[go: up one dir, main page]

JPS6037550B2 - magnetic bubble device - Google Patents

magnetic bubble device

Info

Publication number
JPS6037550B2
JPS6037550B2 JP4173681A JP4173681A JPS6037550B2 JP S6037550 B2 JPS6037550 B2 JP S6037550B2 JP 4173681 A JP4173681 A JP 4173681A JP 4173681 A JP4173681 A JP 4173681A JP S6037550 B2 JPS6037550 B2 JP S6037550B2
Authority
JP
Japan
Prior art keywords
bubble
conductor
hairpin
magnetic bubble
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4173681A
Other languages
Japanese (ja)
Other versions
JPS57158082A (en
Inventor
敏夫 川崎
秀夫 秋山
和民 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP4173681A priority Critical patent/JPS6037550B2/en
Publication of JPS57158082A publication Critical patent/JPS57158082A/en
Publication of JPS6037550B2 publication Critical patent/JPS6037550B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0866Detecting magnetic domains

Description

【発明の詳細な説明】 本発明は2層導体電流駆動型の磁気バブル装置に関する
ものであり、特に磁気バブルの検出器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-layer conductor current-driven magnetic bubble device, and more particularly to a magnetic bubble detector.

従来の2層導体電流駆動型の磁気バブル装置の検出器の
平面図を第1図aに、第1図aの切断線A−A′線で示
した位置の層断面図を第1図bに示す。
FIG. 1a shows a plan view of a conventional two-layer conductor current-driven magnetic bubble device detector, and FIG. Shown below.

第1図a、第1図bにおいて、1はガーネット等の磁気
バブル用磁性薄膜、2は薄膜磁気抵抗検出部であり、材
料はパーマローィ等の高透磁率材料、3は第1導体層で
あり、材料はAI−Cu、4は第2導体層、各層の間に
は絶縁層としてSi02等の眉5を設ける。6は紙面表
から紙面髪に向って印加されるバイアス磁界の方向、7
は磁気バブル転送部、8は磁気バブル伸長部、10は磁
性薄膜上の2つの導体層3,4を示す。
In FIGS. 1a and 1b, 1 is a magnetic thin film for magnetic bubbles such as garnet, 2 is a thin film magnetoresistive detection part, the material is a high magnetic permeability material such as permalloy, and 3 is a first conductor layer. , the material is AI-Cu, 4 is a second conductor layer, and an insulating layer 5 made of Si02 or the like is provided between each layer. 6 is the direction of the bias magnetic field applied from the paper surface toward the paper surface hair; 7
8 indicates a magnetic bubble transfer section, 8 indicates a magnetic bubble extension section, and 10 indicates two conductor layers 3 and 4 on the magnetic thin film.

点線で示した多数のパターン孔、例えば11は第1導体
層に、実線で示した多数のパターン孔、例えば12は第
2導体層に設ける。第1図aに示す様に第1導体層のパ
ターン孔の位置と第2導体層のパターン孔の位置は少し
ずれて配置されている。13及び15は第1導体層3に
通電する電流の方向を示し、14及び16は第2導体層
4に通電する電流の方向を示す。
A large number of patterned holes, for example 11, indicated by dotted lines are provided in the first conductor layer, and a large number of patterned holes, for example 12, indicated by solid lines are provided in the second conductive layer. As shown in FIG. 1a, the positions of the pattern holes in the first conductor layer and the positions of the pattern holes in the second conductor layer are slightly shifted from each other. 13 and 15 indicate the direction of current flowing through the first conductor layer 3, and 14 and 16 indicate the direction of current flowing through the second conductor layer 4.

17〜22はパターン孔における磁気バブル(以下バブ
ルという)の転送位贋(以下位置という)を示したもの
である。
17 to 22 indicate transfer positions (hereinafter referred to as positions) of magnetic bubbles (hereinafter referred to as bubbles) in pattern holes.

例えば第1導体層3に矢印15の方向に通電すれば、パ
ターン孔に於ける位置18近傍に電流によるバイアス磁
界6と逆方向に誘起磁界が生じ、是がバイアス磁界6を
弱める様に働く故、バフルは恰も位置18に吸引される
For example, if the first conductor layer 3 is energized in the direction of the arrow 15, an induced magnetic field is generated near the position 18 in the pattern hole in the opposite direction to the bias magnetic field 6 due to the current, which acts to weaken the bias magnetic field 6. , the baffle is still attracted to position 18.

反対に位置17,20近傍ではバイアス磁界6を強める
様に働く故、バブルは恰も反溌される。この吸引と反綾
との合成によってバブルは位置18に留まる。次に第2
導体層4に矢印16の方向に通電するとパターン孔に於
ける転送位置19にバブルが吸引転送される。次に第1
導体層3に矢印13の方向に通電すると位置20‘こ、
次に第2導体層4に矢印14の方向に通電すると位置2
1にバブルが転送される。今一度第1導体層3に矢印1
5の通電で位置22にバブルが転送される。すなわち、
バブルが1ビット転送された。是を順次に繰り返すこと
によりバブルがパターン孔の転送位置を逐次転送される
。ところで、従来の磁気バブル伸長パターンではその誘
起磁界が磁気バブル伸長部8のパターン端部に集中する
。転送部7より転送されてきたバブルが磁気バブル伸長
部8での伸長の様子と磁界ポテンシャルを第2図a,b
に示す第2図aにおいて、15は第1導体層3に通電す
る駆動電流の通電方向、24は磁気バブル伸長部8での
パターン孔の一つを示したものであり、25は伸長した
バフル、第2図bは第2図aの磁界ポテンシャル曲線を
示すものであり、26は磁界ポテンシャル軸、27は伸
長パターン孔24短辺方向の距離、28は駆動電流15
により生じた磁界ポテンシャル曲線である。曲線28に
示す様にパターン孔の中心部29では磁界勾配が小さく
なり、パターン孔周縁でポテンシャルの底が深くなる。
そのため、伸長したバブルは転送されにくい。また、パ
ターン孔24の両端30a,30bでのバイアスを弱め
る磁界の強さが前記両端での磁界の若干の相違により、
一度伸長したバブルもどちらか片端に寄ったバブル状態
に戻ったり、更に次のパターン孔でまた伸長したりする
。すなわち、通常のバブル状態と伸長バブル状態とを繰
り返し乍ら転送されることがある。その過程で一つの伸
長したバブルが分離して二つのバブルがパターン孔の両
端(例えば30a,30b等)に生じる場合もある。薄
膜磁気抵抗検出部2(以下検出部という)の例えばパー
マ。ィより成る磁気抵抗パタ−ン上では、バブルは伸長
するが、伸長したままではパーマロィへの吸着力が強い
為、駆動電流13,14,15,16のみではその伸長
したバブルは次のパターン位置に転送されにくく、検出
部2の位直に止まる場合が多い。以上の様に従来の方法
では磁気バブル検出器としての動作範囲が非常に狭く実
用には不向きである。
On the other hand, near the positions 17 and 20, the bias magnetic field 6 is strengthened, so that the bubbles are repulsed. The combination of this suction and anti-travel causes the bubble to remain at position 18. Then the second
When the conductor layer 4 is energized in the direction of the arrow 16, bubbles are attracted and transferred to transfer positions 19 in the pattern holes. Next, the first
When the conductor layer 3 is energized in the direction of the arrow 13, the position 20' is
Next, when the second conductor layer 4 is energized in the direction of the arrow 14, the position 2
The bubble is transferred to 1. Once again, mark the arrow 1 on the first conductor layer 3.
5, the bubble is transferred to position 22. That is,
One bit of bubble was transferred. By sequentially repeating this process, the bubbles are sequentially transferred to the transfer positions of the pattern holes. By the way, in the conventional magnetic bubble extension pattern, the induced magnetic field is concentrated at the pattern end of the magnetic bubble extension part 8. Figures 2a and b show how the bubble transferred from the transfer unit 7 expands in the magnetic bubble extension unit 8 and the magnetic field potential.
In FIG. 2a shown in FIG. , FIG. 2b shows the magnetic field potential curve of FIG. 2a, where 26 is the magnetic field potential axis, 27 is the distance in the short side direction of the elongated pattern hole 24, and 28 is the drive current 15.
This is the magnetic field potential curve generated by As shown by a curve 28, the magnetic field gradient becomes smaller at the center 29 of the pattern hole, and the bottom of the potential becomes deeper at the periphery of the pattern hole.
Therefore, the expanded bubble is difficult to be transferred. Furthermore, the strength of the magnetic field that weakens the bias at both ends 30a and 30b of the pattern hole 24 is due to a slight difference in the magnetic field at both ends.
Once expanded, the bubble returns to a bubble state closer to one end, or expands again at the next pattern hole. That is, the normal bubble state and the extended bubble state may be repeatedly transferred. In the process, one elongated bubble may separate and two bubbles may be generated at both ends of the pattern hole (for example, 30a, 30b, etc.). For example, the perm of the thin film magnetoresistive detection section 2 (hereinafter referred to as the detection section). On the magnetoresistive pattern consisting of the bubbles, the bubbles elongate, but if they remain elongated, the adsorption force to the permalloy is strong, so if only the driving currents 13, 14, 15, and 16 are used, the elongated bubbles will not move to the next pattern position. It is difficult for the signal to be transferred to the detector 2, and it often stops at the correct position of the detection unit 2. As described above, the conventional method has a very narrow operating range as a magnetic bubble detector and is not suitable for practical use.

本発明は従来技術のこれらの欠点を解決するため、ヘア
ピン状導体と薄膜磁気抵抗検出器とを転送パターンに組
合わせるようにしたもので、以下に図を用いて詳細に説
明する。
In order to overcome these drawbacks of the prior art, the present invention combines a hairpin-like conductor and a thin film magnetoresistive detector into a transfer pattern, and will be described in detail below with reference to the drawings.

本発明の2層導体電流駆動型の磁気バブル装贋の平面図
を第3図aに、第3図aの切断線B−B′線で示した位
置の層断面図を第3図bに示す。
FIG. 3a shows a plan view of the two-layer conductor current-driven magnetic bubble device of the present invention, and FIG. show.

第3図a「第3図bにおいて、第1図a、第1図bと同
じ部分は同じ番号を付す。1はガーネット等の磁気バブ
ル用磁性薄膜、2はパーマロィ等の高透磁率の薄膜磁気
抵抗検出部、31はヘアピン状導体、3は第1導体層、
4は第2導体層であり、各層の間にはSi02等の絶縁
層5を配する。
Figure 3a "In Figure 3b, the same parts as in Figures 1a and 1b are given the same numbers. 1 is a magnetic thin film for magnetic bubbles such as garnet, and 2 is a high permeability thin film such as permalloy. a magnetoresistive detection section; 31 is a hairpin-shaped conductor; 3 is a first conductor layer;
4 is a second conductor layer, and an insulating layer 5 of SiO2 or the like is arranged between each layer.

第3図aはその平面図を示す。2は薄膜磁気抵抗検出部
(以下検出部という)、31はヘアピン状導体、1川ま
二つの導体層を示す。
Figure 3a shows its plan view. Reference numeral 2 indicates a thin film magnetoresistive detection section (hereinafter referred to as the detection section), 31 indicates a hairpin-shaped conductor, and one or two conductor layers.

点線で示した多数のパターン孔、例えば11は第1導体
層に、実線で示した多数のパターン孔、例えば12は第
2導体層に、設ける。また、バブルの駆動原理方式等も
従来と全く同一である。重要な点は従釆の様に磁気バブ
ルを伸長する為に細長矩形パターン孔(例えば24)を
用いない点である。すなわち、伸長部8においても転送
部7と同じ形状のパターン孔を用い、これと端部で重な
る様にパーマロィ等の検出部2を配する。更にこの検出
部2を囲むようにヘアピン状導体31を配する。この三
者を組合わせて用いることにより、2層導体電流駆動型
磁気バブル装置の検出部2での磁気バブルの伸長性と転
送性とが極めて向上する。ヘアピン状導体31の折れ曲
り部と伸長部8のパターン孔との位置関係はヘアピン状
導体31の折れ曲り部近傍の特に強い誘起磁界が影響を
与えない程度の位置に設定する。まず、従来技術の説明
で述べた様に、バブル駆動電流の通電15,16,13
,14でパターン孔での位置34,35,36,37,
38の順にバブル転送される。更にバブルがパターン孔
39の位置に転送された時に、駆動電流パルスとタイミ
ングを取ってヘアピン状導体31に矢印Xの方向に伸長
電流を通電する。ヘアヒ。ン状導体31の内側ではバイ
アス磁界6は弱められ、バブルはヘアピン状導体31の
内側で伸長しようとする。すなわち、バブルは検出部2
の上部と同じ形状に伸長する。ヘアピン状導体31の外
側ではバイアス磁界6を強めるため、バブルはヘアピン
状導体31よりはみ出ごなし、。この伸長したバブルに
よりパーマロィ薄膜の磁気抵抗変化によってバブルの有
無を検出する。バブルが検出された後には、ヘアピン状
導体31に矢印Xとは逆のY方向にバブル収縮のための
通電を行う。
A number of patterned holes, for example 11, indicated by dotted lines are provided in the first conductor layer, and a number of patterned holes, for example 12, indicated by solid lines are provided in the second conductor layer. Furthermore, the bubble driving principle and the like are completely the same as the conventional one. An important point is that the elongated rectangular pattern holes (eg 24) are not used to extend the magnetic bubbles as in the case of a follower. That is, a pattern hole having the same shape as that of the transfer section 7 is used in the extension section 8 as well, and the detection section 2 made of permalloy or the like is arranged so as to overlap this at the end. Furthermore, a hairpin-shaped conductor 31 is arranged so as to surround this detection section 2. By using these three in combination, the extensibility and transferability of the magnetic bubble in the detection section 2 of the two-layer conductor current-driven magnetic bubble device are greatly improved. The positional relationship between the bent portion of the hairpin-shaped conductor 31 and the pattern hole of the extension portion 8 is set at such a position that a particularly strong induced magnetic field near the bent portion of the hairpin-shaped conductor 31 does not have any influence. First, as described in the explanation of the prior art, the bubble drive current is energized 15, 16, 13.
, 14 and the positions 34, 35, 36, 37, in the pattern holes.
Bubble transfer is performed in the order of 38. Further, when the bubble is transferred to the position of the pattern hole 39, an elongating current is applied to the hairpin-shaped conductor 31 in the direction of the arrow X in timing with the drive current pulse. Hair hee. The bias magnetic field 6 is weakened inside the hairpin-shaped conductor 31, and the bubble tends to expand inside the hairpin-shaped conductor 31. In other words, the bubble is detected by the detection unit 2.
Stretch to the same shape as the top of. Since the bias magnetic field 6 is strengthened outside the hairpin-shaped conductor 31, the bubble protrudes beyond the hairpin-shaped conductor 31. The presence or absence of a bubble is detected by the change in magnetoresistance of the Permalloy thin film due to the elongated bubble. After the bubble is detected, the hairpin-shaped conductor 31 is energized in the Y direction opposite to the arrow X to contract the bubble.

ヘアピン状導体31の内側のバイアス磁界6が強められ
て伸長バブルは縮まろうとする。この時、駆動電流16
,13の誘起磁界によりパターン孔39,40の近傍で
はバイアス磁界6が弱められている。為に検出部2のパ
ーマロィ薄膜ではその左側43がバイアス磁界6が強く
、その右側44が弱くなり、左右の方向に磁界勾配が生
じる。故にバブルは検出部32の右側方向に縮まろうと
し、すなわち、バブルは転送パターン孔40の近傍に収
縮する。バブルは転送路より飛出さず、位置401こと
どまる。この状態における検出部2での磁界の強さをポ
テンシャル曲線を用いて示したのが第4図である。45
は磁界ポテンシャル、46は検出部2の最辺方向の距離
、47はバブルを収縮させるためにヘアピン状導体31
にB方向に通電を行ったために生じた誘起磁界ポテンシ
ャル曲線、48は第1導体層3又は第2導体層4への通
電により生じた誘起磁界ポテンシャル曲線、49はこれ
ら両者の合成ポテンシャル曲線である。
The bias magnetic field 6 inside the hairpin-shaped conductor 31 is strengthened, and the elongated bubble tends to contract. At this time, drive current 16
, 13, the bias magnetic field 6 is weakened near the pattern holes 39, 40. Therefore, in the permalloy thin film of the detection section 2, the bias magnetic field 6 is strong on the left side 43 and weak on the right side 44, creating a magnetic field gradient in the left and right directions. Therefore, the bubble tends to contract toward the right side of the detection section 32, that is, the bubble contracts near the transfer pattern hole 40. The bubble does not jump out from the transfer path and remains at position 401. FIG. 4 shows the strength of the magnetic field in the detection unit 2 in this state using a potential curve. 45
is the magnetic field potential, 46 is the distance in the direction of the edge of the detection unit 2, and 47 is the hairpin-shaped conductor 31 to contract the bubble.
48 is an induced magnetic field potential curve caused by applying current to the first conductor layer 3 or the second conductor layer 4, and 49 is a composite potential curve of both of them. .

この様に検出部2に高透磁率材料を用いると、検出部自
身が磁化されて第4図に示す様に合成ポテンシャルが磁
界勾配を持つ様になる。すなわち、転送路パターン39
,40の部分が最もポテンシャルが小さくなる。また、
39,40の近傍でバイアス磁界が弱くなる故、伸長し
たバブルは転送路パターン孔40の所に収縮する。伸長
したバブルがバブル状に収縮すると検出部2のパーマロ
ィに吸着する力が弱くなり、駆動電流16,13,14
,15のみで十分転送される。すなわち、従来の様にバ
ブルが検出部の位置に止まったままにならず、順次40
,41,42の様に転送される。第5図は駆動電流とバ
ブル伸長のためのヘアピン状導体31への通電のタイミ
ングシーケンスを示したものである。第5図において、
5川ま電流軸、51は時間軸、52,53は第1導体層
への通電15,13を、54,55は第2導体層への通
電16,14を、56は磁気バブル伸長のためのヘアピ
ン状導体31への通電Xを、57は反対に伸長バブルの
収縮のためのヘアピン状導体31への通電Yを示す。
When a high magnetic permeability material is used for the detecting section 2 in this way, the detecting section itself is magnetized and the composite potential has a magnetic field gradient as shown in FIG. That is, the transfer path pattern 39
, 40 has the smallest potential. Also,
Since the bias magnetic field becomes weak in the vicinity of 39 and 40, the elongated bubble contracts at the transfer path pattern hole 40. When the elongated bubble contracts into a bubble shape, the adsorption force to the permalloy of the detection part 2 becomes weaker, and the drive current 16, 13, 14
, 15 is sufficient for transfer. In other words, the bubbles do not remain at the detection unit position as in the past, but instead
, 41, 42. FIG. 5 shows the timing sequence of driving current and energization of the hairpin-shaped conductor 31 for bubble expansion. In Figure 5,
5. Current axis, 51 is time axis, 52, 53 is energization 15, 13 to the first conductor layer, 54, 55 is energization 16, 14 to the second conductor layer, 56 is for magnetic bubble expansion. 57 shows the energization X to the hairpin-shaped conductor 31, and conversely, 57 shows the energization Y to the hairpin-shaped conductor 31 for contraction of the elongated bubble.

以上説明した様に、本発明を用いることによりバブルの
検出部での転送性が向上し、且つ極めてスムーズにバブ
ルを伸長、収縮することができる。
As explained above, by using the present invention, the transferability of bubbles at the detection unit is improved, and the bubbles can be expanded and contracted extremely smoothly.

また、バブルの転送パターンからの飛出しや一つの伸長
バブルから二つのバブルが生じ、転送される欠点もない
。第6図は、本発明の第2の実施例であり、ヘアピン状
導体31は相対する内側の間隔を、右側(転送パターン
のある方)58を広くし、左側59を狭くした形状とす
ることによってスムーズなバブルの伸長、収縮が得られ
る。
In addition, there is no drawback that bubbles jump out of the transfer pattern or that two bubbles are generated from one extended bubble and transferred. FIG. 6 shows a second embodiment of the present invention, in which the hairpin-shaped conductor 31 has a shape in which the spacing between opposing inner sides is widened on the right side (the side with the transfer pattern) 58 and narrowed on the left side 59. This allows for smooth bubble expansion and contraction.

すなわち、ヘァピン状導体内側に幅を持たせることによ
って検出部2の最辺方向に磁界勾配を生じさせる。磁気
バブルの伸長時はヘアピン状導体31の左側59が右側
58に比べてその間隔が狭いため、より強い磁界が反バ
イアス磁界方向に生じるため、バフルは左側へ伸長し易
くなる。反対に磁気バブルの収縮時はヘアピン状導体3
1の左側59が右側58に比べてより強い磁界がバイア
ス磁界方向に生じるため、伸長バブルは右側へ収縮し易
くなり、転送路パターン上でバブル状になる。以上説明
したように、2層導体電流駆動型の磁気バブル装置に於
いて、転送パターン孔に一部重なった細長矩形より成る
検出部と、その検出部を囲むようにバブル伸長の為のヘ
アピン状導体とを組合わせて配することにより、極めて
スムーズにバブルを伸長、収縮することが可能であり、
また、検出部でのバブル転送も容易である。
That is, by providing width on the inside of the hairpin-shaped conductor, a magnetic field gradient is generated in the direction of the outermost side of the detection section 2. When the magnetic bubble expands, the spacing on the left side 59 of the hairpin-shaped conductor 31 is narrower than on the right side 58, so a stronger magnetic field is generated in the direction of the anti-bias magnetic field, making it easier for the baffle to expand to the left. On the other hand, when the magnetic bubble contracts, the hairpin-shaped conductor 3
Since a stronger magnetic field is generated in the direction of the bias magnetic field on the left side 59 of 1 than on the right side 58, the elongated bubbles tend to contract to the right, forming a bubble shape on the transfer path pattern. As explained above, in a two-layer conductor current-driven magnetic bubble device, there is a detection section consisting of an elongated rectangle that partially overlaps the transfer pattern hole, and a hairpin-shaped sensor for bubble extension surrounding the detection section. By placing it in combination with a conductor, it is possible to expand and contract the bubble extremely smoothly.
Furthermore, bubble transfer in the detection unit is also easy.

本発明により、電流駆動型で高速、高密度、低消費電力
の2層導体電流駆動型磁気バブル装贋が得られる。本発
明は、2層導体電流駆動型磁気バブル菱直に於いて、薄
膜磁気抵抗検出部と、それを囲むヘアピン状導体を有し
ているので、正確なバブルの伸長、収縮、及び良好な転
送性等の利点があり、高速、高容量な2層導体電流駆動
型磁気バブル装置を実現することができる。
The present invention provides a current-driven, high-speed, high-density, low-power, two-layer conductor current-driven magnetic bubble device. The present invention has a two-layer conductor current-driven magnetic bubble diagonal that has a thin film magnetoresistive detection section and a hairpin-shaped conductor surrounding it, so that accurate bubble expansion, contraction, and good transfer can be achieved. It has advantages such as performance, and can realize a high-speed, high-capacity two-layer conductor current-driven magnetic bubble device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、第1図bは従来の2層導体電流駆動型の磁気
バブル装置平面図、及び層断面図、第2図a、第2図b
は従来の磁気バブル装置での磁界ポテンシャル説明図、
第3図a、第3図bは本発明の2層導体電流駆動型の磁
気バブル装置の平面図、及び層断面図、第4図は本発明
の磁気バブル装置での磁界ポテンシャル説明図、第5図
は本発明の磁気バブル装置における駆動電流とバブル伸
長のためのヘアピン状導体への通電のタイミングシーケ
ンス説明図、第6図は本発明の第2実施例を示した図で
ある。 第l 図‘01 第2図 第4図 第3図‘01 第5図 第6図
Figures 1a and 1b are a plan view and layer sectional view of a conventional two-layer conductor current-driven magnetic bubble device, and Figures 2a and 2b are
is an explanatory diagram of the magnetic field potential in a conventional magnetic bubble device,
3a and 3b are a plan view and a layer sectional view of a two-layer conductor current-driven magnetic bubble device of the present invention, and FIG. 4 is an explanatory diagram of the magnetic field potential in the magnetic bubble device of the present invention. FIG. 5 is an explanatory diagram of the timing sequence of driving current and energization to the hairpin-shaped conductor for bubble expansion in the magnetic bubble device of the present invention, and FIG. 6 is a diagram showing a second embodiment of the present invention. Figure l Figure '01 Figure 2 Figure 4 Figure 3 Figure '01 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1 各層に磁気バブル転送路として働くパターン孔が設
けられているものであつて、対となつて磁気バブル転送
路を形成する2層の導体層と、前記2層の導体層の間に
介在する絶縁層と、平面的に転送路と一部重なる位置に
絶縁層を介して配設された薄膜磁気抵抗検出部とを備え
た磁気バブル装置において、前記薄膜磁気抵抗検出部の
周囲に配設され、且つ前記導体層及び前記薄膜磁気抵抗
検出部と絶縁されたヘアピン状導体を備えたことを特徴
とする磁気バブル装置。 2 前記ヘアピン状導体が、その折れ曲り部側の内側の
間隔が広くなり、且つ折れ曲り部と反対側の内側の間隔
が狭くなつているヘアピン状であることを特徴とする特
許請求の範囲第1項記載の磁気バブル装置。
[Scope of Claims] 1. Two conductor layers forming a pair to form a magnetic bubble transfer path, each layer of which is provided with a patterned hole serving as a magnetic bubble transfer path, and the two conductor layers forming a pair to form a magnetic bubble transfer path. In a magnetic bubble device comprising an insulating layer interposed between the layers and a thin film magnetoresistive detector disposed at a position that partially overlaps the transfer path in a plane with the insulating layer interposed, the thin film magnetoresistive detector A magnetic bubble device comprising a hairpin-shaped conductor disposed around the conductor layer and insulated from the thin film magnetoresistive detection section. 2. Claim 2, characterized in that the hairpin-shaped conductor has a hairpin shape in which the distance on the inside of the bent portion is wide, and the distance on the inside opposite to the bent portion is narrowed. The magnetic bubble device according to item 1.
JP4173681A 1981-03-24 1981-03-24 magnetic bubble device Expired JPS6037550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4173681A JPS6037550B2 (en) 1981-03-24 1981-03-24 magnetic bubble device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4173681A JPS6037550B2 (en) 1981-03-24 1981-03-24 magnetic bubble device

Publications (2)

Publication Number Publication Date
JPS57158082A JPS57158082A (en) 1982-09-29
JPS6037550B2 true JPS6037550B2 (en) 1985-08-27

Family

ID=12616703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4173681A Expired JPS6037550B2 (en) 1981-03-24 1981-03-24 magnetic bubble device

Country Status (1)

Country Link
JP (1) JPS6037550B2 (en)

Also Published As

Publication number Publication date
JPS57158082A (en) 1982-09-29

Similar Documents

Publication Publication Date Title
KR900008860B1 (en) Magnetoresistive readout transducer
JP4630544B2 (en) A method of orienting the magnetization direction of a magnetic layer of a selected magnetic element out of a plurality of magnetic elements constituting a bridge structure in a direction opposite to the magnetization direction of a magnetic layer of another magnetic element
JPH01119913A (en) Magnetic reading converter
JPH0439738B2 (en)
KR940020303A (en) Stabilized Magnetoresistive Transducer Using Inclined Exchange Bias and Manufacturing Method Thereof
JPS6050611A (en) Multielement thin film magnetic head
JP3880922B2 (en) Magnetic field detection element integrated on semiconductor substrate and method for manufacturing the same
KR950033430A (en) Geomagnetic orientation sensor
JPS6037550B2 (en) magnetic bubble device
JPH05335650A (en) Ferromagnetic magnetic resistance element
JP4110468B2 (en) Magneto-impedance element
US5822158A (en) Giant magnetoresistance effect device with magnetically sensitive portion of a size large than playback track width
JPH06323869A (en) Inductosyn board
JPS6244355B2 (en)
JP2014006126A (en) Magnetic sensor
JP2508345B2 (en) Position detection device
JP2651808B2 (en) Magnetic sensor
JPH0618203A (en) Linear displacement detector
JP2658872B2 (en) Magnetoresistance effect element
JPH05291645A (en) Ferromagnetic magnetoresistance element
JPS62256208A (en) Structure of gap section of thin-film magnetic head
JPH0863716A (en) Magneto-resistance effect type head
JPH02113807U (en)
JPS63167277U (en)
JPH0823128A (en) Magnetic pattern sensor