[go: up one dir, main page]

JPS6038174B2 - Hydrogen isotope separation equipment - Google Patents

Hydrogen isotope separation equipment

Info

Publication number
JPS6038174B2
JPS6038174B2 JP11510077A JP11510077A JPS6038174B2 JP S6038174 B2 JPS6038174 B2 JP S6038174B2 JP 11510077 A JP11510077 A JP 11510077A JP 11510077 A JP11510077 A JP 11510077A JP S6038174 B2 JPS6038174 B2 JP S6038174B2
Authority
JP
Japan
Prior art keywords
hydrogen
water
oxygen
tritium
isotope separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11510077A
Other languages
Japanese (ja)
Other versions
JPS5449498A (en
Inventor
秀夫 鬼沢
俊彦 柏井
俊夫 船越
敬明 出雲路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP11510077A priority Critical patent/JPS6038174B2/en
Publication of JPS5449498A publication Critical patent/JPS5449498A/en
Publication of JPS6038174B2 publication Critical patent/JPS6038174B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は電気分解による水素同位体の分離を、低い運転
費で行なえるようにした水素の同位体の分離装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrogen isotope separation apparatus that enables separation of hydrogen isotopes by electrolysis at low operating costs.

水素の同位体には軽水素、重水素およびトリチウムがあ
り、これらを分離する方法は各種のものが提案されてお
り、そのうち電気分解法は有望なものの一つである。
Hydrogen isotopes include light hydrogen, deuterium, and tritium, and various methods have been proposed to separate them, among which electrolysis is one of the most promising.

これは水を電気分解によって水素を酸素に分解する際、
陰極で生成される気相水素中の重水素(またはトリチウ
ム)の濃度は、残留してしている重水素(またはトリチ
ウム)の濃度より相当に低くなる事を利用するものであ
る。すなわち水の電解槽と水素と酸素の再結合器を適宜
組み合せれば、任意の濃度にこれら同位体を濃縮(また
は希釈)分離することができる。しかしながら、この方
法を重水製造プラントや原子力発電所におけるトリチゥ
ム分離装置のように工業的な規模で実施しようとすれば
、その電解に要する電力は大量のものとなり、その運転
費(ランニングコスト)が高くなる欠点があった。本発
明者等は、上記のような電気分解法による水素の同位体
分離において、その運転費(ランニング・コスト)を低
減し得る方法について研究をを重ねた結果、発電効率の
非常に高い燃料電池に、電解槽で発生した水素と酸素を
再結合して水に戻す役目と、電力を発生させ電解に要し
た電力を補償する機能とをもたせることにより、水素の
同位体を分離する装置の運転費を大中に低減できること
を見出し本発明に到達したものである。
This occurs when water is electrolyzed to decompose hydrogen into oxygen.
This method takes advantage of the fact that the concentration of deuterium (or tritium) in the gaseous hydrogen produced at the cathode is considerably lower than the concentration of residual deuterium (or tritium). In other words, by appropriately combining a water electrolyzer and a hydrogen/oxygen recombiner, these isotopes can be concentrated (or diluted) and separated to an arbitrary concentration. However, if this method were to be implemented on an industrial scale, such as in heavy water production plants or tricium separation equipment at nuclear power plants, a large amount of electricity would be required for electrolysis, and the running costs would be high. There was a drawback. The inventors of the present invention have conducted repeated research on methods for reducing the running costs of hydrogen isotope separation using the electrolysis method described above, and as a result, they have developed a fuel cell with extremely high power generation efficiency. It is possible to operate a device that separates hydrogen isotopes by recombining the hydrogen and oxygen generated in the electrolyzer and returning them to water, as well as generating electricity and compensating the electricity required for electrolysis. The present invention was achieved by discovering that the cost can be significantly reduced.

すなわち、本発明は水が供給される電解槽、同電解槽の
各電極上にそれぞれ区画して形成されたガス室に連絡し
前記電解槽内で発生した水素及び酸素が供給される水素
−酸素燃料電池、及び前記電解槽に給電する電源装置を
有してなり、同電源装置に前記電池を連絡し同電池の出
力を同電源装置に付加することを特徴とする、水素同位
体分離装置に関するものである。第1図に本発明による
水素の同位体の分離装置の原理説明図を示す。
That is, the present invention provides an electrolytic cell to which water is supplied, and a hydrogen-oxygen cell which is connected to a gas chamber formed separately on each electrode of the electrolytic cell, and to which hydrogen and oxygen generated in the electrolytic cell are supplied. Relating to a hydrogen isotope separation device comprising a fuel cell and a power supply device for supplying power to the electrolyzer, the battery being connected to the power supply device and the output of the battery being added to the power supply device. It is something. FIG. 1 shows an explanatory diagram of the principle of a hydrogen isotope separation apparatus according to the present invention.

電解檀1には陰極板2および3が設けられ、各電極板は
電気配線18により電源装置19に接続され電力の供給
を受ける。
The electrolytic basin 1 is provided with cathode plates 2 and 3, and each electrode plate is connected to a power supply device 19 through electric wiring 18 to receive power supply.

電解槽1の上部には水素室6と酸素室7があり、水素と
酸素の俵は鳥気の生成を防止するよう隔膜5で仕切られ
ている。また水素室6と酸素室7は各々収集した水素と
酸素を燃料電池10の陰極11および陽極12へ燃料及
び酸化剤として供給するよう水素ライン15及び酸素ラ
イン16により接続されている。電解槽1の底部には濃
縮液取世ライン9が設けられており、電気分解によって
濃縮された濃縮重水(または濃縮トリチゥム水)を取り
出せるようにしてある。燃料電池10‘ま陰極11と陽
極12及び電解質13からなり、電極は多孔質の炭素な
どの電子導電体の物質からできており、その表面には水
素や酸素を活性化させるための触媒(白金など)が添加
されている。また燃料電池101こは電池反応によって
生じた水を取り出すための希釈液取出ライン14を設け
てある。陰極11及び陽極12は発生した電力を送るた
め、電気配線17により電源装置19へ接続してある。
水素の同位体分離には、軽水素の分離、重水素とトリチ
ウムの分離、軽水素とトリチウムの分離及びこれらの混
合した形式のものが考えられるが、ここでは軽水素とト
リチウムの分離を例に説明する。
There is a hydrogen chamber 6 and an oxygen chamber 7 in the upper part of the electrolytic cell 1, and the hydrogen and oxygen bales are separated by a diaphragm 5 to prevent the generation of bird air. The hydrogen chamber 6 and the oxygen chamber 7 are also connected by a hydrogen line 15 and an oxygen line 16 so as to supply the collected hydrogen and oxygen to the cathode 11 and anode 12 of the fuel cell 10 as fuel and oxidant, respectively. A concentrate removal line 9 is provided at the bottom of the electrolytic cell 1 so that concentrated heavy water (or concentrated tritium water) concentrated by electrolysis can be taken out. The fuel cell 10' consists of a cathode 11, an anode 12, and an electrolyte 13. The electrodes are made of an electronic conductor material such as porous carbon, and a catalyst (platinum) for activating hydrogen and oxygen is coated on the surface of the electrode. etc.) are added. Further, the fuel cell 101 is provided with a diluent extraction line 14 for extracting water produced by the cell reaction. The cathode 11 and the anode 12 are connected by electrical wiring 17 to a power supply 19 for transmitting the generated power.
Hydrogen isotope separation can include separation of light hydrogen, separation of deuterium and tritium, separation of light hydrogen and tritium, and a mixture of these.Here, separation of light hydrogen and tritium will be used as an example. explain.

彼処理水(軽水とトリチウム水の混合水)は供給液ライ
ン8から電解槽1に供給され、ここで電気分解により水
素が陰極板2で生じ水素室6に集められ、また酸素は陽
極板3で生じ酸素室7に集められる。この電気分解の際
、陰極における軽水素とトリチウムの過電圧はトリチゥ
ムの方が大きいため、発生した水素中(気相中の)のト
リチウム濃度は残留している水中のトリチウム濃度より
低くなるので、トリチウムの濃縮水が電解槽1中に生成
され、またトリチウムの希釈水が後述されるように燃料
電池10で生成される(すなわち軽水素とトリチウムの
分離が行なわれる)。さて電解槽1の水素室6及び酸素
室7に収集された水素及び酸素は各々水素ライン及び酸
素ライン16を経由して燃料電池10の陰極1 1及び
陽極1へそれぞれ供給される。次に燃料露地1川こおけ
る作用を説明する(水素・酸素燃料電池には酸素電解質
とアルカリ性電解質を利用したものがあるが、ここでは
酸性電解質を使用したものを例として説明する)。
The treated water (mixed water of light water and tritiated water) is supplied from the feed line 8 to the electrolytic cell 1, where hydrogen is produced by electrolysis in the cathode plate 2 and collected in the hydrogen chamber 6, and oxygen is produced in the anode plate 3. is generated and collected in the oxygen chamber 7. During this electrolysis, the overvoltage of light hydrogen and tritium at the cathode is greater for tritium, so the concentration of tritium in the generated hydrogen (in the gas phase) is lower than the concentration of tritium in the remaining water. concentrated water is produced in the electrolytic cell 1, and tritium dilution water is produced in the fuel cell 10 as will be described later (that is, light hydrogen and tritium are separated). Now, the hydrogen and oxygen collected in the hydrogen chamber 6 and oxygen chamber 7 of the electrolyzer 1 are supplied to the cathode 11 and anode 1 of the fuel cell 10 via the hydrogen line and the oxygen line 16, respectively. Next, we will explain the action of fuel in an open field (there are hydrogen/oxygen fuel cells that use an oxygen electrolyte and an alkaline electrolyte, but here we will explain one that uses an acidic electrolyte as an example).

陰極I1では供V給された水素が電極に吸着し、触媒作
用により活性化され、水素イオンとなって電解質13の
中に入り、陽極12へ移動する。その際、生じた電子を
外部回路へ流す(ここでは電気配線17を通じて電源1
9へ流す)。陰極11での反応は次式で表わされる。Q
→2H++を− 陽極12では、供給された酸素が電極に吸着して活性化
され、外部回路から電極へ流れ込んだ電子を受け(ここ
で電源装置19から電気配線17を経由して電子が陽極
に流れ込む)、電解質中の水素イオンを反応して水を生
成する。
At the cathode I1, the supplied hydrogen is adsorbed on the electrode, activated by a catalytic action, becomes hydrogen ions, enters the electrolyte 13, and moves to the anode 12. At that time, the generated electrons flow to the external circuit (here, the power supply 1
9). The reaction at the cathode 11 is expressed by the following formula. Q
→2H++ − At the anode 12, the supplied oxygen is adsorbed to the electrode and activated, and receives electrons flowing into the electrode from the external circuit (electrons are transferred from the power supply 19 to the anode via the electrical wiring 17). ), which reacts with hydrogen ions in the electrolyte to produce water.

陽極12での反応は次式で表わされる。畑十ヂ2冊‐一
日20 よって電池全体の反応としては、 叫や2一日20 となる。
The reaction at the anode 12 is expressed by the following formula. 2 books per day - 20 per day Therefore, the overall reaction of the battery is 20 per day.

要するに、燃料電池10は電気化学的な酸化反応により
、電解槽1で発生した水素と酸素を全量、水に戻し、そ
の反応のエネルギーを直接、電気エネルギーの形で外部
へ取り出している。
In short, the fuel cell 10 returns all of the hydrogen and oxygen generated in the electrolyzer 1 to water through an electrochemical oxidation reaction, and directly extracts the energy of the reaction to the outside in the form of electrical energy.

以上のように、本発明の水素の同位体分離装置では水の
電気分解により水素の同位体の分離を行ない、その際発
生した水素と酸素をそれぞれ燃料及び酸化剤とする燃料
電池にて発電を行なうことにより、電解に要した電力を
補償しており、運転費(ランニングコスト)を著しく低
減することができる(100%補償はできないが、周知
のように燃料電池は在来の発電方式に比べてかなり高効
率である為、相当の効果がある。)。なお、本発明によ
る水素の同位体分離装置を工業的に実施するためには、
第1図に示すような1対の電解槽と燃料電池の組合せで
は得られる濃縮度が不足するため、これらを多段に組合
せる必要がある。
As described above, in the hydrogen isotope separation device of the present invention, hydrogen isotopes are separated by electrolysis of water, and electricity is generated by a fuel cell using the hydrogen and oxygen generated at that time as fuel and oxidant, respectively. By doing so, the electricity required for electrolysis is compensated, and the operating cost (running cost) can be significantly reduced (although 100% compensation is not possible, as is well known, fuel cells have a lower cost compared to conventional power generation methods). It has a considerable effect because it has a fairly high efficiency.) In addition, in order to industrially implement the hydrogen isotope separation apparatus according to the present invention,
Since the concentration obtained by the combination of a pair of electrolyzers and fuel cells as shown in FIG. 1 is insufficient, it is necessary to combine them in multiple stages.

第2図はこれらを多段に絹合せたシステムの1つの実施
例を示したもので、いわゆる「理想カスケード方式」の
考えによって電解槽と燃料を結合させたものである。第
2図において、1は第1段電解槽、2は第段燃料電池、
3は第2段電解糟、4は第2段燃料電池、5は第n−1
段電解槽、6は第n−1段燃料電池、7は第n段電解槽
、8は第n段燃料電池であり、ラィンイより被処理水を
供給し、ラィンロより希釈液を取り出し、ラィンハは第
3段の燃料電池より希釈液をその前の2段電解槽3へ送
るラインであり、ライン二は第n−2段の電解槽供給液
ラインへ希釈液を送るラインであり、ライン木は濃縮液
を取り出すラインである。
FIG. 2 shows an example of a system in which these systems are combined in multiple stages, and the electrolytic cell and fuel are combined based on the idea of the so-called "ideal cascade system." In FIG. 2, 1 is a first stage electrolyzer, 2 is a first stage fuel cell,
3 is the second stage electrolyte, 4 is the second stage fuel cell, 5 is the n-1th stage
The stage electrolyzer, 6 is the n-1 stage fuel cell, 7 is the n-stage electrolyzer, and 8 is the n-stage fuel cell.Water to be treated is supplied from the line, and diluted liquid is taken out from the line. This line sends the diluted liquid from the third stage fuel cell to the two-stage electrolyzer 3 in front of it. Line 2 is the line that sends the diluted liquid to the n-2nd stage electrolyzer supply line. The line tree is This is the line that takes out the concentrated liquid.

このように電解槽と燃料電池を必要な段数だけ適宜組合
せすることにより、工業的規模の装置を実現することが
できる。本発明装置は、重水製造プラント、重水炉型電
子力発電所における重水中からトリチウムを分離する装
置、軽水炉型電子力を発電所における軽水中からトリチ
ゥムを分離する装置、核燃料再処理工場における軽水中
からトリチワムを分離する装置に適用できる。
In this way, by appropriately combining the required number of electrolyzers and fuel cells, an industrial-scale device can be realized. The device of the present invention is applicable to heavy water production plants, devices for separating tritium from heavy water in heavy water reactor type electronic power plants, devices for separating tritium from light water in light water reactor type power plants, and devices for separating tritium from light water in nuclear fuel reprocessing plants. It can be applied to a device that separates trichiva from.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の水素の同位体分離装置の漠式図であり
、第2図はカスケード方式で本発明方法を行なう場合の
フローシートである。 オー図 矛2図
FIG. 1 is a schematic diagram of the hydrogen isotope separation apparatus of the present invention, and FIG. 2 is a flow sheet for carrying out the method of the present invention in a cascade system. O Zuko 2

Claims (1)

【特許請求の範囲】[Claims] 1 水が供給される電解槽、同電解槽の各電極上にそれ
ぞれ区画して形成されたガス室、同ガス室に連絡し前記
電解槽内で発生した水素及び酸素は供給される水素−酸
素燃料電池、及び前記電解槽に給電する電源装置を有し
てなり、同電源装置に前記電池を連結し同電池の出力を
同電装置に付加することを特徴とする、水素同位分離装
置。
1. An electrolytic cell to which water is supplied, a gas chamber formed separately on each electrode of the electrolytic cell, and a hydrogen-oxygen system connected to the gas chamber and supplied with hydrogen and oxygen generated in the electrolytic cell. A hydrogen isotope separation device comprising a fuel cell and a power supply device that supplies power to the electrolyzer, the battery being connected to the power supply device and the output of the battery being added to the power device.
JP11510077A 1977-09-27 1977-09-27 Hydrogen isotope separation equipment Expired JPS6038174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11510077A JPS6038174B2 (en) 1977-09-27 1977-09-27 Hydrogen isotope separation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11510077A JPS6038174B2 (en) 1977-09-27 1977-09-27 Hydrogen isotope separation equipment

Publications (2)

Publication Number Publication Date
JPS5449498A JPS5449498A (en) 1979-04-18
JPS6038174B2 true JPS6038174B2 (en) 1985-08-30

Family

ID=14654208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11510077A Expired JPS6038174B2 (en) 1977-09-27 1977-09-27 Hydrogen isotope separation equipment

Country Status (1)

Country Link
JP (1) JPS6038174B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718340Y2 (en) * 1991-07-01 1995-05-01 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Coffee extractor
JP2015021877A (en) * 2013-07-22 2015-02-02 矢内 誠 Radioactive material removal device and method for solidifying radioactive contaminated water
JP6303238B2 (en) * 2014-03-26 2018-04-04 三菱重工環境・化学エンジニアリング株式会社 Radioactive material treatment equipment
JP6147315B2 (en) 2015-11-02 2017-06-14 三菱電機株式会社 Controller-integrated rotating electrical machine
WO2018194182A1 (en) * 2017-04-21 2018-10-25 国立大学法人北海道大学 Method for producing hydrogen isotope enriched water or aqueous solution, and method and device for producing hydrogen gas having reduced hydrogen isotope concentration

Also Published As

Publication number Publication date
JPS5449498A (en) 1979-04-18

Similar Documents

Publication Publication Date Title
US10622659B2 (en) Water treatment system using alkaline water electrolysis device and alkaline fuel cell
JPS6122036B2 (en)
KR101468782B1 (en) Method for reducing carbon dioxide and non-diaphragm reductor of carbon dioxide using the same
US5041197A (en) H2 /C12 fuel cells for power and HCl production - chemical cogeneration
JPS6038174B2 (en) Hydrogen isotope separation equipment
JP4601647B2 (en) Hydrogen generator and fuel cell system using the same
US10246785B2 (en) Use of fluidized-bed electrode reactors for alane production
CN118007150A (en) Electrolytic-air film coupling system for recycling bromine based on BiOBr electrode and Br-Is recovered by the method of (2)
JP7164882B2 (en) Method for producing water or aqueous solution enriched with hydrogen isotope, method and apparatus for producing hydrogen gas with reduced hydrogen isotope concentration
JPS62182292A (en) Diaphragm electrolysis of hci
JPH04249866A (en) Fuel electrode activation for methanole fuel battery
US3306832A (en) Multistage process for the concentration of heavy water in feed water comprising a mixture of water and heavy water
US3331703A (en) Fuel cell system
Johnson et al. Electrochemical membrane separation of chlorine from gaseous hydrogen chloride waste
JPS5855799A (en) Hydrogen isotope separation equipment for nuclear power plants
KR102721371B1 (en) Apparatus for producing deuterium comprising multiple module
JPH03140487A (en) Electrochemical reactor
JPS59163770A (en) Method of producing oxygen
US4639296A (en) Method for forming ethylene glycol from sodium methoxide
JPS581617B2 (en) Water↓-hydrogen isotope exchange reactor with economizer
RU2092232C1 (en) Method of electrochemically separating acidic gases
JPH05802A (en) Method for separating hydrogen isotopes
USRE26913E (en) Multistage process for the concentra- tion of heavy water in feed water com- prising a mixture of water and heavy water
JPS59162284A (en) Method for generating hydrogen, oxygen and inert gas
ES2170683A1 (en) Energy recovery system for diverse types of electrolytic plant treating metals and plastics, routes gasified electrolyte to fuel cell to remove gases and recover electrical energy directly, for outstanding efficiency