[go: up one dir, main page]

JPS6032997B2 - polyphase potentiometer - Google Patents

polyphase potentiometer

Info

Publication number
JPS6032997B2
JPS6032997B2 JP52080771A JP8077177A JPS6032997B2 JP S6032997 B2 JPS6032997 B2 JP S6032997B2 JP 52080771 A JP52080771 A JP 52080771A JP 8077177 A JP8077177 A JP 8077177A JP S6032997 B2 JPS6032997 B2 JP S6032997B2
Authority
JP
Japan
Prior art keywords
potentiometer
elements
shaft
output
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52080771A
Other languages
Japanese (ja)
Other versions
JPS5415155A (en
Inventor
昇 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denki Onkyo Co Ltd
Original Assignee
Denki Onkyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Onkyo Co Ltd filed Critical Denki Onkyo Co Ltd
Priority to JP52080771A priority Critical patent/JPS6032997B2/en
Publication of JPS5415155A publication Critical patent/JPS5415155A/en
Publication of JPS6032997B2 publication Critical patent/JPS6032997B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Adjustable Resistors (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】 本発明はボテンショメータ、特に半導体の磁気抵抗素子
を用いて位相の異なる2つ以上の出力を受るポテンショ
メータに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a potentiometer, and particularly to a potentiometer that uses a semiconductor magnetoresistive element to receive two or more outputs with different phases.

従来のポテンショメー外ま、第1図に示すように、構成
されている。
A conventional potentiometer is constructed as shown in FIG.

即ち、非磁性材、例えばアルミニウムから作られた回転
シャフト1川ま、非磁性材、例えばプラスチックス、ア
ルミニウム等から作られた軸受ホルダ11にベアリング
12,13によって車由支され、磁性材、例えば純鉄、
パーマロィ等のプレート14を図示しないネジで軸受ホ
ルダー1に固定することにより、ホルダー1からベアリ
ング12,13が外れにいようにしている。ホルダ11
の内側に位置するシャフト10の先端には、図のように
磁極をシャフト軸方向に向けて永久磁石15がェポキシ
樹脂等で接着剤で接着されている。磁石15の磁極端面
16は長手形に形成され、シャフト10の先端面のほぼ
半分を占めている。軸受ホルダ11の永久磁石15が存
する側には、プラスチックス材から作られた基板17が
接着剤或はネジで固定されている。
That is, a rotating shaft made of a non-magnetic material, such as aluminum, is supported by bearings 12 and 13 in a bearing holder 11 made of a non-magnetic material, such as plastics, aluminum, etc.; pure iron,
By fixing a plate 14 made of permalloy or the like to the bearing holder 1 with screws (not shown), the bearings 12 and 13 are prevented from coming off from the holder 1. Holder 11
A permanent magnet 15 is bonded to the tip of the shaft 10 located inside with an adhesive such as epoxy resin, with the magnetic pole oriented in the axial direction of the shaft as shown in the figure. The magnetic pole end face 16 of the magnet 15 is formed into a long shape and occupies approximately half of the end face of the shaft 10. A substrate 17 made of plastic material is fixed to the side of the bearing holder 11 on which the permanent magnet 15 is present with adhesive or screws.

基板17の中央には円柱状の磁性片18が一部を露出し
て埋設されている。また、基板17には端子ピン20,
21,22が基板17から両端を突出して磁性片18同
様に埋設されている。基板17の上には、端子板19が
載瞳されて端子ピン20,21,22と係合すると共に
そのプリント回路に接続されている。磁性片18の上に
は一対の磁気抵抗効果素子23,24が貼着され、その
電極に接続したりードフレームは端子板19のプリント
回路に接続されている。
A cylindrical magnetic piece 18 is buried in the center of the substrate 17 with a portion exposed. The board 17 also includes terminal pins 20,
21 and 22 are embedded in the same way as the magnetic piece 18 with both ends protruding from the substrate 17. A terminal plate 19 is mounted on the substrate 17 and engages with terminal pins 20, 21, 22 and is connected to the printed circuit. A pair of magnetoresistive elements 23 and 24 are stuck on the magnetic piece 18, and a lead frame connected to the electrodes is connected to a printed circuit of the terminal board 19.

また、ホルダ11および基板17は有底円筒状の導電性
の磁性材、例えば純鉄、パーマロィ等から作られたケー
ス25の中に収納されている。
The holder 11 and the substrate 17 are housed in a bottomed cylindrical case 25 made of a conductive magnetic material such as pure iron or permalloy.

このとき、端子ピン20,21,22の一端は、絶縁さ
れてケース25の外に突出されている。このような構成
のポテンショメー外こ於ける磁石15の磁極端面16と
磁気抵抗効果素子23,24の関係を拡大して第2図に
示す。一対の磁気抵抗効果素子23,24は、一緒にな
って切欠円還状に構成され、出力端子電極26および入
力端子電極27,28が設けられている。円環状磁気抵
抗効果素子に対する磁極端面16は、その一辺が回転シ
ャフト10のシャフト軸29を通るように位置決めされ
ている。上記構成に於て、シャフト10を360o回転
すると、第3図のように、最高出力を出す角度位置に於
て出力に平坦部が生じる欠点がある。
At this time, one ends of the terminal pins 20, 21, 22 are insulated and protrude outside the case 25. FIG. 2 shows an enlarged view of the relationship between the magnetic pole end face 16 of the magnet 15 and the magnetoresistive elements 23 and 24 outside the potentiometer having such a configuration. The pair of magnetoresistive elements 23 and 24 are configured together in a notched circular shape, and are provided with an output terminal electrode 26 and input terminal electrodes 27 and 28. The magnetic pole end face 16 for the annular magnetoresistive element is positioned such that one side thereof passes through the shaft axis 29 of the rotating shaft 10. In the above configuration, when the shaft 10 is rotated by 360 degrees, there is a drawback that a flat portion occurs in the output at the angular position where the maximum output is produced, as shown in FIG.

特に、電極27,28を含む位置に磁極端面16が位置
したとき顕著に現われる。これは図のように電極の部分
で磁気抵抗効果が生じないからである。このような出力
特性を除去するためには、非磁気抵抗効果となる部分を
小さくすればよいが、電極部分の形成が困難になる欠点
が生じる。また、近年サーボモータやコアレスモータの
位相制御用ポテンショメータの要求が高まっている。
This is particularly noticeable when the magnetic pole end face 16 is located at a position that includes the electrodes 27 and 28. This is because the magnetoresistive effect does not occur at the electrodes, as shown in the figure. In order to eliminate such output characteristics, it is possible to reduce the size of the non-magnetoresistance effect, but this results in the disadvantage that it becomes difficult to form the electrode portion. Further, in recent years, there has been an increasing demand for phase control potentiometers for servo motors and coreless motors.

この種ポテンショメータには接触型のものがあるが摩耗
により短寿命であるという欠点があり、また上記のよう
な磁気抵抗効果素子を用いたポテンショメータでは端子
電極の形成が困難となり直線性のよい多相出力のポテン
ショは得られていない。このため、同じ特性のポテンシ
ョメータを取付角度をずらして2〜3個並列に結合して
用いているが、各ポテンショメータのバラツキは避けら
れず、満足すべき状態にいたつてし、ない。本発明は安
価にして精度の良い多相出力を発生するポテンショメー
タを提供することを目的とする。本発明ポテンショメー
タの特徴を述べると、回転シャフトの先端部分に固定し
た永久磁石から磁界の作用を受ける感磁センサ部は、半
円弧状の複数の磁気抵抗効果素子を備え、これらの素子
の内、弦側を向い合せ且つシャフト軸に対し互に反対方
向へ偏位して位置する2つの磁気抵抗効果素子を対とし
、それぞれの対となる素子の感磁面の和が360の角度
範囲を占めると共に、磁気抵抗効果素子の弦方向が各対
ごとに所定の角度間隔を有する構成で、シャフトを回転
することにより位相のずれた複数の出力を得るものであ
る。
There are contact type potentiometers of this type, but they have the disadvantage of short lifespans due to wear.Also, with potentiometers using magnetoresistive elements such as those mentioned above, it is difficult to form terminal electrodes, making it difficult to form a multiphase multiphase with good linearity. Output potential has not been obtained. For this reason, two or three potentiometers with the same characteristics are connected in parallel at different mounting angles, but variations in each potentiometer are unavoidable, and a satisfactory state has not been reached. SUMMARY OF THE INVENTION An object of the present invention is to provide a potentiometer that is inexpensive and generates a highly accurate multiphase output. To describe the features of the potentiometer of the present invention, the magnetic sensor section, which receives the action of a magnetic field from a permanent magnet fixed to the tip of the rotating shaft, is equipped with a plurality of semicircular arc-shaped magnetoresistive elements, and among these elements, A pair of two magnetoresistive elements whose string sides face each other and are offset in opposite directions with respect to the shaft axis, and the sum of the magnetically sensitive surfaces of each pair of elements occupies an angular range of 360. In addition, the chord direction of the magnetoresistive elements is arranged at a predetermined angular interval for each pair, and a plurality of phase-shifted outputs are obtained by rotating the shaft.

以下本発明の実施例を添付図面を用いて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

なお、ポテンショメータ全体の構成は第1図に示す従来
例と一部を除いて同じであるため、その部分の説明を省
略する。また、第1図と同じ部分には同じ番号を用いる
。第4図は本発明ポテンショメー外こ於ける感磁センサ
部80を示す。
The overall configuration of the potentiometer is the same as that of the conventional example shown in FIG. 1, except for a part, so a description of that part will be omitted. Also, the same numbers are used for the same parts as in FIG. FIG. 4 shows a magnetically sensitive sensor section 80 outside the potentiometer of the present invention.

同図に於て、半円弧状の磁気抵抗効果素子30,40,
50,60は、角形にダィシング或はスクラィビングさ
れたサブストレート70の上に、シリコン、インジウム
アンチモナィド、インジウムアーセナィド等の半導体材
を公知の葵着法やエッチング法を用いて形成している。
サブストレート70.1こはフェライト等の磁性材或は
ガラスやセラミック等の非磁性材を使用する。各々の対
の磁気抵抗効果素子30,40,および50,60は、
それぞれの素子の円弧中心を第1図の回転シャフト10
のシャフト軸29を通る線71,72に沿ってシャフト
軸29に対し互いに反対方向へ等距離偏位させて配置さ
れ、且つ一対の素子30,40および50,60の一対
の感磁面31,41,および51,61は3600の角
度範囲を占める如く形成されている。
In the figure, semicircular arc-shaped magnetoresistive elements 30, 40,
50 and 60 are formed by forming a semiconductor material such as silicon, indium antimonide, indium arsenide, etc. on a substrate 70 that has been diced or scribed into square shapes using a well-known method of deposition or etching. There is.
The substrate 70.1 is made of a magnetic material such as ferrite, or a non-magnetic material such as glass or ceramic. Each pair of magnetoresistive elements 30, 40, and 50, 60 are
The center of the arc of each element is connected to the rotating shaft 10 in FIG.
A pair of magnetically sensitive surfaces 31 of a pair of elements 30, 40 and 50, 60 are arranged to be equidistantly offset in mutually opposite directions with respect to the shaft axis 29 along lines 71, 72 passing through the shaft axis 29 of the elements. 41, and 51, 61 are formed to occupy an angular range of 3600 degrees.

そして、線71と72は90の角度間隔に定められてい
る。磁気抵抗効果素子30,40,50,60の感磁面
31,41,51,61には、感磁面を横断するように
、金やインジウム等の良導体を用いてメタルバー32,
42,52,62が多数設けられ磁極端面16が回転し
たときの素子30,40,50,60の感度を調整して
いる。即ち、それぞれの素子は、シャフト軸29からそ
の中心が偏位しているからメタルバー32,42,62
,62が多数設けられ、磁極端面16が回転したときの
素子30,40,60,60の感度を調整している。即
ち、それぞれの素子は、シャフト輪29からその中心が
偏位しているからメタルバー32,42,52,62を
等間隔に形成したのでは、シャフト10を一定の角速度
で回転したとき、磁界の作用を受ける感磁面の面積が一
定の割合で増減しないことになり、直線性のよい出力は
得られない。このため、感磁面31,41,51,61
に於けるメタルバー32,42,52,62は磁極端面
16を回転したとき、各角度における磁気感度がほぼ等
しくなるように設け、シャフト軸29から遠くなるに従
ってメタルバー間の間隔を広げて単位面積当りの磁気感
度を次第に低くしている。磁気抵抗効果素子30,40
,50,60の両端には、金とかインジウムのような良
導体で電極33,34,43,44,53,54,63
,64を蒸着形成し、シャフト軸29近くにある電極3
3,43,53,63からリード部35,45,55,
65を蒸着により形成して引出電極36,46,56,
66に接続している。
The lines 71 and 72 are then spaced at an angular interval of 90 degrees. On the magnetically sensitive surfaces 31, 41, 51, 61 of the magnetoresistive elements 30, 40, 50, 60, metal bars 32, made of a good conductor such as gold or indium are installed so as to cross the magnetically sensitive surfaces.
A large number of elements 42, 52, and 62 are provided to adjust the sensitivity of the elements 30, 40, 50, and 60 when the magnetic pole end face 16 rotates. That is, since the center of each element is offset from the shaft axis 29, the metal bars 32, 42, 62
, 62 are provided to adjust the sensitivity of the elements 30, 40, 60, 60 when the magnetic pole end face 16 rotates. That is, since the center of each element is offset from the shaft ring 29, if the metal bars 32, 42, 52, and 62 are formed at equal intervals, when the shaft 10 is rotated at a constant angular velocity, the magnetic field will be The area of the magnetically sensitive surface subjected to the action does not increase or decrease at a constant rate, and an output with good linearity cannot be obtained. For this reason, the magnetically sensitive surfaces 31, 41, 51, 61
The metal bars 32, 42, 52, and 62 are provided so that the magnetic sensitivity at each angle is approximately equal when the magnetic pole end face 16 is rotated, and the distance between the metal bars is increased as the distance from the shaft axis 29 increases, so that the magnetic sensitivity per unit area is increased. The magnetic sensitivity of the magnetic field is gradually lowered. Magnetoresistive elements 30, 40
, 50, 60, electrodes 33, 34, 43, 44, 53, 54, 63 are made of a good conductor such as gold or indium.
, 64 by vapor deposition, and the electrode 3 near the shaft axis 29
3, 43, 53, 63 to lead parts 35, 45, 55,
65 is formed by vapor deposition to form extraction electrodes 36, 46, 56,
Connected to 66.

電極34,36,44,46,54,56,64,66
には図示しないリードフレームをボンデングして、端子
板19のプリント回路に接続している。
Electrodes 34, 36, 44, 46, 54, 56, 64, 66
A lead frame (not shown) is bonded and connected to the printed circuit of the terminal board 19.

上記の構成に於て、シャフト10を回転し磁極端面16
を第4図の緑71の位置から反時計方向に回転すると、
一対の磁気抵抗効果素子30と40からは第5図aの出
力が得られ、一対の素子50と60からは同図aから9
G星れたbの出力が発生する。
In the above configuration, when the shaft 10 is rotated, the magnetic pole end face 16
When rotated counterclockwise from the position of green 71 in Figure 4,
From the pair of magnetoresistive elements 30 and 40, the outputs shown in FIG. 5a are obtained, and from the pair of elements 50 and 60,
G star b output is generated.

上記一対の磁気抵抗効果素子30,40および50,6
川ま、第6図のように、定電圧電源73の両端に直列に
接続し、素子30と40の間および素子50と60の間
には出力端子74,75を設けている。
The pair of magnetoresistive elements 30, 40 and 50, 6
As shown in FIG. 6, output terminals 74 and 75 are connected in series to both ends of a constant voltage power supply 73, and between elements 30 and 40 and between elements 50 and 60.

また、電源73の両端には抵抗76,77を直列に接続
し、その間に出力端子78を設けている。而して、端子
74と78から第5図aの出力が、また75と78から
第5図bの出力が得られ、74と75の間からは第5図
のaとbを合成した出力が得られる。
Further, resistors 76 and 77 are connected in series to both ends of the power supply 73, and an output terminal 78 is provided between them. Thus, the output shown in Fig. 5 a is obtained from terminals 74 and 78, the output shown in Fig. 5 b is obtained from terminals 75 and 78, and the output obtained by combining a and b in Fig. 5 is obtained from between 74 and 75. is obtained.

上記実施例では位相が900相違する2つの出力を発生
するポテンショメータについて説明したが、一対の半円
弧の磁気抵抗効果素子を3組形成し、これらを120o
の角度間隔で配置すると60oの位相が相違する3つ
の出力を同時に得ることが出来る。
In the above embodiment, a potentiometer that generates two outputs with a phase difference of 900° was explained, but three pairs of semicircular arc magnetoresistive elements are formed, and these are connected at a 120° angle.
When arranged at an angular interval of , three outputs having different phases of 60 degrees can be obtained simultaneously.

このようにして磁気抵抗効果素子の数を多くすればより
多くの出力を得ることが出来る。本発明は上述のように
、ポテンショメータの全体的構造をほとんど変更するこ
となく、半円弧状の磁気抵抗効果素子を複数個用いるこ
とにより多相の出力を得るから従来のように2つも3つ
も結合して使用することもなく安価なポテンショメータ
が得られ、また発生する出力の位相角は、磁気抵抗効果
素子が蒸着法やエッチング法で同時に形成されるので精
度のよいものが得られ、また無接触であるので損耗する
こともない。また、磁気抵抗効果素子は、それぞれが1
80の角度範囲に感磁面をもつているため、従来のよう
に電極部分によって出力特性が変ることもない。
By increasing the number of magnetoresistive elements in this way, more output can be obtained. As described above, the present invention obtains multiphase output by using a plurality of semicircular arc-shaped magnetoresistive elements without substantially changing the overall structure of the potentiometer. An inexpensive potentiometer can be obtained without having to use the potentiometer, and the phase angle of the generated output can be highly accurate because the magnetoresistive element is formed at the same time by vapor deposition or etching. Therefore, there is no wear and tear. In addition, each magnetoresistive element has 1
Since it has a magnetically sensitive surface within an angular range of 80 degrees, the output characteristics do not change depending on the electrode portion, unlike in the conventional case.

更にまた、素子の電極からのりード線も素子の磁気抵抗
効果を阻害することなく余裕をもって引出すことが出来
るので多相出力を出す素子全体の形成が容易になる。
Furthermore, since the lead wires from the electrodes of the element can be drawn out with sufficient margin without impeding the magnetoresistive effect of the element, it becomes easy to form the entire element that outputs multiphase output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のポテンショメ−夕の構成を示す断面図、
第2図は従来の感磁センサ部の平面図、第3図は従釆の
ポテンショメータの出力特性図、第4図は本発明ポテン
ショメータに於ける感磁センサ部の平面図、第5図は第
4図のセンサ部を使用したポテンショメータの出力特性
図、第6図は第4図のセンサ部の各磁気抵抗素子を結線
した出力回路図である。 図中の1川ま回転シャフト、15は磁石、16は磁極端
面、29はシャフト軸、30,40,50,60は磁気
抵抗効果素子、31,41,51,61は感磁面、32
,42,52,62はメタルバー、80は感磁センサ部
である。 第1図 第2図 第3図 第4図 第5図 第6図
FIG. 1 is a sectional view showing the configuration of a conventional potentiometer.
Fig. 2 is a plan view of a conventional magnetically sensitive sensor section, Fig. 3 is an output characteristic diagram of a subordinate potentiometer, Fig. 4 is a plan view of a magnetically sensitive sensor section in the potentiometer of the present invention, and Fig. 5 is a diagram showing the output characteristics of a subordinate potentiometer. FIG. 4 is an output characteristic diagram of a potentiometer using the sensor section shown in FIG. 4, and FIG. 6 is an output circuit diagram in which the magnetic resistance elements of the sensor section shown in FIG. 4 are connected. 1 in the figure is a rotating shaft, 15 is a magnet, 16 is a magnetic pole end face, 29 is a shaft axis, 30, 40, 50, 60 are magnetoresistive elements, 31, 41, 51, 61 are magnetically sensitive surfaces, 32
, 42, 52, and 62 are metal bars, and 80 is a magnetic sensor section. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 回転シヤフトの先端部に磁極端面がシヤフト先端の
ほぼ半分を占める永久磁石を固定し、前記磁極端面と向
い合う感磁センサ部は半円孤状の感磁面を有する複数の
磁気抵抗効果素子を有し、該素子の内弦側を向い合せ且
つシヤフト軸に対し相互に反対方向へ偏位して位置した
ものを対として、各対を所定の角度間隔で配列して構成
し多相出力を得ることを特徴とした多相ポテンシヨメー
タ。
1. A permanent magnet whose magnetic pole end surface occupies approximately half of the shaft tip is fixed to the tip of the rotating shaft, and a magnetic sensor section facing the magnetic pole tip includes a plurality of magnetoresistive elements each having a semicircular arc-shaped magnetic sensing surface. The inner chord sides of the elements face each other and are offset in opposite directions with respect to the shaft axis, and each pair is arranged at a predetermined angular interval to produce a multiphase output. A polyphase potentiometer characterized by obtaining.
JP52080771A 1977-07-06 1977-07-06 polyphase potentiometer Expired JPS6032997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52080771A JPS6032997B2 (en) 1977-07-06 1977-07-06 polyphase potentiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52080771A JPS6032997B2 (en) 1977-07-06 1977-07-06 polyphase potentiometer

Publications (2)

Publication Number Publication Date
JPS5415155A JPS5415155A (en) 1979-02-03
JPS6032997B2 true JPS6032997B2 (en) 1985-07-31

Family

ID=13727672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52080771A Expired JPS6032997B2 (en) 1977-07-06 1977-07-06 polyphase potentiometer

Country Status (1)

Country Link
JP (1) JPS6032997B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777163B2 (en) * 1986-03-28 1995-08-16 日本電装株式会社 Potentiometer
JPH0777165B2 (en) * 1986-08-25 1995-08-16 日本電装株式会社 Non-contact type potentiometer
JP7624455B2 (en) * 2020-11-10 2025-01-30 AlphaTheta株式会社 Rotational control, detection method and program

Also Published As

Publication number Publication date
JPS5415155A (en) 1979-02-03

Similar Documents

Publication Publication Date Title
US4053829A (en) Apparatus for detecting the direction of a magnetic field to sense the position of, for example, a rotary element or the like
US4480248A (en) Temperature and aging compensated magnetoresistive differential potentiometer
JP4234004B2 (en) Device for measuring the angular position of an object
US4125821A (en) Potentiometer providing a non-linear output
US4656377A (en) Tachogenerator having a magnetoresistance stator coil
US4897914A (en) Method of making a magnetic-encoding device having hall effect devices
US3949346A (en) Magnetoresistive element
JPS58106462A (en) Rotation detector
JPS6032997B2 (en) polyphase potentiometer
JPH04282417A (en) Magnetic sensor
JPS63202979A (en) Magnetic sensor for encoder
JPS63212803A (en) displacement measuring device
US3056923A (en) Indicating instruments and magnetic structures therefor
JP3186656B2 (en) Speed sensor
JPS625284B2 (en)
JPS6111982Y2 (en)
JPH0469348B2 (en)
JPS5844375Y2 (en) Motor rotation speed detection device
JPH0221152B2 (en)
JPH0320779Y2 (en)
JPH0430756B2 (en)
JPH04248403A (en) Angle detector using hall element
JPS6031015A (en) Position sensor wherein magnetoresistance body is used
JPS58172512A (en) Detecting device for position of rotation
JPH0560568A (en) Magnetic sensor