[go: up one dir, main page]

JPS6033256A - Ceramic composition - Google Patents

Ceramic composition

Info

Publication number
JPS6033256A
JPS6033256A JP58137993A JP13799383A JPS6033256A JP S6033256 A JPS6033256 A JP S6033256A JP 58137993 A JP58137993 A JP 58137993A JP 13799383 A JP13799383 A JP 13799383A JP S6033256 A JPS6033256 A JP S6033256A
Authority
JP
Japan
Prior art keywords
capacitance
dielectric constant
composition
resistance
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58137993A
Other languages
Japanese (ja)
Inventor
治彦 宮本
米沢 正智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58137993A priority Critical patent/JPS6033256A/en
Publication of JPS6033256A publication Critical patent/JPS6033256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は磁器組成物、特に、1000℃以下の低温で焼
結でき、誘電率と比抵抗の積が高く、シかも機械的強度
の高い磁器組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a porcelain composition, and particularly to a porcelain composition that can be sintered at a low temperature of 1000°C or less, has a high product of dielectric constant and specific resistance, and has high mechanical strength. .

従来、誘電体磁器組成物として、チタン酸バリウム(B
aTi0a)を主成分とする磁器組成物が広く実用化さ
れていることは周知のとおシである。しかしながら、チ
タン酸バリウム(BaTi01)を主成分とするものは
、焼結温度が通常1300〜1400℃の高温である。
Conventionally, barium titanate (B
It is well known that porcelain compositions containing aTi0a) as a main component have been widely put into practical use. However, those whose main component is barium titanate (BaTi01) have a sintering temperature of usually 1300 to 1400°C.

このためこれを積層形コンデンサに利用する場合には内
部電極としてこの焼結温度に耐え得る材料9例えば白金
、パラジウムなどの高価な貴金属を使用しなければなら
ず、製造コストが高くつくという欠点がある。積層形コ
ンデンサを安く作るためには銀、ニッケルなどを主成分
とする安価な金属が内部電極に使用できるような、でき
るだけ低温、特に1000℃以下で焼結できる磁器組成
物が必要である。 〜 ところで磁器組成物を周込、実用的な積層形コンデンサ
を作製するときに磁器組成物の電気的特性として多くの
項目が評価されなければならない。
Therefore, when using this material in a multilayer capacitor, a material 9 that can withstand this sintering temperature must be used for the internal electrodes, such as expensive noble metals such as platinum and palladium, which has the disadvantage of high manufacturing costs. be. In order to manufacture multilayer capacitors at low cost, it is necessary to have a porcelain composition that can be sintered at as low a temperature as possible, especially at 1000° C. or lower, so that inexpensive metals mainly composed of silver, nickel, etc. can be used for the internal electrodes. ~ Incidentally, when fabricating a practical multilayer capacitor using a ceramic composition, many items must be evaluated as the electrical properties of the ceramic composition.

一般的に誘電率はできるだけ大きく、誘電損失はできる
だけ小さく、比抵抗はできるだけ大きく、誘電率の温度
変化は小さいことなどが要求される。
Generally, it is required that the dielectric constant be as large as possible, the dielectric loss as small as possible, the resistivity as large as possible, and the temperature change in the dielectric constant as small as possible.

しかしながら、実用上積層形コンデンサにおいては誘電
率でなく、まず容量9次に容量の温度変化率、誘電損失
などの値が必要とされる。積層形コンデンサにおいて、
容量は磁器組成物の誘電率に比例するが、しかしその厚
みに反比例し、電極面積、積層数に比例するので、一定
の容量を得るだめには磁器組成物の誘電率が大きいこと
は必ずしも絶対的な要因でない。さらに容量の温度変化
率(誘電率の温度変化率)は用途によシ種々許容された
範囲があシ、磁器組成物の誘電率の温度変化率も積層形
コンデンサを作製するときの絶対的な要因でない。
However, for practical purposes, in multilayer capacitors, values such as the capacitance 9, the temperature change rate of the capacitance, the dielectric loss, etc. are required, rather than the dielectric constant. In multilayer capacitors,
Capacity is proportional to the dielectric constant of the porcelain composition, but is inversely proportional to its thickness, and proportional to the electrode area and the number of laminated layers, so it is not necessarily necessary that the dielectric constant of the porcelain composition be large in order to obtain a constant capacitance. It is not a factor. Furthermore, the temperature change rate of capacitance (temperature change rate of dielectric constant) has various permissible ranges depending on the application, and the temperature change rate of dielectric constant of ceramic composition also has an absolute value when manufacturing multilayer capacitors. Not a factor.

一方誘電損失は用途により一定の値以下でなければなら
ないという規定があシ室温で最大5.0%以下である。
On the other hand, there is a regulation that the dielectric loss must be below a certain value depending on the application, and the maximum is 5.0% or below at room temperature.

さらに比抵抗に関しては、例えばEIAJ規格〔日本電
子機椋工業会の電子機器用積層磁器コンデンサ(チップ
形)RC−3698B )に述べられているごとく、積
層コンデンサの絶縁抵抗として10000 MΩ以上ま
たは容量抵抗積で500μF−MΩ以上のいずれか小さ
い方塊上と規定されている。すなわち磁器組成物の誘電
率と比抵抗の積がおる絶対値以上なければ、任意の容量
Regarding specific resistance, for example, as stated in the EIAJ standard [Japan Electronics Industry Association's Multilayer Ceramic Capacitors for Electronic Equipment (Chip Type) RC-3698B], the insulation resistance of the multilayer capacitor should be 10,000 MΩ or more or the capacitance resistance. It is specified that the product is 500 μF-MΩ or more, whichever is smaller. In other words, it is any capacitance as long as the product of the permittivity and resistivity of the porcelain composition is not greater than the absolute value.

特に大きな容量のコンデンサを実用的規格に合せること
ができず、その用途が非常に限定され、実用的な意味が
なくなる。この点を詳しく説明すると次の様になる。積
層形コンデンサでは、n+1個の内部電極を構成して一
般にn個の同じ厚さの層からなる単一層コンデンサが積
層された構造になっている。この場合、単一層当シの容
量をCO9絶縁抵抗をR8とすれば、積層形コンデンサ
の容量CはC0のn倍に対、絶縁抵抗RはR8の1 /
 nになる。ここで磁器組成物の誘電率をε、真空の誘
電率をC0,磁器組成物の比抵抗をρ、単一層コンデン
サの磁器の厚さを62重なる電極面積を8とすれば、単
一層コンデンサのC0は(εo’s)/dとなシ几。は
(ρa)/Sとなる。従ってn層からなる積層コンデン
サの容量(C)と絶縁抵抗(6)の積CX Rは〔(ρ
d) / (,8)) X ((n層。εS) / d
 :]= ’oερとなる。すなわちどのような容量の
積層コンデンサもその容量・抵抗積(CXR)は、磁器
組成物のεとρの積にε。を乗じた一定値(ε。ερ)
に規格化される。容量・抵抗積CXRが500μF・Ω
以上ということは、ε、 =8.855 X 10″4
4p /!よシ、CX R+−8g tρ=8.855
 X 10−”(F / C”) Xε×ρ≧500F
−Ω、 ヨーzテtl)=5.65X 10”Ωamな
る要求がある。例えばε= 10000ではρ≧5.6
5X 10”Ωす〜 ε= 3000ではρ≧1.88
 X 10”ΩΦ1.ε=500ではρ≧1.13X1
0”Ω・αが要求される。誘電率に応じてこれらの値以
上のρを持つ磁器組成物であればどのような大きな容量
の積層コンデンサも容量・抵抗積は500μF ・MΩ
を満足する。もしεが3000でρが要求値よ91桁低
い1.88 X 10”Ω αとすればε、ερ=50
μF−MΩで500μF−MΩは満足せず、絶縁抵抗の
規格の規格値である10000 MΩすなわち、101
6Ω以上を満足するには容量Cとして0.005μF以
下に限定されなければならない。それはこの積層コンデ
ンサの容量・抵抗積(’CXR)は常に50μF・MΩ
を示しているので、Rが10000 MΩのとき、Cは
0.005μFとなh、cがこれよシ大きければRは1
0000 MΩよシ小さくなシ、0.005μFが規格
を満たす最高の容量となるためである。従って磁器組成
物の比抵抗が低いとその材料の実用性、特に積層形コン
デンサの特長である小型大容量の特長を生かすことはで
きないし、全く意味のないことにもなる。よって磁器組
成物の誘電率と比抵抗の積がある値以上を持つことが実
用上極めて重要なことである。
In particular, capacitors with large capacitances cannot be made to meet practical standards, so their uses are extremely limited and they have no practical meaning. This point will be explained in detail as follows. A multilayer capacitor has a structure in which single-layer capacitors are stacked, generally consisting of n layers of the same thickness and forming n+1 internal electrodes. In this case, if the capacitance of the single layer is CO9 and the insulation resistance is R8, then the capacitance C of the multilayer capacitor is n times C0, and the insulation resistance R is 1/1 of R8.
It becomes n. Here, if the permittivity of the ceramic composition is ε, the permittivity of vacuum is C0, the specific resistance of the ceramic composition is ρ, the thickness of the ceramic of the single layer capacitor is 62, and the area of the overlapping electrodes is 8, then the area of the overlapping electrodes is 8. C0 is (εo's)/d. is (ρa)/S. Therefore, the product CX R of the capacitance (C) and insulation resistance (6) of a multilayer capacitor consisting of n layers is [(ρ
d) / (,8)) X ((n layer. εS) / d
:]='oερ. In other words, the capacitance-resistance product (CXR) of a multilayer capacitor of any capacity is the product of ε and ρ of the ceramic composition. A constant value (ε. ερ) multiplied by
Standardized. Capacitance/resistance product CXR is 500μF・Ω
This means that ε, =8.855 x 10″4
4p/! Good, CX R+-8g tρ=8.855
X 10-”(F/C”) Xε×ρ≧500F
-Ω, yaw ztetl)=5.65
5X 10”Ω~ When ε=3000, ρ≧1.88
X 10”ΩΦ1.When ε=500, ρ≧1.13X1
0" Ω・α is required. Any large capacitance multilayer capacitor made of a ceramic composition with ρ greater than these values depending on the dielectric constant has a capacitance-resistance product of 500 μF・MΩ
satisfy. If ε is 3000 and ρ is 1.88 x 10”Ω α, which is 91 orders of magnitude lower than the required value, then ε, ερ = 50
μF-MΩ does not satisfy 500 μF-MΩ, and the standard value of insulation resistance is 10000 MΩ, that is, 101
In order to satisfy 6Ω or more, the capacitance C must be limited to 0.005 μF or less. The capacitance-resistance product ('CXR) of this multilayer capacitor is always 50μF・MΩ
Therefore, when R is 10000 MΩ, C is 0.005 μF. If c is larger than this, R is 1.
This is because 0.005 μF, which is smaller than 0000 MΩ, is the highest capacitance that satisfies the standard. Therefore, if the specific resistance of the ceramic composition is low, the practicality of the material, especially the small size and large capacity that is a feature of multilayer capacitors, cannot be taken advantage of, and it is completely meaningless. Therefore, it is extremely important in practice that the product of the dielectric constant and specific resistance of the ceramic composition has a certain value or more.

また、積層形チップコンデンサの場合は、チップコンデ
ンサを基板に実装したとき、基板とチップコンデンサを
構成している磁器組成物との熱膨張係数の違いによシ、
チップコンデンサに機械的な歪が加わシ、チップコンデ
ンサにクラックが発生したシ、破損したシすることがあ
る。またエポキシ系樹脂等を外装したディップコンデン
サの場合も外装樹脂の応力でディップコンデンサにクラ
ックが発生する場合がおる。いずれの場合もコンデンサ
を形成している磁器の機械的強度が低いほど、クラック
が入シやすく容易に破損するため、信頼性が低くなる。
In addition, in the case of multilayer chip capacitors, when the chip capacitor is mounted on a board, due to the difference in thermal expansion coefficient between the board and the ceramic composition that makes up the chip capacitor,
Mechanical strain may be applied to the chip capacitor, causing cracks or damage to the chip capacitor. Furthermore, in the case of a dip capacitor coated with epoxy resin or the like, cracks may occur in the dip capacitor due to the stress of the coat resin. In either case, the lower the mechanical strength of the porcelain forming the capacitor, the more likely it is to crack and break, resulting in lower reliability.

したがって、磁器の機械的強度をできるだけ増大させる
ことは実用上極めて重要なことである。
Therefore, it is of practical importance to increase the mechanical strength of porcelain as much as possible.

ところでPb(Mg1/2W1/2)Os PbTiO
3系磁器組成物については既にエヌ・エヌ・クライニク
とエイ・アイ・アグラノフスカヤ(N、N、Krain
ikand A、1.Agranovs’E’;’a 
(Fiziko Tverdog。
By the way, Pb(Mg1/2W1/2)Os PbTiO
3 series porcelain compositions have already been developed by N.N. Krainik and A.I.Agranovskaya (N.N.Krain).
ikand A, 1. Agranovs'E';'a
(Fiziko Tverdog.

Te1a 、 Vo、2.Nnl、 pp70〜72.
 Janvara 1960))より提案があったが、
積層形コンデンサを作製する際に評価されるべき特性の
中で誘電率とその温度特性の記載しかなく、その実用性
は明らかでなかった。また( 5rxPb、−x ’r
io、 )、(PbMg6.5Wo、60x)B (た
だし、x = 0〜0.10 、aはo、35〜0.5
゜bは0.5〜0.65であシ、そしてa + b =
 1 )について、モノリフツクコンデンサおよびその
製造方法として特開昭52−21662号公報に開示さ
れ、また誘電体粉末組成物として特開昭52−2169
9号公報に開示されている。ここにおいても組成物の特
性として誘電率が約2000〜s o o o、誘電損
失が0.5%〜5.0チという記載はあるが比抵抗ある
いは容量抵抗比については全く記載がなく実用性は明ら
かでなかった。さらにPb(Mg1/2W1/2)Ox
とPbTiO3を主とする組成物であって、Pb(Mg
1/2W1/2)Onが20.0〜70.0モルチ、 
PbTiO3が3.0.0〜80.0モルチの範囲の組
成物に対し、MgO′JiLを計算値の30%以下添加
含有したことを特徴とする高誘電率磁器組成物が特開昭
55−144609号公報として開示されている。しか
しながらこの特許においても誘電率が約2300〜71
00で誘電損失が0.3チ〜2.1チという記載のほか
に誘電率の温度特性の記載はあるが、比抵抗あるいは容
量抵抗積に関する記載はなくとの紬或物についても実用
性は明らかでない。次に本発明者達は既に910℃〜9
50℃の温度で焼結でき、Fb(Mgl/2W1/2)
O8とPbTiO3系二成分からなシ、これを(p b
(Mg1/2W1/2)Oa)x(PbTiOs)1−
 zと表わしたときにXが0.65<x≦1.0Oの範
囲にある組成物を提案している。この組成物は、誘電率
と比抵抗の積が5.65 X 10m5Ω・二以上の高
い値を持ち、誘電損失の小さい優れた電気的特性を有し
ている。しかしながら上記組成物は、いずれも機械的強
度が低いため、その用途は自ら狭い範囲に限定せざるを
得なかった。
Te1a, Vo, 2. Nnl, pp70-72.
There was a proposal from Janvara (1960)).
Among the characteristics to be evaluated when manufacturing a multilayer capacitor, only the dielectric constant and its temperature characteristics were described, and their practicality was not clear. Also ( 5rxPb, -x 'r
io, ), (PbMg6.5Wo, 60x)B (where x = 0 to 0.10, a is o, 35 to 0.5
°b is 0.5 to 0.65, and a + b =
1) is disclosed in Japanese Patent Application Laid-Open No. 52-21662 as a monolift capacitor and its manufacturing method, and as a dielectric powder composition in Japanese Patent Application Laid-Open No. 52-2169.
It is disclosed in Publication No. 9. Here as well, it is stated that the composition has a dielectric constant of approximately 2000 to 5.0 cm and a dielectric loss of 0.5% to 5.0 cm as properties of the composition, but there is no mention of specific resistance or capacitance-resistance ratio, making it impractical. was not clear. Furthermore, Pb(Mg1/2W1/2)Ox
and PbTiO3, and Pb(Mg
1/2W1/2) On is 20.0 to 70.0 molti,
A high permittivity ceramic composition characterized by containing MgO'JiL in an amount of 30% or less of the calculated value in a composition having a PbTiO3 content of 3.0.0 to 80.0 molti is disclosed in JP-A-55-1989. It is disclosed as Publication No. 144609. However, in this patent, the dielectric constant is about 2300 to 71.
In addition to the description that the dielectric loss is 0.3 to 2.1 inches for 00, there is a description of the temperature characteristics of the dielectric constant, but there is no description of specific resistance or capacitance-resistance product. It's not clear. Next, the present inventors have already discovered that 910℃~9
Can be sintered at a temperature of 50℃, Fb (Mgl/2W1/2)
It is composed of two components of O8 and PbTiO3 system, which is (p b
(Mg1/2W1/2)Oa)x(PbTiOs)1-
A composition in which X, expressed as z, is in the range of 0.65<x≦1.0O is proposed. This composition has a product of dielectric constant and specific resistance as high as 5.65 x 10 m5 Ω·2 or more, and has excellent electrical properties with low dielectric loss. However, since all of the above compositions have low mechanical strength, their applications have been forced to be limited to a narrow range.

本発明は以上の点にかんがみ900〜1000℃の低温
領域で焼結でき、かつ誘電率と比抵抗の積が5.65 
X 10”Ω・a(すなわち容量抵抗積が500μF−
Mg)以上の高い値を持ち、誘電損失がlトさい優れた
電気的特性を有し、更に機械的強度も大きい磁器組成物
を提供しようとするものであシ、マグネシウム・タング
ステン酸鉛(Pb(Mgl/2Wl/2)03とチタン
酸鉛< PbTi0a)からなる二成分組成物をPb 
(Mg1/zW1/z)Os ) 、 (PbTi0s
)+ −xと表わしたときにXが0,50≦X≦1.0
0の範囲内にある主成分組成物に副成分として、マンガ
ン・ニオブ酸鉛(Pb(Mnl/2Nb1/2)03 
)を主成分に対して0.05〜5moJ%添加含有せし
めることを特徴とするものである。
In view of the above points, the present invention can be sintered in a low temperature range of 900 to 1000°C, and has a product of dielectric constant and specific resistance of 5.65.
X 10”Ω・a (that is, the capacitance-resistance product is 500μF-
The purpose of this project is to provide a porcelain composition that has a high value of magnesium lead tungstate (Pb), has excellent electrical properties with minimal dielectric loss, and also has high mechanical strength. (Mgl/2Wl/2)03 and lead titanate < PbTi0a)
(Mg1/zW1/z)Os), (PbTi0s
) + -x, where X is 0.50≦X≦1.0
Manganese lead niobate (Pb(Mnl/2Nb1/2)03
) is added in an amount of 0.05 to 5 moJ% based on the main component.

以下本発明を実施例により詳細に説明する。The present invention will be explained in detail below using examples.

出発原料として純度99.91以上の酸化鉛(PbO)
Lead oxide (PbO) with a purity of 99.91 or higher as a starting material
.

酸化マグネシウム(MgO)+酸化タングステン(WO
s)を酸化チタン(Ti0z ) を酸化ニオブ(Nb
tOs ) p および炭酸マンガンを使用し、表に示
した配合比となるように各々秤量する。次に秤量した各
材量をボールミル中で湿式混合した後750〜800°
Cで予焼を行ない、この粉末をボールミルで粉砕し、日
別、乾燥後、有機バインダーを入れ整粒後プレスし、直
径16露、厚さ約2mの円板4枚と、直径16諺、厚さ
約10酩の円柱を作製した。次に空気中900〜100
0℃の温度で1時間焼結した。
Magnesium oxide (MgO) + tungsten oxide (WO
s) to titanium oxide (Ti0z) to niobium oxide (Nb)
Using tOs ) p and manganese carbonate, weigh each to achieve the blending ratio shown in the table. Next, the weighed amounts of each material were wet mixed in a ball mill and heated at 750 to 800°.
The powder was pre-baked in C and ground in a ball mill, dried, mixed with an organic binder, sized and pressed to form four discs with a diameter of 16 mm and a thickness of about 2 m, A cylinder with a thickness of about 10 mm was produced. Next, 900-100 in the air
Sintering was carried out at a temperature of 0° C. for 1 hour.

焼結した円板4枚の上下面に600℃で銀電極を焼付け
、デジタルLC1’Lメーターで周波数I KHz。
Silver electrodes were baked on the top and bottom surfaces of four sintered disks at 600°C, and the frequency was set to I KHz using a digital LC1'L meter.

電圧I Vr、m=s g温度20℃で容量と誘電損失
を測定し、誘電率を算出した。次に超絶縁抵抗計で50
Vの電圧を1分間印加して絶縁抵抗を温度20℃で測定
し、比抵抗を算出した。機械的性質を抗折強度で評価す
るため、焼結した円柱から厚さ9.5m、幅2111+
、長さ約1311mの矩形板を10枚切シ出した。支点
間距離を9smによ)、三点法で破壊荷重Pm(K9)
を測定し、τ、、、 3i”mA’ (KP/cd)な
2wt” る式に従い、抗折強度τ(l#/d)をめた。ただしl
は支点間距離、tは試料の厚み、Wは試料の幅である。
Voltage I Vr, m=s g The capacitance and dielectric loss were measured at a temperature of 20° C., and the dielectric constant was calculated. Next, I tested 50 with a super insulation resistance tester.
A voltage of V was applied for 1 minute, insulation resistance was measured at a temperature of 20° C., and specific resistance was calculated. In order to evaluate the mechanical properties by bending strength, a sintered cylinder with a thickness of 9.5 m and a width of 2111+
, 10 rectangular plates with a length of approximately 1311 m were cut out. The distance between the supporting points is 9s), and the breaking load Pm (K9) is calculated using the three-point method.
was measured, and the bending strength τ (l#/d) was determined according to the formula: τ,...3i"mA'(KP/cd)2wt". However, l
is the distance between the supporting points, t is the thickness of the sample, and W is the width of the sample.

電気的特性は円板試料4点の平均値。Electrical characteristics are average values of four disk samples.

抗折強度は矩形板試料10点の平均値よ請求めた。The bending strength was determined as the average value of 10 rectangular plate samples.

このようにして得られた磁器の主成分(Pb(Mgl/
2Wi/z)Os )x (PbTiOs )1−)c
の配合比スおよび副成分添加量と抗折強度、誘電率、誘
電損失および容量抵抗積(表ではεOερと表示した)
の関係を表に示す。
The main component of the porcelain thus obtained (Pb(Mgl/
2Wi/z)Os)x (PbTiOs)1-)c
The mixing ratio of S and the additive amount of subcomponents, bending strength, dielectric constant, dielectric loss, and capacitance-resistance product (indicated as εOερ in the table)
The relationship between is shown in the table.

表に示した結果からも明らかなように副成分として、マ
ンガン・ニオブ酸鉛(P b (Mn 1/2Nb 1
/2 )01)を添加含有せしめることによシ、抗折強
度および容量抵抗積を共に高め、しかも低い誘電損失の
値を保った信頼性の高い実用性に富む優れた高誘電率磁
器組成物が得られることがわかる。こうした優れた特性
を示す本発明の磁器組成物は焼結温度が1000℃以下
の低温であるため積層コンデンサの内部電極の低価格化
を実現できると共に、省エネルギーや炉材の節約にもな
るという極めて優れた効果も生じる。
As is clear from the results shown in the table, lead manganese niobate (P b (Mn 1/2Nb 1
/2) An excellent high dielectric constant porcelain composition which is highly reliable and highly practical, increasing both the flexural strength and the capacitance-resistance product by adding 01) and maintaining a low dielectric loss value. It can be seen that the following can be obtained. The porcelain composition of the present invention, which exhibits these excellent properties, has a low sintering temperature of 1000°C or less, which makes it possible to reduce the cost of the internal electrodes of multilayer capacitors, and also to save energy and furnace materials. Excellent effects also occur.

なお主成分配合比Xが0.5未満では、容量抵抗積が規
格値よシ小さくなシ、誘電損失も5.0チを越えるため
実用的でない。また副成分子cあるpb(Mnl/2N
J/2)Osの添加量が0.05mo6%未満では抗折
強度の改善効果が小さく、5moj!%を越えると逆に
抗折強度が小さくなシ実用的でない。
If the main component compounding ratio X is less than 0.5, the capacitance-resistance product will be smaller than the standard value and the dielectric loss will also exceed 5.0, which is not practical. Also, there is a subcomponent molecule c pb(Mnl/2N
J/2) If the amount of Os added is less than 0.05mo6%, the effect of improving the bending strength is small; If it exceeds %, the bending strength will be too small to be practical.

Claims (1)

【特許請求の範囲】 マグネシウム・タングステン酸鉛(Pb(Mgl/2W
1/z)On )とチタン酸鉛(PbTi03)からな
る二成分組成物を(Pb(Mgl/2W1/2)08 
)、 (PbTiOs)、−。 と表わしたときにXが0.50≦X≦1.00の範囲内
にある主成分組成物に副成分としてマンガン・ニオブ酸
鉛(Pb(Mnl/2NJ/2)Os )を主成分に対
して0.05〜5 mo1%添加含有せしめることを特
徴とする磁器組成物。
[Claims] Magnesium lead tungstate (Pb (Mgl/2W
A binary composition consisting of lead titanate (PbTi03) and lead titanate (Pb(Mgl/2W1/2)08
), (PbTiOs), -. When represented as A porcelain composition characterized in that it contains 0.05 to 5 mo1%.
JP58137993A 1983-07-28 1983-07-28 Ceramic composition Pending JPS6033256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58137993A JPS6033256A (en) 1983-07-28 1983-07-28 Ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137993A JPS6033256A (en) 1983-07-28 1983-07-28 Ceramic composition

Publications (1)

Publication Number Publication Date
JPS6033256A true JPS6033256A (en) 1985-02-20

Family

ID=15211552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137993A Pending JPS6033256A (en) 1983-07-28 1983-07-28 Ceramic composition

Country Status (1)

Country Link
JP (1) JPS6033256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791078A (en) * 1986-08-26 1988-12-13 Nec Corporation Ceramic composition with improved electrical and mechanical properties

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860670A (en) * 1981-10-01 1983-04-11 日本電気株式会社 Ceramic composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860670A (en) * 1981-10-01 1983-04-11 日本電気株式会社 Ceramic composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791078A (en) * 1986-08-26 1988-12-13 Nec Corporation Ceramic composition with improved electrical and mechanical properties

Similar Documents

Publication Publication Date Title
EP0257593B1 (en) Ceramic composition with improved electrical and mechanical properties
US4236928A (en) Ceramic compositions
JPS6036365A (en) Ceramic composition
JPS6033256A (en) Ceramic composition
JPS6021860A (en) Ceramic composition
JPS6036371A (en) Ceramic composition
JPS6234707B2 (en)
JPS6227029B2 (en)
JPS6234708B2 (en)
JP2821768B2 (en) Multilayer ceramic capacitors
JPS6021859A (en) Ceramic composition
JPS6033255A (en) Ceramic composition
JPS6021858A (en) Ceramic composition
JPS6235990B2 (en)
JPS6234706B2 (en)
JPS6046968A (en) Ceramic composition
JP3301814B2 (en) Dielectric porcelain composition
JPH0143405B2 (en)
JPS63185852A (en) Ceramic composition
JPS6046965A (en) Ceramic composition
JPS6036366A (en) Ceramic composition
JPS6046969A (en) Ceramic composition
JPS58130161A (en) Ceramic composition
JPS6021857A (en) Ceramic composition
JPH0534301B2 (en)