1oを堆積した後
、ホトリソグラフィ技術によってシリコンナイトライド
膜1oのうち、素子を形成しない領域6に対応する部分
を選択的に除去する。この場合、膜10のエツチング端
面100については、次に行なう選択酸化によるバーズ
ビークを溝4内の埋込み材料9で受け入れることができ
るように溝4の近傍に位置設定することが大切である。
(Refer to FIG. 4) Next, on the surface of the substrate 1 which has undergone surface flattening treatment,
After depositing the oxidation-resistant silicon nitride films 1 to 1o, the portions of the silicon nitride film 1o corresponding to regions 6 where no elements are to be formed are selectively removed by photolithography. In this case, it is important that the etched end face 100 of the film 10 be positioned near the trench 4 so that the bird's beak caused by the subsequent selective oxidation can be received by the filling material 9 in the trench 4.

(第5図を参照して) つづいて、前記シリコンナイトライド膜1oまたは膜1
0および3をマスクとした選択酸化技術によって、素子
を形成しない領域6の表面に厚い酸化膜11を形成する
。この選択酸化処理により、前記エツチング端面100
の付近にいわゆるバーズビークが必然的に生じるが、そ
の部分には溝掘り分離構造の分離領域12が予め形成さ
れているので、バーズビークは分離領域12の埋込み材
料9の部分に連らなる。したがって、厚い酸化膜11、
は、分離領域12に近接する部分においてもかなりの厚
さをもっことになる。なお1図には示していないが、選
択酸化に先立って、領域6の表面にP型不純物であるボ
ロンをイオン打込みすることによって、厚い酸化膜11
の下部にもP+型のチャネルストッパを形成することも
できる。
(Referring to FIG. 5) Next, the silicon nitride film 1o or the film 1
A thick oxide film 11 is formed on the surface of the region 6 where no element is to be formed by selective oxidation technique using 0 and 3 as masks. By this selective oxidation treatment, the etched end surface 100
A so-called bird's beak inevitably occurs in the vicinity of , but since the isolation region 12 of the grooved isolation structure is previously formed in that region, the bird's beak continues to the part of the buried material 9 in the isolation region 12 . Therefore, the thick oxide film 11,
The thickness is also considerable in the vicinity of the isolation region 12. Although not shown in FIG. 1, prior to selective oxidation, a thick oxide film 11 is formed by implanting boron, which is a P-type impurity, into the surface of the region 6.
A P+ type channel stopper can also be formed at the bottom of the channel.

(第6図を参照して) 選択酸化処理後、マスクとして用いたシリコンティ1〜
ライド膜10,3をエツチングによって除去し、さらに
二酸化シリコン膜2を除去し、基板1−のシリコン面を
露出させる。次に埋込み材料9のうち基板1より上に出
ている部分をエツチングし基板1を完全に平坦化する。
(Refer to Figure 6) After selective oxidation treatment, silicon tee 1~ used as a mask
The ride films 10 and 3 are removed by etching, and the silicon dioxide film 2 is further removed to expose the silicon surface of the substrate 1-. Next, the portion of the buried material 9 that is exposed above the substrate 1 is etched to completely planarize the substrate 1.

こねによって、素子間分離を終える。こうした後は、電
気的に分離された素子形成領域5内に公知の方法により
MOS FETなどの半導体素子を第7図に示すように
形成することができる。
Separation between the elements is completed by kneading. After this, a semiconductor element such as a MOS FET can be formed in the electrically isolated element forming region 5 by a known method as shown in FIG.

[効果] (1)メモリセルを構成するような高集積を要する部分
にはバーズビークの発生のない溝掘り分離構造の分離領
域を形成し、それ以外の幅の広い領域には、溝掘り分離
構造にはさまれるようにLOCoS法による厚い酸化膜
を形成しているので、溝幅の広い所を埋めることが困難
であるという溝掘り分離構造がもつ難点を解消し、 i
R&掘り分離構造の利点を生かしICの高集積化をより
一層向上させることができる。
[Effects] (1) An isolation region with a grooved isolation structure that does not cause bird's beak is formed in areas that require high integration, such as forming memory cells, and a grooved isolation structure is formed in other wide areas. Since a thick oxide film is formed using the LOCoS method between the grooves, it eliminates the difficulty of trench isolation structures, such as the difficulty of filling in wide trenches.
By taking advantage of the R&D isolation structure, it is possible to further improve the high integration of ICs.

(2)幅の狭い溝掘り分離領域を先に形成し、その後で
LOCO8法による厚い酸化膜を形成しているので、厚
い酸化膜のバーズビークを溝掘り分離領域に受け入れさ
せることができ1幅の広い領域の部分全体にわたり、厚
い酸化膜をほぼ均一な厚さに形成することができる。し
たがって、ICを形成した段階において、厚い酸化膜上
を走る配線と基板との間の浮遊容量を無視しうるほとに
小さくすることができる。
(2) Since a narrow trench isolation region is formed first, and then a thick oxide film is formed using the LOCO8 method, the bird's beak of the thick oxide film can be accommodated in the trench isolation region. A thick oxide film can be formed to have a substantially uniform thickness over a wide area. Therefore, at the stage of forming an IC, the stray capacitance between the wiring running on the thick oxide film and the substrate can be reduced to a negligible value.

以」二、この発明を実施例に基づき具体的に説明したが
、この発明は前記実施例に限定されるものではなく、そ
の要旨を逸脱しない範囲で種々変更可能であることはい
うまでもない。たとえば、耐酸化性の新たなシリコンナ
イトライド膜10を形成する場合、基板1上に残るシリ
コンナイトライド膜3をすべて除去してから堆積するよ
うにすることができる。そうすれば、シリコンナイトラ
イド膜のストレスから生じるおそれのある結晶欠陥の発
生をより確実に防止することができる。また、第1図に
おいてSi3N4膜3の上にさらにCVD法で5i02
膜を堆積させ、この5i02膜、Si3N4膜3.5i
02膜2をエツチングして窓開けし、この3層膜をマス
クにして溝4を形成しても良い。こうすれば、Si3N
4膜3の膜厚の減少を防ぐことができる。
Hereinafter, this invention has been specifically explained based on examples, but it goes without saying that this invention is not limited to the above-mentioned examples and can be modified in various ways without departing from the gist thereof. . For example, when forming a new oxidation-resistant silicon nitride film 10, the silicon nitride film 3 remaining on the substrate 1 can be completely removed before being deposited. By doing so, it is possible to more reliably prevent the occurrence of crystal defects that may arise from stress in the silicon nitride film. In addition, in FIG. 1, 5i02
The 5i02 film, the Si3N4 film 3.5i
The groove 4 may be formed by etching the 02 film 2 to open a window and using this three-layer film as a mask. In this way, Si3N
4. Decrease in the film thickness of the film 3 can be prevented.

[利用分野] この発明は、MOS ICのみならずバイポーラIC1
さらにはMOSとバイポーラの両型の各素子を同一基板
」二に形成する場合など、ICにおける素子間分離方法
として広範に適用することができる。
[Field of Application] This invention applies not only to MOS ICs but also to bipolar ICs.
Furthermore, it can be widely applied as a method for separating elements in ICs, such as when both MOS and bipolar elements are formed on the same substrate.

程図である。This is a diagram.

1・・・半導体基板、2・・・二酸化シリコン膜、3・
・・シリコンナイトライド膜、4・・・溝、5・・・素
子形成領域、6・・・素子を形成しない領域、7・・・
二酸化シリコン膜、8・・・チャネルストッパ、9・・
・埋込み材料、10・・・シリコンナイトライド膜、1
1・・・厚い酸化膜、12・・・分離領域、13・・・
ソース・ドレイン層−14・・・ゲート電極、15・・
・ゲート酸化膜、16・・・酸化膜、17・・・第1パ
ツシベーシヨン膜、18・・・アルミニウム配線、19
・・・ファイナルパッシベーション膜。
1... Semiconductor substrate, 2... Silicon dioxide film, 3.
...Silicon nitride film, 4...Groove, 5...Element formation region, 6...Region where no element is formed, 7...
Silicon dioxide film, 8... Channel stopper, 9...
・Embedded material, 10... Silicon nitride film, 1
1...Thick oxide film, 12...Isolation region, 13...
Source/drain layer-14...gate electrode, 15...
・Gate oxide film, 16... Oxide film, 17... First passivation film, 18... Aluminum wiring, 19
...Final passivation film.

第 1 図 第 2 図 第 3 図 第 4 図 第5図 第 6 図Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 ]−1半導体基板の一面が、その幅がほぼ一定の溝と、
その溝内に充填された埋込み材料とからなる分離領域に
よって多数の領域に区画され、それら多数の区画された
領域のうち、半導体素子が存在しない領域の表面部分に
、端部に緩やかな傾斜を有する厚い酸化膜が存在するこ
とを特徴とする半導体装置。 2、選択酸化による厚い酸化膜の端部は、分離領域の埋
込み材料の部分に連らなっていることを特徴とする特許
請求の範囲第1項に記載の半導体装置。 3、半導体基板の一面に1幅がほぼ一定の溝を形成する
工程と、前記溝内に埋込み材料を埋め込む工程と、溝に
よって分離された分離領域のうち半導体素子を形成しな
い領域に選択酸化によって厚い酸化膜を形成する工程と
を含む半導体装置の製造方法。 4、前記埋込み材料がポリシリコンからなり、埋込み材
料を埋込んだ後、ポリシリコンを酸化し、酸化シリコン
層とすることを特徴とする特許請求の範囲第3項記載の
半導体装置の製造方法。 5、選択酸化による厚い酸化膜の端部は、分離領域の埋
込み材料の部分に連らなって形成されることを特徴とす
る特許請求の範囲第3項記載の半導体装置の製造方法。
[Claims] ]-1 One surface of the semiconductor substrate has a groove whose width is approximately constant;
The trench is divided into a large number of regions by the isolation region made of the embedded material filled in the trench, and among the many partitioned regions, the surface portion of the region where the semiconductor element is not present has a gentle slope at the end. 1. A semiconductor device characterized in that a thick oxide film is present. 2. The semiconductor device according to claim 1, wherein an end of the thick oxide film formed by selective oxidation is continuous with a portion of the buried material in the isolation region. 3. A step of forming a trench with a substantially constant width on one surface of the semiconductor substrate, a step of embedding a filling material in the trench, and a step of selectively oxidizing a region where a semiconductor element is not to be formed in an isolation region separated by the trench. A method for manufacturing a semiconductor device, including a step of forming a thick oxide film. 4. The method of manufacturing a semiconductor device according to claim 3, wherein the embedding material is made of polysilicon, and after embedding the embedding material, the polysilicon is oxidized to form a silicon oxide layer. 5. The method of manufacturing a semiconductor device according to claim 3, wherein the end portion of the thick oxide film formed by selective oxidation is formed to be continuous with a portion of the buried material in the isolation region.
JP14632783A 1983-08-12 1983-08-12 Semiconductor device and manufacture thereof Pending JPS6038831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14632783A JPS6038831A (en) 1983-08-12 1983-08-12 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14632783A JPS6038831A (en) 1983-08-12 1983-08-12 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6038831A true JPS6038831A (en) 1985-02-28

Family

ID=15405164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14632783A Pending JPS6038831A (en) 1983-08-12 1983-08-12 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6038831A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639948A (en) * 1986-06-30 1988-01-16 Nec Corp Semiconductor device
US4980311A (en) * 1987-05-05 1990-12-25 Seiko Epson Corporation Method of fabricating a semiconductor device
US5141888A (en) * 1982-09-29 1992-08-25 Hitachi, Ltd. Process of manufacturing semiconductor integrated circuit device having trench and field isolation regions
US5899727A (en) * 1996-05-02 1999-05-04 Advanced Micro Devices, Inc. Method of making a semiconductor isolation region bounded by a trench and covered with an oxide to improve planarization
US5904539A (en) * 1996-03-21 1999-05-18 Advanced Micro Devices, Inc. Semiconductor trench isolation process resulting in a silicon mesa having enhanced mechanical and electrical properties
US5915191A (en) * 1994-11-03 1999-06-22 Lg Semicon Co., Ltd. Method for fabricating a semiconductor device with improved device integration and field-region insulation
US5926713A (en) * 1996-04-17 1999-07-20 Advanced Micro Devices, Inc. Method for achieving global planarization by forming minimum mesas in large field areas
US5981357A (en) * 1996-04-10 1999-11-09 Advanced Micro Devices, Inc. Semiconductor trench isolation with improved planarization methodology

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141888A (en) * 1982-09-29 1992-08-25 Hitachi, Ltd. Process of manufacturing semiconductor integrated circuit device having trench and field isolation regions
JPS639948A (en) * 1986-06-30 1988-01-16 Nec Corp Semiconductor device
US4980311A (en) * 1987-05-05 1990-12-25 Seiko Epson Corporation Method of fabricating a semiconductor device
US5915191A (en) * 1994-11-03 1999-06-22 Lg Semicon Co., Ltd. Method for fabricating a semiconductor device with improved device integration and field-region insulation
US5904539A (en) * 1996-03-21 1999-05-18 Advanced Micro Devices, Inc. Semiconductor trench isolation process resulting in a silicon mesa having enhanced mechanical and electrical properties
US5981357A (en) * 1996-04-10 1999-11-09 Advanced Micro Devices, Inc. Semiconductor trench isolation with improved planarization methodology
US5926713A (en) * 1996-04-17 1999-07-20 Advanced Micro Devices, Inc. Method for achieving global planarization by forming minimum mesas in large field areas
US5899727A (en) * 1996-05-02 1999-05-04 Advanced Micro Devices, Inc. Method of making a semiconductor isolation region bounded by a trench and covered with an oxide to improve planarization
US6353253B2 (en) 1996-05-02 2002-03-05 Advanced Micro Devices, Inc. Semiconductor isolation region bounded by a trench and covered with an oxide to improve planarization

Similar Documents

Publication Publication Date Title
US5455194A (en) Encapsulation method for localized oxidation of silicon with trench isolation
US5599722A (en) SOI semiconductor device and method of producing same wherein warpage is reduced in the semiconductor device
JPH0513566A (en) Manufacture of semiconductor device
JPH04250650A (en) Flattening of integrated circuit provided with completely recessed isolation insulator
JPH0449777B2 (en)
JPS6340337A (en) Method of isolating integrated circuit
US7705417B2 (en) Semiconductor device and method of fabricating isolation region
US5882981A (en) Mesa isolation Refill Process for Silicon on Insulator Technology Using Flowage Oxides as the Refill Material
US6433400B1 (en) Semiconductor fabrication employing barrier atoms incorporated at the edges of a trench isolation structure
US7410873B2 (en) Method of manufacturing a semiconductor device
KR100234416B1 (en) Method of forming a device isolation film of semiconductor device
JPS6038831A (en) Semiconductor device and manufacture thereof
EP0540262A2 (en) Trench isolation region
JPH0883837A (en) Semiconductor device and manufacturing method thereof
US5696020A (en) Method for fabricating semiconductor device isolation region using a trench mask
US6525402B1 (en) Semiconductor wafer, method of manufacturing the same and semiconductor device
JPS61137338A (en) Manufacture of semiconductor integrated circuit device
US5851901A (en) Method of manufacturing an isolation region of a semiconductor device with advanced planarization
US5874347A (en) Method for fabricating field oxide isolation region for semiconductor devices
US6444539B1 (en) Method for producing a shallow trench isolation filled with thermal oxide
KR0150998B1 (en) SOI wafer manufacturing method using double stopper
US5891788A (en) Locus isolation technique using high pressure oxidation (hipox) and protective spacers
JPH11150179A (en) Manufacture of trench isolation type semiconductor device
KR100223276B1 (en) Process for fabricating semicondcutor device
KR0140734B1 (en) Manufacturing method of semiconductor device