[go: up one dir, main page]

JPS6037877B2 - How to process diaphragms for electrolysis - Google Patents

How to process diaphragms for electrolysis

Info

Publication number
JPS6037877B2
JPS6037877B2 JP11802778A JP11802778A JPS6037877B2 JP S6037877 B2 JPS6037877 B2 JP S6037877B2 JP 11802778 A JP11802778 A JP 11802778A JP 11802778 A JP11802778 A JP 11802778A JP S6037877 B2 JPS6037877 B2 JP S6037877B2
Authority
JP
Japan
Prior art keywords
diaphragm
asbestos
latex
water
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11802778A
Other languages
Japanese (ja)
Other versions
JPS5544564A (en
Inventor
武 安達
哲生 竹下
五明 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP11802778A priority Critical patent/JPS6037877B2/en
Publication of JPS5544564A publication Critical patent/JPS5544564A/en
Publication of JPS6037877B2 publication Critical patent/JPS6037877B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 本発明は寸法安定で、電気抵抗が低く、透水量の経時変
化が少ない水溶液電解用石綿隔膜を得る方法を提供する
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for obtaining an asbestos diaphragm for aqueous electrolysis that is dimensionally stable, has low electrical resistance, and exhibits little change in water permeability over time.

水溶液電解、特に食塩水電解用の隔膜としては公知のよ
うに石綿が広く用いられている。
As is known, asbestos is widely used as a diaphragm for aqueous solution electrolysis, especially saline solution electrolysis.

石綿陣膜は多くの利点をもつが、物理的強度が低く、特
に電解初期には箸しく膨潤するため発生ガス及びそれに
よる液流により破損されるという欠点を持つ。また電解
初期の透水量が多く、例えば食塩水電解により苛性ソー
ダを製造する場合苛性ソーダ濃度が適正になるまでに長
時間を要する。これらの欠点のため、隔膜を薄くして隔
膜の電気抵抗を少なくし、電解電圧を低下させるという
事は不可能であった。また石綿紙のバインダーとしてデ
ンプンやクロロプレンゴムが使用される事は公知である
が、これらの石綿紙を隔膜として使用する場合には物理
的強度がなお充分でないため、高電流密度下では隅膜が
破損してしまうことがいよいよ見受けられる。これらの
欠点を補うために、石綿隅膜製造時に有機高分子、特に
弗秦系樹脂をバインダー及び目語り剤として使用する研
究がなされている。
Although asbestos membrane has many advantages, it has the disadvantage that it has low physical strength and swells considerably during the initial stage of electrolysis, so it can be damaged by the generated gas and the resulting liquid flow. In addition, the amount of water permeable at the initial stage of electrolysis is large, and for example, when producing caustic soda by saline solution electrolysis, it takes a long time until the concentration of caustic soda becomes appropriate. Because of these drawbacks, it has been impossible to reduce the electrical resistance of the diaphragm by making it thinner, thereby lowering the electrolytic voltage. It is also known that starch and chloroprene rubber are used as binders for asbestos paper, but when these asbestos papers are used as diaphragms, their physical strength is still insufficient, so the corneal membrane may be damaged under high current densities. You can finally see it getting damaged. In order to compensate for these drawbacks, research has been carried out on using organic polymers, especially flouten-based resins, as binders and visual agents during the production of asbestos corneal membranes.

しかし、弗秦系樹脂は高価である事、またバインダーと
して使用するためには28000以上での高温処理が必
要で、石綿繊維の性質が変化し、石綿繊維自身がもろく
なる事、また弗素系樹脂で補強した隔膜は例えば食塩水
の電解初期の透水量が安定時の1ぴ割こも達し、しかも
透水量の経時変化が大きく、苛性ソーダ濃度の調整が難
しい等の欠点がある。また弗素樹脂で補強した膝膜は電
流効率を低下させること、樹脂が疎水性であるため親水
化処理を要することなどの欠点を有する。本発明者らは
、石綿紙バインダーとしては公知であるクロロプレンゴ
ムラテックスを特殊な条件下で使用する事により、寸法
安定で物理的強度が高く、電気抵抗が低く、透水量の経
時変化が少ないという従来の石綿隔膜からは予想できな
かった性能をもつ隔膜を得る事に成功した。
However, fluorine-based resin is expensive, and in order to be used as a binder, it requires high-temperature treatment at a temperature of 28,000 or higher, which changes the properties of the asbestos fibers and makes them brittle. A diaphragm reinforced with a diaphragm has drawbacks such as, for example, the amount of water permeable at the initial stage of electrolysis of saline water is 10% lower than when it is stable, and the amount of water permeable changes greatly over time, making it difficult to adjust the concentration of caustic soda. Furthermore, the knee membrane reinforced with fluororesin has drawbacks such as lowering current efficiency and requiring hydrophilic treatment because the resin is hydrophobic. The present inventors have found that by using chloroprene rubber latex, which is known as an asbestos paper binder, under special conditions, it is dimensionally stable, has high physical strength, has low electrical resistance, and has little change in water permeability over time. We succeeded in obtaining a diaphragm with performance that could not be expected from conventional asbestos diaphragms.

以下本発明の構成及び効果を詳細に説明する。The configuration and effects of the present invention will be explained in detail below.

{1’金網又は多孔板状の陰極上に、良く解綿した石綿
スラリー水性液から減圧吸引法等により石綿繊維を沈着
させて隔膜を形成させる。この工程はデポジット法とし
て公知である。{2’隔膜を流水中に浸債するか隔膜の
一面から他面に水を透して洗浄し、蝿膜に含まれる苛性
ソーダ及び食塩を可及的に除去する。
{1' Asbestos fibers are deposited on a cathode in the form of a wire mesh or a perforated plate from a well-defined asbestos slurry aqueous solution by vacuum suction or the like to form a diaphragm. This process is known as the deposit method. {2' Wash the diaphragm by immersing it in running water or passing water from one side of the diaphragm to the other to remove as much caustic soda and salt contained in the fly's membrane as possible.

【3} 陣膜を乾燥させる。[3} Dry the membrane.

乾燥の度合は少くとも手で触れて湿り気が無い程度で良
い。乾燥温度は常温でも良いが、60〜150q○で短
時間で乾燥する事が望ましい。{4’クロoプレンゴム
粒子を含むラテックス液、又は更に水ガラス又は更に非
イオン系界面活性剤を加えた液を、減圧法等で隔膜中を
透過させ隔膜を層全体にわたりクロロプレンゴム粒子を
吸着させる。
The degree of dryness is good, at least to the extent that it is not damp to the touch. The drying temperature may be room temperature, but it is desirable to dry at 60 to 150 q○ in a short time. {4' A latex liquid containing chloroprene rubber particles, or a liquid to which water glass or a nonionic surfactant is further added, is passed through the diaphragm using a vacuum method, etc., and the diaphragm adsorbs the chloroprene rubber particles over the entire layer. .

クロロプレンゴム粒子吸着量は当該ラテックス濃度及び
透過量を調節して調整される。‘5} 上記隔膜に減圧
下等で空気を通して水切りを良く行ない、加熱乾燥する
The amount of chloroprene rubber particles adsorbed is adjusted by adjusting the latex concentration and permeation amount. '5} Air is passed through the diaphragm under reduced pressure, etc. to drain water well, and then heat and dry.

上記の方法により性能の良い隔膜を得る事ができるが隔
膜中の苛性ソーダや食塩等の電解質を可及的に少〈する
ため隔膜の一面から地面に約0.005〜0.01〆/
〆/分の流速で10分以上透水することが望ましい。
A diaphragm with good performance can be obtained by the above method, but in order to minimize the amount of electrolytes such as caustic soda and salt in the diaphragm, the distance from one side of the diaphragm to the ground must be approximately 0.005 to 0.01/
It is desirable that water permeates for 10 minutes or more at a flow rate of 1/min.

但し前記流速は本発明の構成を制限するものではない。
また水洗後の乾燥は石綿を傷めない程度の温度、例えば
60oo〜150℃で短時間に行うのがよい。次に隔膜
の性能を良くするためには隔膜の内部に充分な量のクロ
ロプレンゴム粒子を浸透させる事、及び隔膜表面も内部
もクロロプレンゴムを均一に吸着させる事が重要である
。即ち隔膜表面にクロロプレンゴムが多過ぎると乾燥時
に表面にのみ膜を形成し、電流を通すとガス逃げが不十
分でガスブクレが発生しまた隔膜の強度を低下させると
共に電圧上昇の原因となり、また内部のクロロプレンゴ
ム粒子量が少ないため補強効果は表面のみとなり、隔膜
が二重層構造となるため、ガス溜りが発生し電圧が高く
なり、隔膜の強度も実質的に向上しない。したがってク
ロロプレンゴムラテツクス濃度は0.01〜2重量%望
ましくは0.06〜0.3重量%に調整することが好ま
しい。このようなラテックスを用いることによりクロロ
プレンラテックスは石綿に対し約2〜25重量%の附着
量となる。上記のごとくラテツクス中の高分子粒子を隔
膜内部まで充分に浸透させるためには隅膜中へのラテッ
クス液の透過性が良くなければならない。
However, the above flow rate does not limit the configuration of the present invention.
Further, drying after washing with water is preferably carried out for a short period of time at a temperature that does not damage asbestos, for example, 60°C to 150°C. Next, in order to improve the performance of the diaphragm, it is important to infiltrate a sufficient amount of chloroprene rubber particles into the diaphragm and to uniformly adsorb chloroprene rubber both on the surface and inside the diaphragm. In other words, if there is too much chloroprene rubber on the surface of the diaphragm, a film will form only on the surface when it dries, and when a current is passed through, gas leakage will occur due to insufficient gas escape, and this will reduce the strength of the diaphragm and cause an increase in voltage. Since the amount of chloroprene rubber particles is small, the reinforcing effect is only on the surface, and since the diaphragm has a double layer structure, gas accumulation occurs, the voltage increases, and the strength of the diaphragm does not improve substantially. Therefore, the concentration of the chloroprene rubber latex is preferably adjusted to 0.01 to 2% by weight, preferably 0.06 to 0.3% by weight. By using such a latex, the amount of chloroprene latex deposited on asbestos is about 2 to 25% by weight. As mentioned above, in order for the polymer particles in the latex to sufficiently penetrate into the inside of the diaphragm, the permeability of the latex liquid into the corneal membrane must be good.

本発明者らは研究を重ねた結果、ラテックス液を透過さ
せる前に隔膜を乾燥させる事がラテックス液の透過性向
上のために非常に有効である事を見出したことは前述の
とおりであるがさらにラテックスの種類により透過性の
良否が有り、透過性が悪い場合には非イオン系界面活性
剤又は水ガラスの添加が有効であることがわかった。例
えばネオプレン■ラテツクス(昭和ネオプレン社商品0
名)の#736は比較的透過性が良く、濃度を調整した
だけで使用可能で有るが、#400は透過性が悪く、界
面活性剤又は水ガラスの添加が必要で有った。もっとも
#736に界面活性剤又は水ガラスを添加する事により
透過性は更に良くなり「隔膜の性能が向上した。こ)で
水ガラスとはアルカリ桂酸塩又はそれと蛙酸との混合物
の水溶液でアルカリは一般にNa20又はK20である
。非イオン系界面活性剤はポリエチレングリコ−ル型と
か多価アルコール脂肪酸ヱステル型などいづれも含まれ
る。
As mentioned above, as a result of repeated research, the present inventors found that drying the diaphragm before letting the latex liquid pass through it is very effective for improving the permeability of the latex liquid. Furthermore, it has been found that the permeability is good or bad depending on the type of latex, and when the permeability is poor, it is effective to add a nonionic surfactant or water glass. For example, neoprene latex (Showa Neoprene Company product 0)
#736 has relatively good permeability and can be used simply by adjusting the concentration, but #400 has poor permeability and requires the addition of a surfactant or water glass. However, by adding a surfactant or water glass to #736, the permeability was further improved, and the performance of the diaphragm was improved. The alkali is generally Na20 or K20.Nonionic surfactants include both polyethylene glycol type and polyhydric alcohol fatty acid ester type.

次にラテツクス中のクロロプレンゴム粒子濃度が低過ぎ
る場合には補強に必要なクロロプレンゴムを隔膜に含浸
させるためには多量のラテックス液を透す必要が有るが
、この場合単位時間当り‘こ通過するクロロプレンゴム
粒子が少ないため、クロロプレンゴムは表面近くの石綿
に吸着されてしまい、内部まで浸透しない。
Next, if the concentration of chloroprene rubber particles in the latex is too low, it is necessary to pass a large amount of latex liquid through the diaphragm in order to impregnate the diaphragm with the chloroprene rubber necessary for reinforcement, but in this case, it is necessary to pass a large amount of latex liquid per unit time. Since there are few chloroprene rubber particles, chloroprene rubber is adsorbed by asbestos near the surface and does not penetrate into the interior.

逆に濃度が高過ぎると透過性は悪く、したがって透過終
了時の隔膜表面が空気に接する際に膜を形成するため良
好な隔膜は得られない。良好な隔膜を得るためにはクロ
ロプレンラテックス粒子の石綿の内部への浸透と吸着を
バランスさせる必要がある。即ち本発明の目的はクロロ
プレンゴム濃度の適正化と浸透性向上による隔膜の性能
向上にあるが、発明の要旨は、石綿スラリ−から石綿繊
維を電解用陰極表面に沈着させて隅膜を形成後、該隅艇
中を水洗浄して乾燥し、続いてクロロプレンゴムラテッ
クスを含有する隔膜処理液中に浸潰して再び乾燥するこ
とにある。次に実施例でもつて本発明の効果を説明する
。実施例 120Wt%のNaOHの32夕/夕に調整
された、石綿繊維を分散させたスラリー溶液より有効面
積1.0のの陰極金網へ−50仇奴Hgの減圧下で石綿
繊維をデポジットさせ、厚さ2肌の隅膜を形成し、1そ
の水を通して洗浄した後、70q○で3時間乾燥させた
On the other hand, if the concentration is too high, the permeability will be poor, and therefore a good diaphragm will not be obtained because a film will be formed when the diaphragm surface comes into contact with air at the end of permeation. In order to obtain a good diaphragm, it is necessary to balance the penetration and adsorption of chloroprene latex particles into asbestos. That is, the purpose of the present invention is to improve the performance of the diaphragm by optimizing the concentration of chloroprene rubber and improving the permeability. The inside of the tube is washed with water, dried, and then immersed in a diaphragm treatment solution containing chloroprene rubber latex and dried again. Next, the effects of the present invention will be explained with reference to Examples. Example 1 Asbestos fibers were deposited from a slurry solution containing asbestos fibers dispersed in 20 wt% NaOH adjusted to 32 days/day onto a cathode wire mesh with an effective area of 1.0 under a reduced pressure of -50 tons of Hg, A corneal membrane with a thickness of 2 skins was formed, washed with 1 layer of water, and then dried at 70q○ for 3 hours.

次にネオプレンラテツクス■ラテツクス#736(昭和
ネオプレン社製のクロロプレンゴムラテックス商品名)
を水で0.紅重量%に希釈した液を−45比吻Hgの減
圧下で透過させ、石綿に対して6.丸重量%のクロロプ
レンゴム粒子を吸着させた。その後一40比奴Hgの減
圧下で30分間空気を通し、次に7000で細時間乾燥
させた。この隔膜を露槽に組み込み、電解テストを行な
った。その条件は以下に示す通りである。食塩水濃度:
310タノ〆 陽極液ヘッド;50仇 槽温:70CC 陽極:酸化ルテニウム被覆チタン金網陽極、ldの極間
:7肌 電流:20A/dで 3週間運転後の結果は表1に示す。
Next, neoprene latex ■ Latex #736 (chloroprene rubber latex brand name manufactured by Showa Neoprene Co., Ltd.)
with water to 0. A solution diluted to 6% by weight of asbestos was permeated under reduced pressure of -45% Hg. A round weight percent of chloroprene rubber particles were adsorbed. Thereafter, air was passed through it for 30 minutes under a reduced pressure of 140% Hg, and then it was dried for a short time at 7,000 degrees Celsius. This diaphragm was installed in a dew tank and an electrolytic test was conducted. The conditions are as shown below. Saline concentration:
Table 1 shows the results after 3 weeks of operation at 310 mm anolyte head; 50 mm bath temperature: 70 CC; anode: ruthenium oxide coated titanium wire mesh anode; ld gap: 7; skin current: 20 A/d.

実施例 2 実施例1と同様な方法で厚さ1側の隔膜を作り0.06
重量%のネオプレン■ラテツクス#736を用いて、石
綿に対して2.1重量%のクロロプレンゴム粒子を吸着
させた。
Example 2 A diaphragm with a thickness of 1 was made using the same method as in Example 1, and the thickness was 0.06.
% neoprene latex #736 was used to adsorb 2.1% by weight of chloroprene rubber particles on asbestos.

その他の条件は実施例1と同様であった。結果は表1に
示す。実施例 3 隅膜の厚さを1.9肌とし、水で0.0重重量%に希釈
したネオプレン■ラテツクスにェマルゲン920(花王
アトラス社製のポリエチレングリコール型非イオン系界
面活性剤)を0.02重量%添加したものを使用し、石
綿に対して4重量%のクロロプレンゴム粒子を吸着させ
た。
Other conditions were the same as in Example 1. The results are shown in Table 1. Example 3 The thickness of the corneal membrane was set to 1.9 cm, and 0% of Emalgen 920 (polyethylene glycol type nonionic surfactant manufactured by Kao Atlas Co., Ltd.) was added to neoprene latex diluted with water to 0.0% by weight. 02% by weight was used, and 4% by weight of chloroprene rubber particles were adsorbed on asbestos.

その他の条件は、ラテックス液透過前の乾燥を120q
Cで3時間、後の乾燥を120o0で1期時間行なった
以外は実施例1と同様である。結果は表1に示す。実施
例 4隔膜の厚さを1.9肋とし、水で0.0母重量%
に希釈したネオプレン■ラテツクス#736に水ガラス
0.05重量%を添加したものを用い石綿に対して4重
量%のク。
Other conditions include drying at 120q before passing through the latex liquid.
The procedure was the same as in Example 1, except that the drying was carried out at C for 3 hours and the subsequent drying was carried out at 120° C. for one period. The results are shown in Table 1. Example 4 The thickness of the diaphragm was 1.9 ribs, and the water was 0.0% by weight
Neoprene latex #736 diluted with 0.05% by weight of water glass was used, and the amount was 4% by weight based on asbestos.

ロプレンゴム粒子を吸着させた。その他の条件は実施例
3と同様である。結果は表1に示す。
Loprene rubber particles were adsorbed. Other conditions are the same as in Example 3. The results are shown in Table 1.

比較例 1 実施例1と同じ方法で厚さ2肋の隅膜をデポジットし、
水処理、乾燥処理、クロロプレン処理、乾燥処理をせず
電解に使用した。
Comparative Example 1 A corneal membrane with a thickness of 2 ribs was deposited in the same manner as in Example 1,
It was used for electrolysis without water treatment, drying treatment, chloroprene treatment, or drying treatment.

結果は表1に示す。The results are shown in Table 1.

比較例 2 実施例1に於て、ラテツクス液透過前に行なった乾燥を
行なわず、その他は実施例1と同様な処理を行なった。
Comparative Example 2 The same treatment as in Example 1 was carried out except that the drying performed before the latex liquid permeation in Example 1 was not performed.

この場合、数時間の電解で隔膜にガスブクレが生じ、電
圧は実施例の場合と比べ0.2V以上高くなり、長期の
運転は不可能であった。実施例1〜4、比較例1の3週
間後の運転データ、及び電解開始直後の電解液摘出量の
比較を表1で行なう。
In this case, gas leakage occurred in the diaphragm after several hours of electrolysis, and the voltage was 0.2 V or more higher than in the example, making long-term operation impossible. Table 1 compares the operational data of Examples 1 to 4 and Comparative Example 1 after 3 weeks, and the amount of electrolyte extracted immediately after the start of electrolysis.

表1 電解実験データ(20A/肋2,70℃)表1か
ら次の結論が得られる。
Table 1 Electrolysis experimental data (20A/2,70°C) From Table 1, the following conclusions can be drawn.

‘1} 実施例1と比較例1により、水処理、乾燥処理
、クロロプレン処理、乾燥処理の一連の工程により電圧
は0.1V低くなり、苛性ソーダ濃度も高くなった。
'1} According to Example 1 and Comparative Example 1, the voltage was lowered by 0.1 V and the caustic soda concentration was increased by a series of steps of water treatment, drying treatment, chloroprene treatment, and drying treatment.

特に電解直後の摘出量が上記処理をしなければ38の上
/mjnと安定値(3週間後の値を採用)の8倍以上で
あるのに対し、上記処理をした場合は2倍程度と、摘出
量の経時変化は少ない。■ 実施例2で示す様に隔膜を
1柵の程度にしてもNa○母膿度、CI2純度及びCI
2中の日2濃度には全く問題は無く、電圧は3.02V
と実施例1と比べて0.22V低下している。
In particular, the amount removed immediately after electrolysis is 38+/mjn without the above treatment, which is more than 8 times the stable value (values taken after 3 weeks), but with the above treatment, it is about twice as high. , there is little change in the amount removed over time. ■ As shown in Example 2, even if the diaphragm is set to the level of one barrier, the Na○ maternity, CI2 purity, and CI
There is no problem with the concentration of day 2 in 2, and the voltage is 3.02V.
This is a decrease of 0.22V compared to Example 1.

厚さ1柵の隔膜を比較例1と同じく全く無処理で電解に
使用した場合にはCI2中の比が2%を越え、安定運転
は不可能であった。【3} 実施例3、4によれば、ネ
オプレン■ラテツクスと非イオン界面活性剤又は水ガラ
スを併用する事により、電圧を更に低下させる事が可能
となった。
When a diaphragm with a thickness of 1 bar was used for electrolysis without any treatment as in Comparative Example 1, the ratio in CI2 exceeded 2%, making stable operation impossible. [3} According to Examples 3 and 4, by using neoprene latex and a nonionic surfactant or water glass in combination, it became possible to further reduce the voltage.

‘4)石綿隔膜の欠点は電解の初期に著しく膨潤し、強
度が実質的に0である事であるが、3週間程度運転すれ
ば安定し強度を持つ様になり、運転条件の外乱にも抵抗
も持つ様になるとされている。
'4) The disadvantage of asbestos diaphragms is that they swell significantly in the early stages of electrolysis and have virtually no strength. However, after about 3 weeks of operation, they become stable and strong, and are resistant to disturbances in operating conditions. It is said that it will also have resistance.

ネオプレン■ラテックス処理隔膜は安定した無処理隔膜
の3倍以上の強度を持ち、特に無処理隔膜が強度が無い
電解初期にもlk9′の以上の強度を持っており、補強
効果は充分である。
The neoprene latex-treated diaphragm has a strength more than three times that of a stable untreated diaphragm, and even in the early stages of electrolysis, when the untreated diaphragm has no strength, it has a strength of lk9' or more, and its reinforcing effect is sufficient.

3週間の電解終了時の隔膜の状態及び引張り強度は以下
のようであった。
The condition and tensile strength of the diaphragm at the end of three weeks of electrolysis were as follows.

実施例1〜4:膨潤はほとんどなし、 0.74〜1.1k9/嫌 比較例1:約2倍に膨潤 0.2k9/仇
比較例2で行なった様に、ラテックス液透過前の乾燥を
行わない場合、電圧は実施例と比べて0.2V以上高く
、隔膜にはガスブクレを生じていた。
Examples 1 to 4: Almost no swelling, 0.74 to 1.1k9/Negative Comparative Example 1: Swelled approximately twice as much as 0.2k9/Negative As in Comparative Example 2, drying before permeation of the latex liquid was carried out. When this was not done, the voltage was 0.2 V or more higher than in the example, and gas leakage occurred in the diaphragm.

Claims (1)

【特許請求の範囲】 1 石綿スラリーから石綿繊維を電解用陰極表面に沈着
させて隔膜を形成後、該隔膜中を水洗滌して乾燥し、続
いてクロロプレンゴムラテツクスを含有する隔膜処理液
中に浸漬して再び乾燥することを特徴とする電解用隔膜
を処理する方法。 2 隔膜処理液中にさらに水ガラスを含有する特許請求
の範囲第1項記載の電解用隔膜を処理する方法。 3 隔膜処理液中にさらに非イオン系界面活性剤を含有
する特許請求の範囲第1項記載の電解用隔膜を処理する
方法。
[Scope of Claims] 1. After depositing asbestos fibers from an asbestos slurry onto the surface of an electrolytic cathode to form a diaphragm, the inside of the diaphragm is washed with water and dried, and then placed in a diaphragm treatment solution containing chloroprene rubber latex. A method for treating an electrolytic diaphragm, which comprises immersing it in water and drying it again. 2. The method for treating an electrolytic diaphragm according to claim 1, wherein the diaphragm treatment liquid further contains water glass. 3. The method for treating an electrolytic diaphragm according to claim 1, wherein the diaphragm treatment liquid further contains a nonionic surfactant.
JP11802778A 1978-09-27 1978-09-27 How to process diaphragms for electrolysis Expired JPS6037877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11802778A JPS6037877B2 (en) 1978-09-27 1978-09-27 How to process diaphragms for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11802778A JPS6037877B2 (en) 1978-09-27 1978-09-27 How to process diaphragms for electrolysis

Publications (2)

Publication Number Publication Date
JPS5544564A JPS5544564A (en) 1980-03-28
JPS6037877B2 true JPS6037877B2 (en) 1985-08-28

Family

ID=14726240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11802778A Expired JPS6037877B2 (en) 1978-09-27 1978-09-27 How to process diaphragms for electrolysis

Country Status (1)

Country Link
JP (1) JPS6037877B2 (en)

Also Published As

Publication number Publication date
JPS5544564A (en) 1980-03-28

Similar Documents

Publication Publication Date Title
US4003818A (en) Method of obtaining a micro-porous membrane and novel product thus obtained
SU505332A3 (en) The method of obtaining a porous diaphragm for electrolysis
US5094895A (en) Composite, porous diaphragm
US4410411A (en) Dimensionally stable asbestos diaphragms
CA1076990A (en) Porous diaphragms
US4272560A (en) Method of depositing cation exchange membrane on a foraminous cathode
US4680101A (en) Electrolyte permeable diaphragm including a polymeric metal oxide
US4000057A (en) Electrolytic cell membrane conditioning
JPH06128783A (en) Wetting of diaphragm
CN113047041B (en) A kind of composite material of nanocellulose/fiber fabric and preparation method thereof
JPS5918479B2 (en) Diaphragm, its manufacturing method and electrolytic method using it
CN114130227B (en) Application of sulfated cellulose nanofibrils as nanofiltration membrane intermediate support layer
EP0004237A1 (en) Ion exchange membranes; their preparation and their use in the electrolysis of sodium chloride
JP2618602B2 (en) Method of hydrolysis of ion exchange membrane
US4595476A (en) Ion exchange membranes pre-expanded with di- and poly ether-glycols
JPS6037877B2 (en) How to process diaphragms for electrolysis
DE2644443A1 (en) METHOD FOR IMPROVING THE SELECTIVITY OF MEMBRANES FOR CHLORALKALINE ELECTROLYSIS CELLS
JPS6026496B2 (en) Improved cation exchange membrane
GB1581858A (en) Pervious diaphragms for cells for the electrolysis of aqueous solutions of alkali metal halides
DE2916655C2 (en) Method of manufacturing an asbestos diaphragm containing resin
FI64816B (en) PERMEABELT MEMBRAN FOER ELEKTROKEMISK CELL
DE2609175A1 (en) DIAPHRAGM MATERIAL, ITS MANUFACTURING AND USE
JPS6038474B2 (en) Treatment method for electrolytic diaphragm
EP0069772B1 (en) Sacrificial reinforcement in cation exchange membrane
US1961268A (en) Method of treating cellulose