JPS6035958A - Output controller of high voltage power source for copying machine - Google Patents
Output controller of high voltage power source for copying machineInfo
- Publication number
- JPS6035958A JPS6035958A JP14379683A JP14379683A JPS6035958A JP S6035958 A JPS6035958 A JP S6035958A JP 14379683 A JP14379683 A JP 14379683A JP 14379683 A JP14379683 A JP 14379683A JP S6035958 A JPS6035958 A JP S6035958A
- Authority
- JP
- Japan
- Prior art keywords
- current
- output
- voltage
- copying machine
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007599 discharging Methods 0.000 claims abstract 2
- 239000003990 capacitor Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 4
- 108091008695 photoreceptors Proteins 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明は、感光体上にvp電電像像ための静電荷を印加
する荷電器に接続される複写機用高圧電源に関するもの
であり、特にその出力を制御して感光体上の表面電位を
安定援制御する出力制御装置圧検るものである。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a high-voltage power supply for a copying machine connected to a charger that applies an electrostatic charge for forming a VP electric image on a photoreceptor, and particularly relates to a high-voltage power supply for a copying machine that is connected to a charger that applies an electrostatic charge for forming a VP electric image on a photoreceptor. An output control device is used to control and stabilize the surface potential on the photoreceptor.
(従来技Wi)
従来この種制御方式としては、表面電位センサーを用い
てこの値によって高電圧電源を制御するものが知られて
いる。しかl、この方式だと、センサーの汚れにより誤
差を生じるので定期メンテガ必要となり、またセンサー
が高価であり且つセンサーの収納場所が必要であり、小
型低価格にできないという欠点があった。(Prior Art Wi) Conventionally, as this type of control method, one is known in which a surface potential sensor is used and a high voltage power source is controlled based on this value. However, this method has the disadvantage that regular maintenance is required because errors occur due to dirt on the sensor, and the sensor is expensive and requires a storage space, making it impossible to make it compact and inexpensive.
またチャージャーケースを絶縁してケース電流を検出す
ることにより、給電流から感光体ドラム電流をめて高電
圧電源を制御する方式も知られているが、この方式では
高電圧部材を絶縁する為J/c構造が複雑となる。また
ケース電流を検出する為の素子及びリード線が必要であ
り、さらに複雑な構成となる。A method is also known in which the charger case is insulated and the case current is detected, and the photoreceptor drum current is derived from the supplied current to control the high voltage power supply. /c The structure becomes complicated. Furthermore, an element and lead wires for detecting the case current are required, resulting in a more complicated configuration.
さらにドラムを絶縁してドラム電流を検出し、これによ
って高電圧電源の出力を制御する方式も公知である。こ
の方式ではドラムな絶縁する為及びここよりドラム電流
な検tBする為に検音が候雑となり、またドラムには複
数のチャージ電流が流れている為に個々のドラム電流を
めるAには、それぞれのチャージ電流に時間的な差が必
要であり、制御に時間がかかるという欠点がある。Furthermore, a method is also known in which the drum is insulated, the drum current is detected, and the output of the high voltage power supply is thereby controlled. In this method, the sound detection becomes complicated because the drum is insulated and the drum current is detected from here.Also, since multiple charge currents flow through the drum, it is difficult to measure the current for each drum. , a time difference is required between the respective charging currents, which has the disadvantage that control takes time.
(目的)
静電プロセスを用いた電子報写機においてその潜像作成
部材の電荷量ないかに安定に制御するかが良い複写画像
を得る為のカギである。(Purpose) In electronic reporting machines using an electrostatic process, stably controlling the amount of charge on the latent image forming member is the key to obtaining good copied images.
潜像作成部材(以下ドラムと配す)に電荷な与える方法
として高電圧電源を用い、こ第1に接続された放電電極
(以下チャージワイヤと記す)よりのコロナ放電を用い
るものが広く用し・られている。A widely used method is to apply a charge to the latent image forming member (hereinafter referred to as the drum) by using a high voltage power source, and by using corona discharge from a discharge electrode (hereinafter referred to as the charge wire) connected to this first.・It is being done.
しかしチャージワイヤからのコロナ放電は、放電電流の
小さいところでは不均一でドラムに均一電荷を与えるこ
とができず複写画像に6淡むらを生じる。そこでチャー
ジワイヤーを囲むようにケースを構成し、このケースに
放電電流を分流することによりチャージワイヤーの放N
電流を大きくし、そのコ四す放電を均一にし良い[!を
得るようにしている。However, when the discharge current is small, the corona discharge from the charge wire is non-uniform and cannot provide a uniform charge to the drum, resulting in unevenness in the copied image. Therefore, by configuring a case to surround the charge wire and diverting the discharge current to this case, the charge wire can be discharged.
It is good to increase the current and make the discharge uniform [! I'm trying to get it.
このチャージワイヤーのまわりにケースを用いる方式は
聞知の技術であり、且つこれは避けられない。This method of using a case around the charge wire is a well-known technique, and it is unavoidable.
しかしこのためにチャージワイヤーからの放電電流(以
下総電流ITと記す)はドラムへの放電電流(以下ドラ
ム電流ID)とケースに流れる電流(以下ナース電流工
0)とに分かれる。However, for this reason, the discharge current from the charge wire (hereinafter referred to as total current IT) is divided into a discharge current to the drum (hereinafter referred to as drum current ID) and a current flowing to the case (hereinafter referred to as nurse electric current 0).
ところがドラム電流とケース電流の比は%チャージワイ
ヤーの経時変化、湿度湿度、気圧等の環境変化により変
化するので総電流を一定に制御してもこれらの外乱によ
り、それぞれの電流は一定になっていない。However, the ratio of drum current to case current changes due to changes in the charge wire over time, humidity, atmospheric pressure, and other environmental changes, so even if the total current is controlled to be constant, these disturbances will cause each current to remain constant. do not have.
電荷ff1Qと電流工の間にはニー二 の関係がt
有るから、電荷量を一定にする為には電流を一定にすれ
ば良い。つまり、ドラムの電荷を一彎にするにはドラム
電流IDを一定にしなくてはならない。Since there is a Ni-2 relationship between the electric charge ff1Q and the electric current, it is sufficient to keep the electric current constant in order to keep the electric charge constant. In other words, in order to make the charge on the drum uniform, the drum current ID must be kept constant.
しかし前述した様に外乱によりIn/ Iaが変り、I
Fを一定にしてもIDを一定にすることはできない。However, as mentioned above, In/Ia changes due to disturbance, and I
Even if F is kept constant, ID cannot be kept constant.
そこで前述した従来技術が考えられていたが・いづれも
複写機本体の変更が必要であり、複雑高価なものとなる
。Therefore, the above-mentioned conventional techniques have been considered, but each requires modification of the copying machine itself, making it complicated and expensive.
本発明はこの様な事情に鑑みてなざわたものであり、ケ
ースへの放電開始電圧とドラムへの放電開始電圧の差を
利用して、どぢらか一方の負荷特性を把み、放電電流、
からドラム相流を算出することにより、安定したドラム
電位な得るようにすることな目的とするものである。The present invention was developed in view of these circumstances, and utilizes the difference between the discharge starting voltage to the case and the discharge starting voltage to the drum to determine the load characteristics of one of them, and to control the discharge. current,
The purpose is to obtain a stable drum potential by calculating the drum phase flow from
(構成)
まずコロナ放電の特性についてみる。コpす電2に
流工と印加電圧Vの関係はニー丁(3V (v−vo)
(式1)なることがタウンゼン)によって導出されてい
る(K:イオン移動度、P:気圧、C:コロナ発生器の
形状等による係数、vo :放電開始電圧)。これより
気圧、コpす発生器の状態によって工が変化することが
わかる。また実験結果よりワイヤーの表面状態、周囲の
湿度により変化すること、電極との距離により変化する
ことも知られている。(Structure) First, let's look at the characteristics of corona discharge. The relationship between the current flow and the applied voltage V for Kopusuden 2 is 3V (v-vo).
(Formula 1) is derived by Townsen (K: ion mobility, P: atmospheric pressure, C: coefficient depending on the shape of the corona generator, etc., vo: discharge starting voltage). From this, it can be seen that the process changes depending on the atmospheric pressure and the condition of the copier generator. It is also known from experimental results that it changes depending on the surface condition of the wire, the surrounding humidity, and the distance from the electrode.
今電子複写機の荷電部分について第1図で説明する。The charging section of the electronic copying machine will now be explained with reference to FIG.
高電圧電源1の出力をチャージワイヤー2尾接続すると
、チャージワイヤー2に流れる電流ITはケース3に流
れるケース室温1oとドラム4へ流れるドラム電流ID
に分かれるので、T、T −Io +ID (式2)と
1cる。When the output of the high voltage power supply 1 is connected to two charge wires, the current IT flowing through the charge wire 2 is the case room temperature 1o flowing to the case 3 and the drum current ID flowing to the drum 4.
Therefore, T, T −Io + ID (Formula 2) and 1c.
ところで一般にドラふ4及びケース3は複写機の金属構
造物に固定ざhているので、固々に流れる電流を検出す
ることはできない。By the way, since the draft 4 and the case 3 are generally fixed to the metal structure of the copying machine, it is not possible to detect the current flowing therethrough.
そして一般に第1図のチャージワイヤー2とケース3の
距mtaがドラム4との距11JtDより小さく、放電
開始電圧が異なるので、ケース3への放電開始電圧点V
oとドラム4へも放電を開始する点VDで変曲点が存在
する。Vaと次の変曲点までの間の1点VO2の時の電
流工2を式1に代入すればナース3のみに流れる放電電
流の式
こで短時間内では気圧P1移動度に1形状による係数G
は変化しないので電数A、−T−Cとした。Generally, the distance mta between the charge wire 2 and the case 3 shown in FIG.
There is also an inflection point at the point VD where discharge starts to the drum 4. Substituting the electric current 2 at one point VO2 between Va and the next inflection point into equation 1, the equation for the discharge current flowing only through nurse 3 is: Within a short time, the pressure P1 depends on the mobility. Coefficient G
Since it does not change, it is set as electric number A, -T-C.
放1χ開始点近辺での動作は不安定であるので、一定の
電流1.の時の電圧Vσ1と次の変曲点までの間の少な
くとも1点VO2の時の電流■、を測定して式1を解く
。Since the operation near the starting point of the discharge 1χ is unstable, a constant current 1. Equation 1 is solved by measuring the voltage Vσ1 when Vσ1 and the current ■ when at least one point VO2 up to the next inflection point.
未知数A、V。2個で式が2本立つのでこれは解ける。Unknowns A and V. This can be solved because two equations exist with two pieces.
今わかりやすくする為にめられた値をAct。Act the value given to make it easier to understand.
’Va とするとIo−Ao (V−Vo)(式3)と
なる。ケース3及びドラム4両者に放電しているVTI
、 VT217)時の電流I3 # I4を′fs宕
し”CIaと同様にして式1を解くとIT−At (V
−VT)(式4)となる。式2に式3と式4を代入する
とドラム電流とその時の電圧の関係ID−(AT−Ao
)V −ATLr4−AaVo (式5)がマル。'Va, then Io-Ao (V-Vo) (Formula 3). VTI discharged to both case 3 and drum 4
, VT217), the current I3 #I4 is calculated by 'fs', and equation 1 is solved in the same manner as CIa, then IT-At (V
-VT) (Equation 4). Substituting equations 3 and 4 into equation 2, the relationship between drum current and voltage at that time is ID-(AT-Ao
)V -ATLr4-AaVo (Formula 5) is true.
今ドラム電流を工αにすることを考えた場合、式5のI
Dに工αを代入して、この時の電圧V−る様に高電圧電
源を制御すれば良い。またはこれを式4に代入すればそ
の時のチャージャーへ流れる電流IDの時のIT又は電
圧をめることも可能である。If we consider now that the drum current is α, then I of Equation 5 is
By substituting the factor α into D, the high voltage power supply can be controlled so that the voltage at this time is V-. Alternatively, by substituting this into equation 4, it is also possible to find the IT or voltage at the time of the current ID flowing to the charger at that time.
第5図はその実施例である。これを説明するとパルス幅
制御器5により得られたパルスでトランジスタ6をスイ
ッチングしてトランス7の2次側に高電圧パルスを取り
出し、これをダイオード8、コンデンサ9で整流平滑し
て直流高電圧を得る。FIG. 5 shows an example thereof. To explain this, a transistor 6 is switched using a pulse obtained by a pulse width controller 5, a high voltage pulse is taken out to the secondary side of a transformer 7, and this is rectified and smoothed by a diode 8 and a capacitor 9 to generate a DC high voltage. obtain.
この出力電圧は抵抗10S抵抗11で分圧されjL/D
変換器13に接続される。出方電流は抵抗12により検
出され同様KA/D変換器14に入力される。これらA
/D変換器13.14は演算器15に接続される。This output voltage is divided by a resistor 10S resistor 11 and jL/D
Connected to converter 13. The output current is detected by a resistor 12 and similarly input to a KA/D converter 14. These A
The /D converters 13 and 14 are connected to the arithmetic unit 15.
通常は出力電圧又は出力電流のみ情報として取り込み、
この値が目標値になる様なパルス幅を算出して、パルス
幅制御器5にその信号を与え出方が一定になるよう制御
される。Normally, only the output voltage or output current is taken as information,
A pulse width such that this value becomes the target value is calculated, and the signal is supplied to the pulse width controller 5 so that the pulse width is controlled to be constant.
゛ 今テスト信号を受けると、演算器15よりパルス幅
を除々に広くして行く信号をパルス幅制御器5に与える
。この時の出力電圧と出力電流を測定して演算器15の
メモリーに記憶させる。このデータを以って演算器15
によりI = A V (V −Vo )を計算し、こ
れを微分することにより変曲点をめる。最初の変曲点ま
でのデータよりIo=AoV(V−Vo)をめる。次の
変曲、点以降のデータよりIT−ATV(V−Vr)を
める。そしてこれらよりATV (V−VT) −ID
+AOV(V −VO)をめる。゛When the test signal is received now, the arithmetic unit 15 supplies the pulse width controller 5 with a signal that gradually widens the pulse width. The output voltage and output current at this time are measured and stored in the memory of the computing unit 15. Using this data, the computing unit 15
By calculating I = A V (V - Vo ) and differentiating this, the inflection point is found. Calculate Io=AoV (V-Vo) from the data up to the first inflection point. Calculate IT-ATV (V-Vr) from the data after the next inflection point. And from these ATV (V-VT) -ID
Add +AOV (V - VO).
次にあらかじめ記憶されたドラム電流値工αを代入して
この時のv7にめこれを基準電圧として設定する◇ここ
でトリガー信号を受けると通常の動作となり、出力電圧
がこの基準電圧になるよう前記の制御動作を行なう。Next, substitute the drum current value α stored in advance and set it as the reference voltage for v7 at this time. ◇When a trigger signal is received here, normal operation will occur, and the output voltage will become this reference voltage. The control operation described above is performed.
尚、ここで基準を電流としても同様であり差し支えない
。Incidentally, here, the reference may be a current as well.
またパルス幅制御器5を演算器15と別に設けたが、演
算器5にこの機能を持たすことは容易に可能である。Further, although the pulse width controller 5 is provided separately from the arithmetic unit 15, it is easily possible to provide this function to the arithmetic unit 5.
ざらにテスシ信号を用いずに1各コピーサイクルの中で
遂次、テスト動作を行なうようにすることも可能である
。It is also possible to perform test operations successively in each copy cycle without using the test signal.
倉荷特性を管理できるので、ワイヤーの劣化、環境の悪
化等を検知し、これを外部に信号として出すことも容易
である。Since warehouse characteristics can be managed, it is easy to detect deterioration of wires, deterioration of the environment, etc. and send this as a signal to the outside.
第3図はこれら印加電圧と放電電流の関係を示す特性図
である。FIG. 3 is a characteristic diagram showing the relationship between these applied voltages and discharge current.
(効果)
本発明は以上述べた通りのものであり、本発明によれば
、環境の変化、経時変化が有っても一宇の電荷量をドラ
ム(静電潜像作成用部材)に与えることができ、またそ
のためにドラムの支持構造、チャージケースの支持構造
を全く変更する必要がないので従来の複写機にそのまま
使える。さらにドラム又はチャージケース電流を測定す
る為にそれぞれを絶縁処理し、ここに検出素子を用いる
必要がないので大形化、コストアップをさけられ、且つ
表面電位センサー等高価な装置を必要としない。(Effects) The present invention is as described above, and according to the present invention, even if there are changes in the environment or changes over time, a single charge amount can be applied to the drum (electrostatic latent image forming member). Moreover, since there is no need to change the support structure of the drum or the charge case at all, it can be used as is in conventional copying machines. Furthermore, in order to measure the drum or charge case current, it is not necessary to insulate each drum or charge case and use a detection element therein, so it is possible to avoid an increase in size and cost, and there is no need for expensive equipment such as a surface potential sensor.
第1図はドラムチャージャの関係を示す模式図、第2図
は本発明の一実施例に係る制御プルツク図、第3図はそ
の出力特性図である。
1・・・・・・高電圧1源、2・・・・・・放電電極、
3・・・・・・ナース、4・・・・・・ドラム、13.
14・・・・・・出力電流・出力電圧検出器としてのA
/Dコンバータ、15・・・・・・演算器。FIG. 1 is a schematic diagram showing the relationship of the drum charger, FIG. 2 is a control pull diagram according to an embodiment of the present invention, and FIG. 3 is its output characteristic diagram. 1...High voltage 1 source, 2...Discharge electrode,
3... Nurse, 4... Drum, 13.
14...A as output current/output voltage detector
/D converter, 15... Arithmetic unit.
Claims (1)
に高電圧を印加する複写機用高圧電源であって1出力電
圧検出器と、出力電流検出器と1これらより負荷条件を
算出する演算器と、この演算結果に応じて出力を制御す
る制御器とを有することを特徴とする複写機用高圧電源
の出力制御装置。 (2)出力電圧又は出力雷、流を連続又は断続的に可変
する可変手段を備えた特許請求の範囲第(1)項記載の
複写機用高圧電源の出力制御装置。 (8)可変手段によって出力を可変した時のそれぞれの
出力電流と出力電圧より、放電電流と放電電圧の関係な
算出する演算器を備えた特許請求の範囲第(1)項記載
の複写機用高圧電源の出力制御装置。 (4)放電電流と放電電圧の関係より変曲点を算出する
演算器を備えた特許請求の範囲第(8)項記載の複写機
用高圧電源の出力制御装置。 (5)決められた電流から次の変曲点までの放γL電流
と放電電圧の関係より放電電極からケース、又は放電電
極から静電潜像作成用部材いずれか一方のみへの放電関
係式を算出する演算器を備えた特許請求の範囲第(1ン
項記載の複写機用高圧電源の出力制御装置。 (6)特許請求の範囲第(5)項の結果より直接又は放
電電極からケースと静電潜像作成用部材、両者に放電し
ている時の関係と特許請求の範囲第(5)項でめた関係
式より放電電極から静電潜像作成用部材に流れる電流を
算出する演算器を備えた特許請求の範囲第(1)項記載
の複写機用高圧電源の出力制御装置。 (テ)特許請求の範囲第(6)項の演n器の結果に応じ
て出力電圧又は出力電流を制御する特許請求の範囲第(
13項記載の複写機用高圧電源の出力制御装置。[Scope of Claims] (1) A high-voltage power supply for a copying machine that applies a high voltage to a charger consisting of a discharge electrode and a nurse adjacent to the discharge electrode, comprising: an output voltage detector, an output current detector, and an output current detector; 1. An output control device for a high-voltage power supply for a copying machine, comprising a calculation unit that calculates a load condition and a controller that controls an output according to the calculation result. (2) An output control device for a high-voltage power supply for a copying machine as set forth in claim (1), comprising variable means for continuously or intermittently varying the output voltage or output current. (8) A copying machine according to claim (1), comprising an arithmetic unit that calculates the relationship between the discharge current and the discharge voltage from the respective output current and output voltage when the output is varied by the variable means. Output control device for high voltage power supply. (4) An output control device for a high-voltage power supply for a copying machine as set forth in claim (8), comprising an arithmetic unit that calculates an inflection point from the relationship between discharge current and discharge voltage. (5) Based on the relationship between the emitted γL current and the discharge voltage from the determined current to the next inflection point, the discharge relational expression from the discharge electrode to the case or from the discharge electrode to the electrostatic latent image creation member can be calculated. An output control device for a high-voltage power supply for a copying machine according to claim 1, which is equipped with an arithmetic unit for calculation. An operation for calculating the current flowing from the discharge electrode to the electrostatic latent image forming member based on the relationship when discharging to the electrostatic latent image forming member and the relational expression set in claim (5). An output control device for a high-voltage power supply for a copying machine as set forth in claim (1). Claim No. 3 for controlling the current (
14. The output control device for a high-voltage power supply for a copying machine according to item 13.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14379683A JPS6035958A (en) | 1983-08-08 | 1983-08-08 | Output controller of high voltage power source for copying machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14379683A JPS6035958A (en) | 1983-08-08 | 1983-08-08 | Output controller of high voltage power source for copying machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6035958A true JPS6035958A (en) | 1985-02-23 |
Family
ID=15347180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14379683A Pending JPS6035958A (en) | 1983-08-08 | 1983-08-08 | Output controller of high voltage power source for copying machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6035958A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6259978A (en) * | 1985-09-10 | 1987-03-16 | Canon Inc | Image forming device |
WO1997050165A1 (en) * | 1996-06-24 | 1997-12-31 | Tdk Corporation | Switching power unit |
-
1983
- 1983-08-08 JP JP14379683A patent/JPS6035958A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6259978A (en) * | 1985-09-10 | 1987-03-16 | Canon Inc | Image forming device |
WO1997050165A1 (en) * | 1996-06-24 | 1997-12-31 | Tdk Corporation | Switching power unit |
CN1052586C (en) * | 1996-06-24 | 2000-05-17 | Tdk株式会社 | Switching power unit |
US6115266A (en) * | 1996-06-24 | 2000-09-05 | Tdk Corporation | Switching power source with a digital control circuit to maintain a constant DC output signal |
US6169680B1 (en) | 1996-06-24 | 2001-01-02 | Tdk Corporation | Switching power source with a digital control circuit to maintain a constant DC output signal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4358520A (en) | Method of stabilizing an electrostatic latent image | |
JPS6253779B2 (en) | ||
EP0330820B1 (en) | Brush contact type charging unit for an image forming apparatus | |
CA1123041A (en) | Apparatus and method for low sensitivity corona charging of a moving photoconductor | |
CN101937180B (en) | Image forming apparatus and control method of image forming apparatus | |
JPH01319764A (en) | Xerographic apparatus | |
JPS6035958A (en) | Output controller of high voltage power source for copying machine | |
JP2018087719A (en) | Voltage detection device, power detection device and image formation device | |
JP3595594B2 (en) | Environmental measurement device | |
GB2194381A (en) | Silent discharge type laser device | |
JP3715983B2 (en) | Environmental measurement equipment | |
JPS59201075A (en) | Charged potential control device of photosensitive body | |
JPS60214267A (en) | Surface electrometer | |
JP3744321B2 (en) | Power supply | |
JPH05188782A (en) | Image forming device | |
JPS62118267A (en) | Measuring method for potential of object | |
JPS6162075A (en) | Potential control device of copying machine | |
JPS6039234B2 (en) | Charging method and device using corona discharge | |
JP2003029504A (en) | Surface potential controller and image forming device | |
JPH06118776A (en) | Scorotron charging device | |
JP2021162776A (en) | Image forming apparatus | |
JPS6035760A (en) | Control device for electrostatically charged potential of photosensitive body | |
JPH0430024B2 (en) | ||
JPS6027986B2 (en) | Developer toner concentration monitoring and control device | |
JPH01163775A (en) | Electrophotographic device |