[go: up one dir, main page]

JPS6037531B2 - Method for manufacturing magnetic recording media - Google Patents

Method for manufacturing magnetic recording media

Info

Publication number
JPS6037531B2
JPS6037531B2 JP7954880A JP7954880A JPS6037531B2 JP S6037531 B2 JPS6037531 B2 JP S6037531B2 JP 7954880 A JP7954880 A JP 7954880A JP 7954880 A JP7954880 A JP 7954880A JP S6037531 B2 JPS6037531 B2 JP S6037531B2
Authority
JP
Japan
Prior art keywords
thin film
evaporation source
substrate
magnetic recording
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7954880A
Other languages
Japanese (ja)
Other versions
JPS576440A (en
Inventor
龍二 杉田
敏明 国枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7954880A priority Critical patent/JPS6037531B2/en
Priority to DE8181300904T priority patent/DE3173689D1/en
Priority to EP81300904A priority patent/EP0035870B2/en
Priority to US06/240,369 priority patent/US4399013A/en
Publication of JPS576440A publication Critical patent/JPS576440A/en
Publication of JPS6037531B2 publication Critical patent/JPS6037531B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明は残留磁化が媒体の表面の法線方向を向くことに
より優れた短波長記録特性を有する磁気記録媒体の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a magnetic recording medium that has excellent short wavelength recording characteristics because the residual magnetization is oriented in the normal direction of the surface of the medium.

第1図は従来の一般的な磁気記録再生方式を説明する図
である。
FIG. 1 is a diagram illustrating a conventional general magnetic recording and reproducing system.

1は磁気記録媒体であり、非磁性基板2とその上に形成
された膿面に水平方向(図示矢印の方向)に磁化容易軸
を有する磁性層3から構成されている。
Reference numeral 1 denotes a magnetic recording medium, which is composed of a non-magnetic substrate 2 and a magnetic layer 3 formed on the non-magnetic substrate 2 and having an axis of easy magnetization in the horizontal direction (in the direction of the arrow in the figure).

4は記録(再生)用リング形ヘッドであり、励磁巻線5
に信号電流が流れることにより、図示矢印のように膜面
に水平な向きに磁性層3を磁化し信号を記録する。
4 is a ring-shaped head for recording (reproduction), and excitation winding 5
When a signal current flows through the magnetic layer 3, the magnetic layer 3 is magnetized in a direction parallel to the film surface as shown by the arrow in the figure, and a signal is recorded.

この方式では残留磁化の方向が膜面に水平であるために
、信号が短波長になると媒体内反磁界が増加し、再生出
力は著しく低下する。これに対し残留磁化が媒体の膜面
に垂直方向を向く様な記録再生方式(以下この方式を垂
直記録方式と呼ぶ)によれば、短波長記録特性が著しく
改善される。
In this method, the direction of residual magnetization is horizontal to the film surface, so when the signal has a short wavelength, the demagnetizing field within the medium increases and the reproduction output decreases significantly. On the other hand, according to a recording/reproducing method in which the residual magnetization is oriented perpendicularly to the film surface of the medium (hereinafter referred to as a perpendicular recording method), short wavelength recording characteristics are significantly improved.

これは第2図に示す如く、腰の垂直方向(図示矢印方向
)に磁化容易軸を有する磁性薄膜7(以下これを垂直磁
化膜と呼ぶ)を非磁性基板2上に形成した磁気記録媒体
6(以下これを垂直記録媒体と呼ぶ)に、励磁巻線5を
有する強磁性薄膜8からなる垂直形ヘッド9にて信号を
記録する。この方式では信号の託録された媒体の残留磁
化が媒体の膜面の垂直方向にあるので、信号が短波長に
なる程媒体内反磁界は減少し優れた再生出力が得られる
。現在用いられている垂直記録媒体6の垂直磁化膜7は
CoとCrを主成分としスパッタリング法によって作成
された金属薄膜である。
As shown in FIG. 2, this is a magnetic recording medium 6 in which a magnetic thin film 7 (hereinafter referred to as a perpendicular magnetization film) having an axis of easy magnetization in the vertical direction (in the direction of the arrow in the figure) is formed on a non-magnetic substrate 2. A signal is recorded on a perpendicular recording medium (hereinafter referred to as a perpendicular recording medium) by a perpendicular head 9 made of a ferromagnetic thin film 8 having an excitation winding 5. In this method, the residual magnetization of the medium on which the signal is recorded is in the direction perpendicular to the film surface of the medium, so that the shorter the wavelength of the signal, the smaller the demagnetizing field within the medium, and excellent reproduction output can be obtained. The perpendicular magnetization film 7 of the perpendicular recording medium 6 currently in use is a metal thin film made by sputtering and mainly containing Co and Cr.

CoとCrを主成分としたスッタ膜は、Crの塁が約3
0重量%以下の範囲では結晶系が鋼密六万構造であり、
そのC軸を膜面に対して垂直方向に配向させることが出
来、かつ垂直方向の異方性磁界が反磁界よりも大きくな
るまで飽和磁化を低下させることが可能なので垂直磁化
膜を実現出来る。実験によればCo−Cr薄膜が垂直磁
化膜になるためのCrの量はだいたい10〜25重量%
の範囲である。しかし、スパッタリング法は磁性薄膜の
形成速度が遅いので、高速かつ低コストで垂直磁化膿を
生産することが困難である。
A sputter film mainly composed of Co and Cr has a base of about 3 Cr.
In the range of 0% by weight or less, the crystal system is a steel-tight structure,
Since the C axis can be oriented perpendicularly to the film surface and the saturation magnetization can be lowered until the perpendicular anisotropic magnetic field becomes larger than the demagnetizing field, a perpendicularly magnetized film can be realized. According to experiments, the amount of Cr required for a Co-Cr thin film to become a perpendicularly magnetized film is approximately 10 to 25% by weight.
is within the range of However, since the sputtering method has a slow rate of forming a magnetic thin film, it is difficult to produce perpendicular magnetization at high speed and at low cost.

本発明は磁性薄膜の形成速度が笹く、かつ基板温度をあ
まり上昇させずに垂直舵ー」膜を形成し得る製造方法を
提供するものである。
The present invention provides a manufacturing method in which the formation speed of a magnetic thin film is fast and a vertical rudder film can be formed without significantly increasing the substrate temperature.

真空蒸着装暦の基本構成を第3図に示す。The basic configuration of the vacuum evaporation system is shown in Figure 3.

2は記録媒体基板、1川ま蒸発源、11は薄膜材料、1
2は加熱装置、13は真空容器である。
2 is a recording medium substrate, 1 is an evaporation source, 11 is a thin film material, 1
2 is a heating device, and 13 is a vacuum container.

CoとCrを主成分とする薄膜が垂直磁化膜であるため
には、該薄膜の結晶系が稲密六万構造で、かつそのC軸
が膜面に垂直方向に配向する必要があるが、上記構造を
有する真空蒸着装贋で作成したCo−Cr薄膜は、Cr
の量が3の重量%以下ではその結晶系は鋼密六方構造で
あるが、蒸着時の基板温度が40000以下の場合はC
軸の配向が殆どなく、40000以上の場合に完全では
ないがC軸の配向が見られる。
In order for a thin film mainly composed of Co and Cr to be a perpendicularly magnetized film, the crystal system of the thin film must have a dense 60,000 structure and the C axis must be oriented perpendicular to the film surface. The Co-Cr thin film made by vacuum evaporation equipment having the above structure is Cr
When the amount of C is less than 3% by weight, the crystal system has a steel-tight hexagonal structure, but when the substrate temperature during vapor deposition is less than 40,000, C
There is almost no orientation of the axis, and in the case of 40,000 or more, orientation of the C axis is observed, although not completely.

実際に基板温度2000及び50000にて作成したC
o−Cr蒸着膜X線回折パターンをそれぞれ第4図及び
第5図に示す。14,15,16はそれぞれ鋼密六方構
造結晶の101,002,100面からの反射である。
C actually created at a substrate temperature of 2000 and 50000
The X-ray diffraction patterns of the o-Cr deposited film are shown in FIGS. 4 and 5, respectively. 14, 15, and 16 are reflections from the 101,002, and 100 planes of the steel-tight hexagonal structure crystal, respectively.

この回折パタ−ンから基板温度が2000ではCo−C
r蒸着腰は殆ど無配向、50000ではかなりC軸が膜
面に垂直に配向していることがわかる。しかし、500
00程度の温度に耐え得る基板は限られており、特に高
分子材料より成る基板を使用することは不可能である。
このことは単なる真空蒸着法では、現在の磁気テープの
様な形では垂直記録媒体が出来ないことを意味する。本
発明は基板として高分子材料よりなるものも使用出来、
かつ薄膜の形成速度の速い製造方法であり、以下これを
説明する。
From this diffraction pattern, when the substrate temperature is 2000, Co-C
It can be seen that the r vapor deposition thickness is almost non-oriented, and at 50,000, the C axis is oriented perpendicularly to the film surface. However, 500
There are only a limited number of substrates that can withstand temperatures of about 0.000 C, and in particular, it is impossible to use substrates made of polymeric materials.
This means that perpendicular recording media, such as current magnetic tapes, cannot be produced using a simple vacuum deposition method. In the present invention, substrates made of polymeric materials can also be used.
It is also a manufacturing method that can form a thin film at a high rate, and this will be explained below.

真空蒸着法により得られたCo−Cr薄膜のC軸配向性
の基板温度依存性から、C軸酉己向を促進させるために
は蒸発原子の基板表面における移動度が大なることが必
要であると予想される。スパッタリング法においても、
スパッタ原子は蒸発原子に比べ約1桁大きい運動エネル
ギーを有しているために、基板表面におけるスパッタ原
子の移動度が大きく、C軸配向が促進されるものと思わ
れる。真空蒸着法において基板表面における蒸発原子の
移動度を大きくするには、蒸発原子を放電状態にすれば
よい。
From the substrate temperature dependence of the C-axis orientation of Co-Cr thin films obtained by vacuum evaporation, it is necessary to increase the mobility of evaporated atoms on the substrate surface in order to promote C-axis orientation. It is expected to be. Also in the sputtering method,
Since sputtered atoms have a kinetic energy that is approximately one order of magnitude larger than that of evaporated atoms, the mobility of sputtered atoms on the substrate surface is considered to be large, promoting C-axis alignment. In order to increase the mobility of evaporated atoms on the substrate surface in a vacuum evaporation method, the evaporated atoms may be brought into a discharge state.

本発明は真空蒸着法において蒸発原子を放電状態にする
ことにより、膜面に垂直方向に酸化容易軸を有するCo
とCrを主成分とする磁性膜を形成する手段を提供する
ものである。以下第6〜12図を用いて本発明を説明す
る。本発明の基本構成を第6図に示す。17は蚤子ビー
ム2川こより薄膜材料11を加熱する蒸発源、18は水
袷鋼ハース、19は電子ビーム20を発生させるための
電子銃であり、基板2は蒸発源17の上部に配置されて
いる。
In the present invention, by bringing the evaporated atoms into a discharge state in the vacuum evaporation method, Co
The present invention provides a means for forming a magnetic film containing Cr and Cr as main components. The present invention will be explained below using FIGS. 6 to 12. The basic configuration of the present invention is shown in FIG. Reference numeral 17 is an evaporation source for heating the thin film material 11 from the filtration beam 2, 18 is a steel hearth, 19 is an electron gun for generating an electron beam 20, and the substrate 2 is placed above the evaporation source 17. ing.

電子ビーム2川こより薄膜材料11は加熱され蒸発する
が、電子銃19に供給する電力が適当な値以上になると
蒸発原子は放電状態になる。蒸発原子が放電状態になっ
ていることを調べるには、第7図に示す様に基板2と蒸
発源17との間に探針21を配置し、これに電圧を印加
し流れる電流を測定すればよい。第7図22,23,2
4はそれぞれ可変直流電源,直流電圧計、直流電流計で
ある。実験で使用した装置では探針21に印加する電圧
と電流との関係は第8図の様であり、電子銃に供給する
蟹力が斑W(曲線25)及び10KW(曲線26)の場
合は流れる電流はわずかであるが、電力が16KW(曲
線27)になると急に電流が大きくなる。第9図の曲線
28は、探針21に印加した電圧が5Vの場合に電子銃
に供給する電力と探針21を流れる電流との関係であり
、電力が14KW以上になると電流が急激に増加し蒸発
原子が放電状態になったことを示している。ただし、真
空蒸着装暦の真空度は5×10‐5Tonであり、電子
銃に供給する電力は電圧を10KV一定とし、電流を可
変とした。放電状態になる電力は真空度、蒸発源の構造
等によって異なる。ただし、第6図に示す様な構造の蒸
発源では、電力が14KW以上で放電状態になることは
なるが不安定であった。そこで蒸発源を第10図に示す
様に改善すると電力が桃W以上(電圧10KV一定、電
流0.3A以上)で安定な放電状態が得られた。ただし
、第10図の29はマグネシァあるいはジルコニァ等の
耐熱性絶縁物であり、これによって蒸発源17中の薄膜
材料IHを、電子銃19の作動による以外は他のいずれ
の部分とも絶縁している(電子銃19が作動し電子ビ−
ム20を発生している時は、電子銃19と薄膜材料11
とは導適状態にある)。次に蒸発原子が放電状態にある
場合(本発明)及びない場合に得られたCo−Cr薄膜
について説明する。
The thin film material 11 is heated and evaporated by the two electron beams, but when the power supplied to the electron gun 19 exceeds a suitable value, the evaporated atoms enter a discharge state. To check whether the evaporated atoms are in a discharge state, place the probe 21 between the substrate 2 and the evaporation source 17 as shown in FIG. 7, apply a voltage to it, and measure the flowing current. Bye. Figure 7 22, 23, 2
4 are a variable DC power supply, a DC voltmeter, and a DC ammeter, respectively. In the device used in the experiment, the relationship between the voltage and current applied to the probe 21 is as shown in Figure 8, and when the crab force supplied to the electron gun is W (curve 25) and 10 KW (curve 26), The current that flows is small, but when the power reaches 16 KW (curve 27), the current suddenly increases. A curve 28 in FIG. 9 shows the relationship between the electric power supplied to the electron gun and the current flowing through the probe 21 when the voltage applied to the probe 21 is 5 V. When the electric power exceeds 14 KW, the current increases rapidly. This indicates that the evaporated atoms are in a discharge state. However, the degree of vacuum in the vacuum evaporation system was 5×10-5 Ton, and the electric power supplied to the electron gun had a constant voltage of 10 KV and a variable current. The power required to reach the discharge state varies depending on the degree of vacuum, the structure of the evaporation source, etc. However, in the evaporation source having the structure shown in FIG. 6, although it could enter a discharge state at a power of 14 KW or more, it was unstable. Therefore, when the evaporation source was improved as shown in FIG. 10, a stable discharge state was obtained at a power of more than 10 W (voltage constant 10 KV, current 0.3 A or more). However, 29 in FIG. 10 is a heat-resistant insulator such as magnesia or zirconia, which insulates the thin film material IH in the evaporation source 17 from any other part except when the electron gun 19 is activated. (The electron gun 19 operates and the electron beam
When the beam 20 is being generated, the electron gun 19 and the thin film material 11
is in the inducing state). Next, a description will be given of Co--Cr thin films obtained when the evaporated atoms are in a discharge state (in the present invention) and when they are not.

真空度が5×10‐5Torr、基板が耐熱性高分子基
板、基板温度が室温、基板と蒸発源との距離が約20仇
なる条件で、第10図に示す様な蒸発源を用い電子銃に
供給する電力を3.郎W(電圧10KV,電流0.3弘
)として蒸発原子を放電状態にしてCo−Cr薄膜を作
成すると(実験に使用した真空蒸着装層では、このとき
薄膜の形成速度は約2000A/秒であった)、得られ
たCo一Cr薄膜(Crの量は約1母重量%)のX線回
折パターン及びヒステリシス曲線は、それぞれ第11,
12図の様になった。第11図のX線回折パターンは0
02面のみからの反射を示し、C軸が膜面に垂直に配向
していることがわかる。また第12図のヒステリシス曲
線は膜面に垂直方向が磁化容易軸であることを示してお
り、本発明の方法により得られたCo−Cr薄膜は垂直
磁化膜であることがわかる。ただし、30は膜面に垂直
に、31は顔面内に磁界をかけた場合のヒステリシス曲
線であり、30では反磁界補正を行なっていない。これ
に対し、電子銃に供給する電力が2.歌W(電圧loK
V、電流o.2弘)であり蒸発原子が放電状態でないこ
と以外は上記と同一の条件で作成したCo−Cr薄膜は
殆ど無配向であり、第4図と同様のX線回折パターンを
示した。
Using an evaporation source as shown in Figure 10, an electron gun was used under the conditions that the degree of vacuum was 5 x 10-5 Torr, the substrate was a heat-resistant polymer substrate, the substrate temperature was room temperature, and the distance between the substrate and the evaporation source was about 20 mm. 3. When a Co-Cr thin film is created by discharging the evaporated atoms under a low voltage (voltage of 10 KV, current of 0.3 kW) (with the vacuum evaporation layer used in the experiment, the thin film formation rate is approximately 2000 A/sec). ), the X-ray diffraction pattern and hysteresis curve of the obtained Co-Cr thin film (the amount of Cr was about 1% by weight) were
It looked like Figure 12. The X-ray diffraction pattern in Figure 11 is 0
It can be seen that the reflection from only the 02 plane is shown, and the C axis is oriented perpendicular to the film surface. Furthermore, the hysteresis curve in FIG. 12 shows that the axis of easy magnetization is perpendicular to the film surface, and it can be seen that the Co--Cr thin film obtained by the method of the present invention is a perpendicularly magnetized film. However, 30 is a hysteresis curve when a magnetic field is applied perpendicular to the membrane surface, 31 is a hysteresis curve when a magnetic field is applied within the face, and 30 is a hysteresis curve in which demagnetizing field correction is not performed. On the other hand, the power supplied to the electron gun is 2. Song W (voltage loK
V, current o. A Co--Cr thin film prepared under the same conditions as above except that the evaporated atoms were not in a discharge state was almost unoriented and showed an X-ray diffraction pattern similar to that shown in FIG. 4.

以上の様に本発明の方法によれば、スパッタリング法と
同様のCo−Cr垂直磁化膜が真空蒸着法にて得られる
が、スパッタリング法と本発明の方法との違いは薄膜の
形成速度にあり、バッタリング法の数A/秒に比べ、本
発明の方法では数千A/秒の形成速度が可能である。
As described above, according to the method of the present invention, a Co-Cr perpendicular magnetization film similar to the sputtering method can be obtained using the vacuum evaporation method, but the difference between the sputtering method and the method of the present invention is the thin film formation speed. Formation rates of several thousand A/sec are possible with the method of the present invention, compared to several A/sec of the battering method.

さらに本発明の方法では高分子材料より成る基板を使用
出釆るので、非常に優れた生産性で垂直記録媒体を提供
出来る。CoとCrとを別々の蒸発源から蒸発させる2
元蒸着法の場合には、どちらも電子ビームを用いた蒸発
源を用いてもよいが、Coの蒸発源にのみ電子ビームを
用い、Crの蒸発源としては抵抗加熱あるいは高周波加
熱蒸発源を用いても、Coの蒸発源の電子銃に蒸発原子
が放電状態になる様な大きさの電力を供給すれば垂直磁
化膿が得られる。
Furthermore, since the method of the present invention uses a substrate made of a polymer material, it is possible to provide a perpendicular recording medium with extremely high productivity. Evaporating Co and Cr from separate evaporation sources 2
In the case of the original evaporation method, an evaporation source using an electron beam may be used for both, but an electron beam is used only for the Co evaporation source, and a resistance heating or high frequency heating evaporation source is used for the Cr evaporation source. However, if power is supplied to the electron gun of the Co evaporation source at a level that causes the evaporated atoms to be in a discharge state, vertical magnetization can be obtained.

以上述べた様に、本発明の方法によれば高密度記場特性
の優れた垂直磁化膜が高分子材料より成る基板上に数千
A/秒という速い形成速度で安定に得られる。図面の簡
単な説明第1図は従釆の磁気記録再生方式を説明するた
めの図、第2図は垂直記録方式を説明するための図、第
3図は真空蒸着法を説明するための図、第4図は真空蒸
着法により得られたCo−Cr薄膜(基板温度20q○
)のX線回折パターンを示す図、第5図は真空蒸着法に
より得られたCo−Cr薄膜(基板温度500oo)の
X線回折パターンを示す図、第6図は本発明による製造
装置の1実施例を示す図、第7図は同製造装置の動作状
態を検知するための測定法を示す図、第8図および第9
図は同測定法により測定結果を示す図、第10図は本発
明による蒸発源の1実施例を示す図、第11図は本発明
により製造されたCo−Cr薄膜のX線回折パターンを
示す図、第12図は同Co−Cr薄膜のヒステリシス曲
線を示す図である。
As described above, according to the method of the present invention, a perpendicularly magnetized film having excellent high-density field characteristics can be stably obtained on a substrate made of a polymeric material at a high formation rate of several thousand A/sec. Brief explanation of the drawings Figure 1 is a diagram for explaining the magnetic recording and reproducing method of the secondary column, Figure 2 is a diagram for explaining the perpendicular recording method, and Figure 3 is a diagram for explaining the vacuum evaporation method. , Figure 4 shows a Co-Cr thin film obtained by vacuum evaporation (substrate temperature 20q○).
), FIG. 5 is a diagram showing the X-ray diffraction pattern of a Co-Cr thin film obtained by vacuum evaporation (substrate temperature 500 oo), and FIG. FIG. 7 is a diagram showing an example, and FIG. 7 is a diagram showing a measurement method for detecting the operating state of the same manufacturing equipment, and FIGS.
Figure 10 shows an example of the evaporation source according to the present invention, and Figure 11 shows an X-ray diffraction pattern of a Co-Cr thin film produced according to the present invention. 12 are diagrams showing hysteresis curves of the same Co--Cr thin film.

2・・・・・・媒体基板、11・・・・・・薄膜材料、
13・・・・・・真空容器、17・・・・・・蒸発源、
18・・・・・・水冷鋼ハース、19・・・…電子銃、
20・・・・・・電子ビーム、29…・・・耐熱性絶縁
物。
2... Media substrate, 11... Thin film material,
13... Vacuum container, 17... Evaporation source,
18...Water-cooled steel hearth, 19...Electron gun,
20... Electron beam, 29... Heat resistant insulator.

第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図 第11図 第12図Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12

Claims (1)

【特許請求の範囲】 1 基板上にCoとCrを主成分とする磁性層を真空蒸
着法にて形成する際に、蒸発源として少なくとも1台は
電子ビームにより薄膜材料を加熱する蒸発源を使用し、
かつ該磁性層の形成時に該電子ビームを発生させる電子
銃に供給する電力が、蒸発電子を放電状態にする大きさ
であることを特徴とする磁気記録媒体の製造方法。 2 蒸発源中の薄膜材料が、該電子銃の作動による以外
は、他のいずれの部分とも絶縁されている蒸発源を使用
することを特徴とする特許請求の範囲第1項に記載の磁
気記録媒体の製造方法。
[Claims] 1. When forming a magnetic layer mainly composed of Co and Cr on a substrate by vacuum evaporation, at least one evaporation source that heats a thin film material with an electron beam is used as an evaporation source. death,
A method for manufacturing a magnetic recording medium, characterized in that the electric power supplied to the electron gun that generates the electron beam during the formation of the magnetic layer is of a magnitude that causes the evaporated electrons to be in a discharge state. 2. The magnetic recording according to claim 1, characterized in that an evaporation source is used in which the thin film material in the evaporation source is insulated from any other parts except when the electron gun is activated. Method of manufacturing media.
JP7954880A 1980-03-07 1980-06-11 Method for manufacturing magnetic recording media Expired JPS6037531B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7954880A JPS6037531B2 (en) 1980-06-11 1980-06-11 Method for manufacturing magnetic recording media
DE8181300904T DE3173689D1 (en) 1980-03-07 1981-03-04 Method of producing a magnetic recording medium
EP81300904A EP0035870B2 (en) 1980-03-07 1981-03-04 Method of producing a magnetic recording medium
US06/240,369 US4399013A (en) 1980-03-07 1981-03-04 Method of producing a magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7954880A JPS6037531B2 (en) 1980-06-11 1980-06-11 Method for manufacturing magnetic recording media

Publications (2)

Publication Number Publication Date
JPS576440A JPS576440A (en) 1982-01-13
JPS6037531B2 true JPS6037531B2 (en) 1985-08-27

Family

ID=13693050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7954880A Expired JPS6037531B2 (en) 1980-03-07 1980-06-11 Method for manufacturing magnetic recording media

Country Status (1)

Country Link
JP (1) JPS6037531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428321Y2 (en) * 1985-04-24 1992-07-09

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60201531A (en) * 1984-03-23 1985-10-12 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428321Y2 (en) * 1985-04-24 1992-07-09

Also Published As

Publication number Publication date
JPS576440A (en) 1982-01-13

Similar Documents

Publication Publication Date Title
US4576700A (en) Perpendicular magnetic recording medium method for producing the same, and sputtering device
US4382110A (en) Magnetic recording medium
JPH0411625B2 (en)
US4842708A (en) Perpendicular magnetic recording medium, method for producing the same, and sputtering device
US4399013A (en) Method of producing a magnetic recording medium
JPS6037531B2 (en) Method for manufacturing magnetic recording media
JPH031810B2 (en)
Röll The impact of process parameters and coating source on the properties of magnetic recording layers
JPS6339124A (en) Magnetic recording medium and its production
JPS60202526A (en) Method and device for production of magnetic recording medium
JPH0334614B2 (en)
JPS60101721A (en) Formation of barium ferrite layer
JPS60173746A (en) magneto-optical recording medium
JPS6249974B2 (en)
JPS6138530B2 (en)
JPS59175037A (en) Production of magnetic recording medium
JPH0261819A (en) Perpendicular magnetic recording medium
JPS6131529B2 (en)
JPS62285253A (en) Manufacturing method of magneto-optical recording medium
JPS59148139A (en) Manufacture of vertical magnetic recording medium
JPS6031013B2 (en) Method for manufacturing magnetic recording media
JPH0550052B2 (en)
JPS59191129A (en) Magnetic recording medium
JPS60201531A (en) Manufacture of magnetic recording medium
JPS6066309A (en) Magnetic head