[go: up one dir, main page]

JPS6033863A - Piston speed control device in injection molding equipment - Google Patents

Piston speed control device in injection molding equipment

Info

Publication number
JPS6033863A
JPS6033863A JP14053883A JP14053883A JPS6033863A JP S6033863 A JPS6033863 A JP S6033863A JP 14053883 A JP14053883 A JP 14053883A JP 14053883 A JP14053883 A JP 14053883A JP S6033863 A JPS6033863 A JP S6033863A
Authority
JP
Japan
Prior art keywords
piston
injection
control valve
circuit
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14053883A
Other languages
Japanese (ja)
Other versions
JPH0451260B2 (en
Inventor
Toyoaki Ueno
豊明 上野
Takashi Mihara
三原 毅史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP14053883A priority Critical patent/JPS6033863A/en
Publication of JPS6033863A publication Critical patent/JPS6033863A/en
Publication of JPH0451260B2 publication Critical patent/JPH0451260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はダイカストマシンや射出成形機等の射出成形装
置lcオけるショットプランジャのプランジャチップを
前進させる射出シリンダのピストン速度を制御する装置
lこ関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for controlling the piston speed of an injection cylinder that advances a plunger tip of a shot plunger in an injection molding apparatus such as a die casting machine or an injection molding machine.

一般lこダイカストマシン等の射出成形1こおいては、
金型におけるキャビティの形状、容積、金型の温度等l
こ応じ、溶湯の射出速度、射出圧力等が不適当であると
キャビティ内へ鵬湯回りか悪く。
For injection molding such as general die casting machines,
The shape and volume of the cavity in the mold, the temperature of the mold, etc.
Accordingly, if the injection speed, injection pressure, etc. of the molten metal are inappropriate, the molten metal may flow into the cavity.

欠落が生じる場合や、射出成形品内の巣が発生する場合
、又1寸法精度や製品強度が低下する場合等1種々の弊
害が生じる。
Various problems occur, such as when breakage occurs, when cavities occur in the injection molded product, and when dimensional accuracy and product strength decrease.

こわらの弊害を防止する為、従来より、射出シリンダの
ピストン後室への作動油流入回路へ流量制御弁を設ける
メータイン回路、又はピストン前室からの作動油流出回
路lこ流量制御弁を設けるメータアラ;・回路等lこよ
り射出シリンダのピストン速度、即ち溶湯の射出速度制
御が行われている。
In order to prevent the harmful effects of stiffness, conventional meter-in circuits include a meter-in circuit in which a flow control valve is provided in the hydraulic oil inflow circuit to the piston rear chamber of the injection cylinder, or a flow control valve is provided in the hydraulic oil outflow circuit from the piston front chamber. Meter error: The piston speed of the injection cylinder, that is, the injection speed of the molten metal is controlled by the circuit, etc.

例えば、メータイン回路における基本回路11第1図f
こ示す如く、油圧ポンプやアキュムレータ等の油圧源1
1から切換弁12を通り、流量制御弁14を介して射出
シリンダ加のピストン後室221こ至る流入回路16と
、射出シリンダ加のピストン前室nから切換弁1λを通
り油槽15に戻る流出回路17とを有し、流量制御弁1
4)こて前記ピストン後室nへの作動油の流入量を制御
すること暑こよりピストン21の前進速度、即ち射出ス
リーブ列内のプランジャチップ四の前進速度を制御し、
以て溶湯の射出速度を定めるものである。
For example, basic circuit 11 in the meter-in circuit, Fig. 1f
As shown, a hydraulic source 1 such as a hydraulic pump or an accumulator
An inflow circuit 16 from 1 to the piston rear chamber 221 connected to the injection cylinder through the switching valve 12 via the flow control valve 14, and an outflow circuit from the piston front chamber n connected to the injection cylinder to the oil tank 15 through the switching valve 1λ 17, the flow control valve 1
4) controlling the amount of hydraulic oil flowing into the piston rear chamber n; controlling the forward speed of the piston 21, that is, the forward speed of the plunger tip 4 in the injection sleeve row;
This determines the injection speed of the molten metal.

又、第2図1こ示す如く、射出シリンダ加のピストン前
室おからピストン後室221こ通じるランアランド回路
18を構成するメータイン回路もある。
Further, as shown in FIG. 2, there is also a meter-in circuit constituting a run-around circuit 18 that communicates between the piston front chamber of the injection cylinder and the okara piston rear chamber 221.

ところで1本発明の発明者らは、溶湯の射出速度、即ち
射出シリンダ加への作動油の流入量又は射出シリンダか
らの作動油の流出量を制御する従来の流量制御弁141
こ代るものとして、パルスモータ駆動1こよる高速応答
性を具えた流量制御弁30を最近開発した。
By the way, the inventors of the present invention have developed a conventional flow control valve 141 that controls the injection speed of molten metal, that is, the amount of hydraulic oil flowing into the injection cylinder or the amount of hydraulic oil flowing out from the injection cylinder.
As an alternative, we have recently developed a flow control valve 30 that is driven by a pulse motor and has faster response.

この流量制御弁勿は、第3図1こ示T如く軸線方:# 軸線方向へ移動する弁スプール34が設けられている。This flow rate control valve is of course axially oriented as shown in Figure 3. An axially moving valve spool 34 is provided.

更fこ弁スプール34の後部lこは一体的tこナツト軸
35が連続され、該ナツト軸あの内部軸心部fこねじ軸
部かボールねじa’7+こよって螺合さnている。
Furthermore, an integral nut shaft 35 is connected to the rear part of the valve spool 34, and the internal shaft center part of the nut shaft is screwed into the threaded shaft part by a ball screw a'7+.

このねじ軸36は回転量を制御可能なパルスモータ41
の回転軸fこカップリング38をもって接続されること
lこより回転Tる。
This screw shaft 36 is connected to a pulse motor 41 whose rotation amount can be controlled.
The rotation axis f is connected to the coupling 38 so that it rotates.

尚、45はナツト軸あの回転を防止するキーであり、ナ
ツト軸あの表面の一部1こは永久磁石46ヲ固定し、こ
の永久磁石茹と対向ケーシング47の一部には例えばゼ
ロクロスセンサと呼ばわる磁気作用lこよる位置検出器
48を取付けている。該位置検出器48は永久磁石茹の
移動に感応する近接スイッチで構成し、ナツト軸部や弁
スプールあの軸線方向の移動距離を正確基こ検知し、制
御装置Iこフィードバックできるようlこしている。又
、弁スプール澗の零位置を永久磁石栃と位置検出器48
との作用1こよって電気的Eこ検知し、制御装置を介し
てパルスモータ41ヲその位置で正確に止めておくこと
ができるものであり、この位置検出器48は精度が0.
01%のものが用いられる。
In addition, 45 is a key to prevent rotation of the nut shaft, and a permanent magnet 46 is fixed to a part of the surface of the nut shaft, and a part of this permanent magnet and a part of the opposing casing 47 is equipped with a sensor called, for example, a zero cross sensor. A position detector 48 based on magnetic action is attached. The position detector 48 is composed of a proximity switch that is sensitive to the movement of a permanent magnet, and is designed to accurately detect the distance traveled in the axial direction of the nut shaft or valve spool, and provide feedback to the control device. . In addition, the zero position of the valve spool is detected using a permanent magnet and a position detector 48.
As a result of the action 1, the electrical E can be detected and the pulse motor 41 can be accurately stopped at that position via the control device, and this position detector 48 has an accuracy of 0.
01% is used.

この流量制御弁(資)はパルスモータ41の回転に応じ
てボールねじ詔、ナツト軸35ヲ介して弁スプール34
が軸線方向へ前後進して弁の開閉と開度とを瞬時に調整
し作動油の流量制御を行う。
This flow rate control valve (equipment) is connected to the valve spool 34 via a ball screw and nut shaft 35 according to the rotation of the pulse motor 41.
moves back and forth in the axial direction to instantaneously adjust the opening/closing and opening degree of the valve to control the flow rate of hydraulic oil.

そして、この流量制御弁3Qは前述の様に軸線方向の端
面部に作動油流入口31を、側面に作動油流出口&t 
f 備えたシリンダ状のバルブボディお内で。
As described above, this flow rate control valve 3Q has the hydraulic oil inlet 31 on the end face in the axial direction, and the hydraulic oil outlet &t on the side surface.
f Inside the cylindrical valve body.

弁スプール34をパルスモータ41の作動により軸線方
向に駆動して流量制御を行うもので1作動、油1こよる
弁スプール34の軸線方向推力を弁スプールあの開き量
及び移動速度の増加に応じて急激憂こ低下させることt
こより流量の高速切換に必要な駆動力を軽減させ、流量
制御弁(9)曇こよる作動油の流量高速切換性能を一層
向上させ、又、駆動力の軽減が行わnている。
The valve spool 34 is driven in the axial direction by the operation of the pulse motor 41 to control the flow rate, and in one operation, the axial thrust of the valve spool 34 caused by the oil 1 is controlled according to the opening amount of the valve spool and the increase in the movement speed. To rapidly reduce depression
This reduces the driving force necessary for high-speed switching of the flow rate, further improves the performance of high-speed switching of the flow rate of the hydraulic oil that tends to cloud the flow rate control valve (9), and also reduces the driving force.

従って、この流量制御弁(9)では制御装置からの指令
信号醗こより、パルスモータ41の回転量、即ち回転角
度により弁スプール34の開き量が決まり。
Therefore, in this flow rate control valve (9), the amount of opening of the valve spool 34 is determined by the amount of rotation, that is, the angle of rotation, of the pulse motor 41 based on the command signal from the control device.

射出シリンダ20への作動油の流量が制御され、又パル
スモータ41の回転速度の緩急1こより流量制御弁(資
)の開度変化の加減特性が決まり1作動、油流量の変化
率、即ち、射出シリンダ201こおける射出速度の立上
り状態が決まる。そしてこの様な構造と作用を有する流
量制御弁3oは射出速度変更の指命を受けて弁スプール
34が開き始めるまでの時間遅nJニー1−.’)秒以
下に押えることができ、通常の流量制御弁に比較し、応
答性が極めて良好であり。
The flow rate of hydraulic oil to the injection cylinder 20 is controlled, and the rate of change in the opening of the flow control valve (supplement) is determined by the speed of rotation of the pulse motor 41. The rising state of the injection speed in the injection cylinder 201 is determined. The flow rate control valve 3o having such a structure and operation has a time delay nJ knee 1-. ) The flow rate can be controlled within seconds, and the response is extremely good compared to normal flow control valves.

又、弁開閉等の作動性や操作精度が極めて高くなった。In addition, the operability and operational accuracy of valve opening and closing have become extremely high.

この様Eこ極めて高速且つ正確に作動油の制御がより溶
湯の射出速度を一層正確に制御し得ることとなり、第番
図蚤こ実線に示す如く溶湯の射出速度の変化を細か(制
御し得ることとなった。
In this way, controlling the hydraulic fluid at a very high speed and accurately makes it possible to control the injection speed of the molten metal even more accurately, and as shown in the solid line in the figure, changes in the injection speed of the molten metal can be finely (controlled). It became a thing.

この様な高速応答性を有する流量制御弁30にて制御さ
れる溶湯の射出速度は、前半を低速射出速度区間T1 
とし、射出スリーブ内に充填した溶湯を低速射出速度V
lでキャビティへ押出す区間であり、該低速射出区間T
1 の初期賞は徐々1こ低速射出速度v1へ増速するこ
と基こより射出スリーブ内に充填した溶湯が射出スリー
ブの溶湯注入口から射出スリーブ外へ逆流噴出すること
を防止する。そして、低速射出区間T1 の終期T61
こおい入口 では射出速度Vl f一度減速し、キャビティにこ溶湯
が到達したとき、狭い間隙である湯道から比較的広い空
間であるキャビティ内へ溶湯が噴出し。
The injection speed of the molten metal controlled by the flow rate control valve 30 having such high-speed response has a first half in the low injection speed section T1.
and the molten metal filled in the injection sleeve is at a low injection speed V
This is the section for extruding into the cavity at T, and the low-speed injection section T
The initial value of 1 is to gradually increase the injection speed to a low injection speed v1 of 1, thereby preventing the molten metal filled in the injection sleeve from backflowing out from the molten metal inlet of the injection sleeve to the outside of the injection sleeve. Then, the final stage T61 of the low-speed injection section T1
The injection speed Vl f is once decelerated at the entrance of the molten metal, and when the molten metal reaches the cavity, it is ejected from the runner, which is a narrow gap, into the cavity, which is a relatively wide space.

キャビティ内のガス(空気)と溶湯とが8−→−混脅す
ることを防止し、製品中Eこ巣を発生させる虞nを無<
”r。
Prevents the gas (air) in the cavity from mixing with the molten metal, eliminating the risk of creating cavities in the product.
"r.

入口 そして、溶湯がキャビティ△1こ到達し、溶湯がキャビ
ティに僅かに流入した後はキャビティ充填区間T2 と
して高速射出速度v2で一気Iこ又は段階的1こ増速し
、溶湯をキャビティ内に充填させ、製品の欠落及び寸法
精度の低下を防止する。尚、充填区間T2 の射出完了
時iQ )こおいて、キャビティは溶湯で充満され、射
出速度が一気に零となり。
Inlet Then, after the molten metal reaches the cavity △1 and the molten metal slightly flows into the cavity, the high injection speed v2 is increased at once or stepwise to fill the molten metal into the cavity as a cavity filling section T2. to prevent missing products and a decrease in dimensional accuracy. Note that at the completion of injection in the filling section T2 (iQ), the cavity is filled with molten metal and the injection speed suddenly drops to zero.

この時のシリンダ圧lこより溶湯はキャビティの隅々ま
で完全1こ充填される。そしてキャビティの大きさ又は
形状に応じて最終射出速度v3 を高速射出速度■2 
よりも低く押え、以て射出完了時ioの衝撃圧を小さく
して、射出成形品が薄物である場合等憂こは前記シリン
ダ圧5こより金型の合せ面lこ溶湯が流れ込むことによ
る製品のパリ吹きを防止することがある。
Due to the cylinder pressure at this time, the molten metal completely fills every corner of the cavity. Then, depending on the size or shape of the cavity, change the final injection speed v3 to high injection speed ■2
This reduces the impact pressure at the end of injection, which can cause problems such as when the injection molded product is thin, due to the molten metal flowing into the mating surface of the mold from the cylinder pressure. May prevent puffiness.

ところで、上記溶湯の全射出時間は一般に数秒と短く、
特に射出速度を変化させる立上り時間及び立下り時間は
百分の数秒乃至百分の数十秒と極めて短いものである。
By the way, the total injection time of the above-mentioned molten metal is generally as short as several seconds.
In particular, the rise time and fall time that change the injection speed are extremely short, ranging from several hundredths of a second to several tens of hundredths of a second.

従って、射出速度の増速又は減速は極めて応答が早く、
且つ、正確な速度制御が要求されることEこなる。
Therefore, increasing or decreasing the injection speed has an extremely quick response.
Moreover, accurate speed control is required.

しかるに、前述のメータイン回路を用いて溶湯の射出速
度を制御すると第4図に破線に示す如く也 立下り81 、82 1こおいて時間連木が生ずる特性
を現わす場合がある。
However, when the above-mentioned meter-in circuit is used to control the injection speed of the molten metal, there may be a characteristic in which a time sequence occurs at the falling edges 81 and 821, as shown by the broken line in FIG.

これは、ピストン21.シリンダロッド託等の機械的可
動部分及び作動油の運動エネルギーfこよる慣性が大き
く、又、前述の如く立下り時間81.82が極めて短い
為に減速が所定通り行われない久A′?0 があり、射出成形品の品質を低下させるもの豐る。
This is the piston 21. The inertia caused by the kinetic energy f of the mechanically moving parts such as the cylinder rod and the hydraulic oil is large, and as mentioned above, the fall time 81.82 is extremely short, so deceleration cannot be performed as specified.A'? 0, and there are many things that reduce the quality of injection molded products.

本発明はこの様な欠点を排し、ピストン21.シリンダ
ロッド拠ひいてはプランジャチップ四の高速移動中の急
減速か可能であり、応答性の高い流量制御弁(資)と相
俟って瞬時に加速及び減速を行い高品質の射出成形品を
製造する為のピストン速度制御装置である。
The present invention eliminates these drawbacks and the piston 21. It is possible to suddenly decelerate the cylinder rod and therefore the plunger tip 4 during high-speed movement, and in conjunction with the highly responsive flow control valve (capital), instantaneous acceleration and deceleration can be made to produce high-quality injection molded products. This is a piston speed control device for

この本発明の実施例は第5図、第6図憂こ示す如くピス
トン後室22への流入回路16へ第1流量制御弁30を
設けると共暑こピストン前室からの流出回路17Eこも
第2流量制御弁50’E−設け、該第2流量制御弁釦の
開度を第1流量制御弁(9)の開度に対応させて変化さ
せることにより溶湯の射出速度を制御する射出成形装置
のピストン速度制御装置である。
In this embodiment of the present invention, as shown in FIGS. 5 and 6, a first flow control valve 30 is provided in the inflow circuit 16 to the piston rear chamber 22, and a first flow control valve 30 is provided in the inflow circuit 17E from the piston front chamber. An injection molding apparatus that includes two flow control valves 50'E and controls the injection speed of molten metal by changing the opening degree of the second flow control valve button in accordance with the opening degree of the first flow control valve (9). piston speed control device.

この様1こ流出回路171こ第2流量制御弁50を設け
ることは1本発明者が射出速度の成品の品質との関係を
詳しく測定調査した結果減速時の時間遅れが高品質の維
持を困難とすることを発見し、この時間遅れは前述の如
(機械的可動部分及び作動油の慣性が大きく、シリンダ
ロッド16の負荷等の外力、摺動部の摩擦力1作動油の
排出抵抗Iこよるピストン21のシリンダ前面部に加わ
る流体圧力等Eこ間で可能とTる為である。
Providing the outflow circuit 171 and the second flow rate control valve 50 in this manner is as follows: The inventor conducted a detailed measurement and investigation into the relationship between the injection speed and the quality of the finished product, and found that the time delay during deceleration makes it difficult to maintain high quality. This time delay is caused by the large inertia of the mechanically moving parts and the hydraulic oil, external forces such as the load on the cylinder rod 16, frictional force of the sliding part, and discharge resistance of the hydraulic oil. This is because the fluid pressure applied to the front surface of the cylinder of the piston 21 is possible within the range of E.

即ち、第1図に示したメータイン回路の要部のみを第1
図の如く示Tと、流量制御弁141こで単位時間Eこお
ける作動油の流入量が制限さn、この作動油のピストン
後室四への流入量に応じてピストン21及びシリンダロ
ッド26.ひいてはプランジャチップ四が前進する。
In other words, only the main part of the meter-in circuit shown in Fig. 1 is
As shown in the figure, the flow rate control valve 141 limits the inflow amount of hydraulic oil per unit time E, and the amount of hydraulic oil flowing into the piston rear chamber 4 is controlled by the piston 21 and the cylinder rod 26. As a result, the plunger tip 4 moves forward.

このさき、プランジャ29+こよりキャビティIこ射出
される溶湯等の抵抗)こよりシリンダロッド託に負荷F
l が加わり、又ピストン21等の摺動部の摩擦力F2
及びピストン21が前進することに伴いピストン前室2
3の作動油を排出する為コこ作動油からピストン21が
受ける反力F3が生じこれらの力(Fl、F2.F3)
がピストン21の前進を阻害する。
At this point, from the plunger 29 + the cavity I, the resistance of the injected molten metal, etc.) from the cylinder rod, the load F
l is added, and the frictional force F2 of the sliding parts such as the piston 21
As the piston 21 moves forward, the piston front chamber 2
In order to discharge the hydraulic oil of No. 3, a reaction force F3 is generated on the piston 21 from the hydraulic oil here, and these forces (Fl, F2.F3)
prevents the piston 21 from moving forward.

しかし、溶湯等の抵抗による負荷Flは射出速度の増速
時齋こは大きな負荷となっても射出速度を減速する場合
1cは大きな負荷となり得す、摺動部の摩擦力F2も極
めて小さく、又、ピストン21が作動油から受ける反力
F3 も通常は小さな値である。この為、可動部分及び
作動油の慣性が打消されるのlこ時間を要し、第4図破
線の如く立下り81.82 即ち、射出速度の減速時I
こ時間遅れが生じ。
However, the load Fl due to the resistance of the molten metal, etc. becomes a large load when the injection speed is increased, but when the injection speed is decelerated, the load Fl can become a large load.The frictional force F2 of the sliding part is also extremely small. Further, the reaction force F3 that the piston 21 receives from the hydraulic oil is also usually a small value. For this reason, it takes time for the inertia of the moving parts and the hydraulic oil to be canceled out, and as shown in the broken line in Figure 4, the fall 81.82 In other words, when the injection speed is decelerated, I
This caused a time delay.

射出成形品の品質低下を生じさせる。This causes a deterioration in the quality of injection molded products.

又、ランアランド回路18を有するメータイン回路であ
る第2図の要部のみを示す第8図においてもシリンダロ
ッド薦に加わる負荷Pi 摺動部の磨擦力F2 及び作
動油がピストン前基因からピストン後室22へ移動する
際lこピストン21が作動油から受ける反力IP3は前
記第7図1こ示した基本的メータイン回路の場合と同様
lこ小さく、射出速度の減速時lこ時間遅れが生じる。
Also, in FIG. 8, which shows only the essential parts of FIG. 2, which is a meter-in circuit with a run-around circuit 18, the load Pi applied to the cylinder rod, the frictional force F2 of the sliding part, and the hydraulic fluid are transferred from the front of the piston to the rear of the piston. The reaction force IP3 that the piston 21 receives from the hydraulic oil when moving to the chamber 22 is small, as in the case of the basic meter-in circuit shown in FIG. 7, and a time delay occurs when the injection speed is decelerated. .

尚、ラン了ランド回路18’i−有Tるシリンダ加では
ピストン後面Uの面積がピストン前面あの面積lこピス
トンロッド届の断面積そ加えた面積に等しい故、ピスト
ン後面24にはピストンロッドあの断。
In addition, in the case of a cylinder with run completion land circuit 18'i-T, the area of the rear surface U of the piston is equal to the area of the front surface of the piston plus the cross-sectional area of the piston rod. No.

面積に作動油の圧力P2を乗じた力か加わりピストンロ
ッド26を前進させ、この前進距離lこピストンロッド
の断面積を乗じた容積fこ等しい量の作動9 油が流量制御弁力を通じピストン後室nに供給されてい
る。
A force equal to the area multiplied by the pressure P2 of the hydraulic oil is applied to move the piston rod 26 forward, and an amount of actuating oil equal to the moving distance l times the cross-sectional area of the piston rod, f, moves behind the piston through the flow rate control valve force. It is supplied to chamber n.

この様lこ従来のメータイン回路では急激な減速に対し
時間遅れが生じる故1本発明fこおいてはピストン前室
おからの流出回路に第2流量制御弁聞を設け、ピストン
21の前進に伴いピストン前室器から排出さnる作動油
の流出1こ抵抗を与え、ピストン21が作動油から受け
る反力Fr5 を適宜大きくし、減速時の制動として利
用すること奢こより急減速を可能とした。
In this way, in the conventional meter-in circuit, there is a time delay in response to sudden deceleration. Therefore, in the present invention, a second flow rate control valve is provided in the outflow circuit of the okara in the piston front chamber, and the forward movement of the piston 21 is controlled. Accordingly, it provides resistance to the flow of hydraulic oil discharged from the piston front chamber, increases the reaction force Fr5 that the piston 21 receives from the hydraulic oil, and uses it as a brake during deceleration. did.

本発明は上記の如くピストン後室22への流入回路16
へ第1流量制御弁3oを設けると共lこ、第l流量制御
弁30の開閉Eこ連動する第2流量制御弁50をピスト
ン前室23からの流出回路171こ設ける射出速度の制
御装置であり、流入回路16fこ紀1流量制御弁30を
設ける故、該流量制御弁301ごてピストン後室22へ
の作動油の流入蓋が制御されると共tこ、高速射出速度
v2で射出する充填区間T2のピストン後室における油
圧P2も第11図に示す如く油圧源111こi6ける油
圧PIよりも低くなる。
As described above, the present invention provides an inflow circuit 16 to the piston rear chamber 22.
In this injection speed control device, a first flow rate control valve 3o is provided, and a second flow rate control valve 50 that is linked to the opening and closing of the first flow rate control valve 30 is provided in an outflow circuit 171 from the piston front chamber 23. Since the inflow circuit 16f is provided with a flow control valve 30, when the flow control valve 301 controls the flow of hydraulic oil into the piston rear chamber 22, injection is performed at a high injection speed v2. The oil pressure P2 in the piston rear chamber in the filling section T2 also becomes lower than the oil pressure PI at the oil pressure source 111, as shown in FIG.

他方、シリンダ加の速度制御Eこおいて前述のメータイ
ン回路と並び従来力)ら多用されているメータアウト回
路では第9図、第10図−こ示す如くピストン後室22
iこは油圧源11の圧力P1 を直接lこ加え。
On the other hand, in the speed control of cylinder acceleration, the meter-out circuit, which is often used in conjunction with the aforementioned meter-in circuit as well as the conventional force), uses the piston rear chamber 22 as shown in FIGS. 9 and 10.
The pressure P1 of the hydraulic power source 11 is directly applied to this.

ピストン前室23から排出される油量を制御することに
よりピストン21の前進速度を制御する故、第gLか・
・ β図tこ示T如く低速射出速度区間Tl 鉢高速射出速
度で射出する充填区間T21こおいてもピストン後室2
21こあける油圧は油圧源11の油圧Pi tこ等しく
なる。この為射出完了時χOIこおける衝撃圧力F3が
加わると短時間ではあっても大きな異常高圧′I−5か
生じること1こなる。
Since the forward speed of the piston 21 is controlled by controlling the amount of oil discharged from the piston front chamber 23, the gL.
・ Low injection speed section Tl as shown in β diagram T Filling section T21 where injection is performed at high injection speed
The hydraulic pressure that opens 21 degrees is equal to the hydraulic pressure Pi t of the hydraulic source 11. For this reason, when the impact pressure F3 at χOI is applied at the completion of injection, a large abnormally high pressure 'I-5' will be generated even if it is for a short time.

この様なメータアウト回路1こ対し1本発明Iこ係る回
路を有する装置では、前述の・如く充填区間T21こお
けるピストン後室22の油圧P2ノは油圧源Plよりも
5低い故、衝撃圧力P3か加わった場合であっても異常
高圧のピーク値は低く油圧回路系に悪影響を与える虞れ
が無い利点を有Tる。
In a device having such a circuit, as described above, the oil pressure P2 of the piston rear chamber 22 in the filling section T21 is 5 lower than the oil pressure source Pl, so that the impact pressure is Even if P3 is applied, the peak value of the abnormally high pressure is low and has the advantage that there is no risk of adversely affecting the hydraulic circuit system.

尚1本発明Eこ用いる$1流量制御弁加と第2流量制御
弁団と開度変化を等しくする場合には第2流量制御弁5
0は第l流量制御弁(資)と同一サイズ1こしで同一構
造の高速応答性を具えた流量制御弁を用いれば極めて正
確lこ射出速度を制御し得る。
In addition, if the $1 flow control valve used in the present invention E and the second flow control valve group are made equal in opening degree change, the second flow control valve 5 is used.
If a flow rate control valve having the same size and structure as the first flow rate control valve and having high-speed response is used, the injection speed can be controlled extremely accurately.

要するに本発明は射出成形装置の射出シリンダ等のピス
トン速度制御装置tこおいて、ピストン後室への流入油
路に第1流量制御弁を設けると共Iこ。
In short, the present invention provides a piston speed control device for an injection cylinder or the like of an injection molding device, and a first flow control valve is provided in the inflow oil path to the piston rear chamber.

ピストン前室からの流出油路中に第2流量制御弁を設け
、且つ、前記第1流量制御弁の開度lこ対応させて第2
流量制御弁の開度を変化させる装置を設けた射出成形装
置のピストン速度制御装置である。
A second flow rate control valve is provided in the outflow oil path from the piston front chamber, and a second flow rate control valve is provided in a manner corresponding to the opening degree of the first flow rate control valve.
This is a piston speed control device for an injection molding machine equipped with a device that changes the opening degree of a flow control valve.

この様Eこ本願発明は高速応答性を有Tる流量制御弁3
0を用い、流出回路17における作動油の通過抵抗をも
第2流量制御弁501ごて適宜増大させて射出シリンダ
加のピストン21が作動油から受ける反力IF58大き
くした故、射出速度の急激な加速減速が可能となり、短
い射出時間内fこ3ける射出速度の変化を正確fこ制御
し1品質の高い射出成形品を得ることができ、又、射出
完了時における衝撃圧力のピーク圧を低く押えることに
より油圧回路への影悪影響も防止し得る等種々の利点を
有するピストン速度制御装置である。
In this manner, the present invention provides a flow control valve 3 having high-speed response.
0, and the passage resistance of the hydraulic oil in the outflow circuit 17 was increased appropriately using the second flow control valve 501 to increase the reaction force IF58 that the piston 21 of the injection cylinder receives from the hydraulic oil. It is possible to accelerate and decelerate, accurately control changes in injection speed within a short injection time, obtain high quality injection molded products, and reduce the peak pressure of impact pressure at the completion of injection. This piston speed control device has various advantages such as being able to prevent adverse effects on the hydraulic circuit by pressing the piston.

【図面の簡単な説明】[Brief explanation of the drawing]

41図はメータイン回路を示T図、第2図はライアラン
ド回路を有Tるメータイン回路を示す図、第3図は本発
明1こ用いる流量制御弁の1例を示T図、第4riAは
射出速度の変化を示す図1こして。 第5図及び第6図は本発明lこ係る制御装置の油圧回路
の要部を示す図、第γ図、第8図はメータイン回路の要
部を示す図、第9図、第10図はメータアウト回路の要
部を示す図1M11図は本発明fこおけるシリンダ内油
圧を示す図Iこして、第12図はメタアウト回路におけ
るシリンダ内油圧を示す図である。 11=油圧源、12=切換弁、14=制御弁。 16=流入回路、17=流出回路、18=ランアランド
回路、&ミ絞4−争、 20に射出シリンダ、21=ピ
ストン、22−ピストン後室、23=ビス)76室、2
6=シリンダロツドs ’zs=射tBスリーブ、29
=プランジヤチツプ、30−第1流量制御弁、5Q=第
2流量制御弁。
41 is a T diagram showing a meter-in circuit, FIG. 2 is a T diagram showing a meter-in circuit with a Ryaland circuit, FIG. 3 is a T diagram showing an example of a flow rate control valve using the present invention 1, Figure 1 shows the change in injection speed. 5 and 6 are diagrams showing the main parts of the hydraulic circuit of the control device according to the present invention, FIGS. γ and 8 are diagrams showing the main parts of the meter-in circuit, and FIGS. 9 and 10 are FIG. 1M11 showing the main part of the meter-out circuit is a diagram showing the cylinder oil pressure in the present invention f, and FIG. 12 is a diagram showing the cylinder oil pressure in the meter-out circuit. 11=hydraulic source, 12=switching valve, 14=control valve. 16 = inflow circuit, 17 = outflow circuit, 18 = run-a-land circuit, & 4-conflict, 20 injection cylinder, 21 = piston, 22 - piston rear chamber, 23 = screw) 76 chamber, 2
6 = cylinder rod s 'zs = shot tB sleeve, 29
= plunger tip, 30-first flow control valve, 5Q = second flow control valve.

Claims (1)

【特許請求の範囲】 射出成形装置の射出シリンダ等のピストン速度制御装置
lこおいて、ピストン後室への流入回路tC第1流量制
御弁を設けると共lこ、ピストン前室からの流出回路中
lこ第2流量制御弁を設け、且つ。 前記第1流量制御弁の開度fこ対応させて第2流量制御
弁の開度を変化させる制御装置を設けた射出成形装置の
ピストン速度制御装置。
[Scope of Claims] In a piston speed control device for an injection cylinder or the like of an injection molding device, a first flow control valve is provided for an inflow circuit to the piston rear chamber, and an outflow circuit from the piston front chamber is provided. A second flow control valve is provided, and. A piston speed control device for an injection molding apparatus, comprising a control device that changes the opening degree of a second flow rate control valve in correspondence with the degree of opening f of the first flow rate control valve.
JP14053883A 1983-08-02 1983-08-02 Piston speed control device in injection molding equipment Granted JPS6033863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14053883A JPS6033863A (en) 1983-08-02 1983-08-02 Piston speed control device in injection molding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14053883A JPS6033863A (en) 1983-08-02 1983-08-02 Piston speed control device in injection molding equipment

Publications (2)

Publication Number Publication Date
JPS6033863A true JPS6033863A (en) 1985-02-21
JPH0451260B2 JPH0451260B2 (en) 1992-08-18

Family

ID=15270998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14053883A Granted JPS6033863A (en) 1983-08-02 1983-08-02 Piston speed control device in injection molding equipment

Country Status (1)

Country Link
JP (1) JPS6033863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242758B1 (en) 1994-12-27 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device employing resinous material, method of fabricating the same and electrooptical device
CN102170985A (en) * 2008-10-01 2011-08-31 东洋机械金属株式会社 Hydraulic circuit of injection cylinder in die casting apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101065A (en) * 1975-03-04 1976-09-07 Ube Industries SHASHUTSUSEIKEISOCHINO SHASHUTSUSOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101065A (en) * 1975-03-04 1976-09-07 Ube Industries SHASHUTSUSEIKEISOCHINO SHASHUTSUSOCHI

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242758B1 (en) 1994-12-27 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device employing resinous material, method of fabricating the same and electrooptical device
US6429053B1 (en) 1994-12-27 2002-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device method of fabricating same, and, electrooptical device
CN102170985A (en) * 2008-10-01 2011-08-31 东洋机械金属株式会社 Hydraulic circuit of injection cylinder in die casting apparatus
US8561400B2 (en) 2008-10-01 2013-10-22 Toyo Machinery & Metal Co., Ltd. Hydraulic circuit of injection cylinder in die-casting apparatus

Also Published As

Publication number Publication date
JPH0451260B2 (en) 1992-08-18

Similar Documents

Publication Publication Date Title
KR100992723B1 (en) Injection device of die cast machine
KR20040095705A (en) Ejecting device and molding method of diecast machine
TWI486223B (en) The hydraulic circuit of the injection cylinder of the die casting device
JPS6155712A (en) Flow control valve
JP3332871B2 (en) Injection control method and apparatus for die casting machine
JP3847524B2 (en) Die casting equipment
JP4007423B2 (en) Die casting machine injection equipment
JP5673482B2 (en) Injection device
JP7057707B2 (en) Injection device and molding machine
JPS6033863A (en) Piston speed control device in injection molding equipment
JP3828857B2 (en) Die casting machine injection equipment
JPH0375259B2 (en)
JP6764272B2 (en) Injection device and molding machine
JP3713416B2 (en) Die casting machine
JPS59229271A (en) Method for controlling cylinder speed of injection molding device or the like
JPH1058113A (en) Method for adjusting flow rate in hydraulic apparatus and device therefor
JPH0356826B2 (en)
JP2938962B2 (en) Injection control method for die casting machine
JPS616473A (en) Flow-rate control valve
JPH0453613B2 (en)
JP2005118793A (en) Die casting machine
JP3167183B2 (en) Die casting machine injection control method and device
JPS6233050A (en) Method for ejecting the injected product when opening the mold in an injection molding device
JPH0310428B2 (en)
JPH0261348B2 (en)