[go: up one dir, main page]

JPS6032927A - Sub-combustion chamber type diesel engine - Google Patents

Sub-combustion chamber type diesel engine

Info

Publication number
JPS6032927A
JPS6032927A JP58140190A JP14019083A JPS6032927A JP S6032927 A JPS6032927 A JP S6032927A JP 58140190 A JP58140190 A JP 58140190A JP 14019083 A JP14019083 A JP 14019083A JP S6032927 A JPS6032927 A JP S6032927A
Authority
JP
Japan
Prior art keywords
layer
combustion chamber
sub
glow plug
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58140190A
Other languages
Japanese (ja)
Inventor
Isao Tanaka
勲 田中
Shigenori Sakurai
桜井 茂徳
Shinichi Matsumoto
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58140190A priority Critical patent/JPS6032927A/en
Publication of JPS6032927A publication Critical patent/JPS6032927A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To prevent the catalyst performance from being deteriorated even during a long operation by depositing a catalyst metal on an oxide layer formed on at least part of the inner wall surface of a sub-combustion chamber or the surface of a glow plug then forming an oxide layer on the layer. CONSTITUTION:An intermediate layer 7 made of an Ni-Cr-Al alloy is formed on the inner wall surface of a sub-combustion chamber 3 or the surface of a glow plug 1, and a composite oxidized layer 8 with composition of ZrO2-CaO is formed on the layer 7. Furthermore, it is immersed in a solution of dinitrodiamino platinum and rhodium chloride than is taken out, a catalyst metal (Pt, Rh) is deposited, next, it is immersed in an alumina slurry liquid then is taken out to form an alumina layer 9. Accordingly, stable ignition performance and startability can be maintained without deteriorating the catalyst performance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は触媒化し、更にその触媒の耐久性を向上せしめ
た。副燃焼室を有するディーゼルエンジンに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a catalyst and further improves the durability of the catalyst. The present invention relates to a diesel engine having an auxiliary combustion chamber.

(従来技術) ディ−ゼルエンジンの着火性を良<シ、始動性を向上さ
せるために副燃焼室内壁面や副燃焼室内ノブローブラグ
の表面に触媒層を形成させることが行われている。例え
ば上記副燃焼室内壁面やグロープラグ表面にニッケル、
クロム、アルミニウム等からなる金属中間層を形成し、
該中間層の表面に酸化ジルコニウムなどの酸化物や酸化
ジルコニウムと周期律表1[aまたはl[a亜族の金属
の酸化物との複合酸化物などの耐熱性無機物質層を形成
し、この無機物質層に白金、ロジウム等の触媒金属を担
持させたものが従来より知られている。
(Prior Art) In order to improve the ignitability and startability of a diesel engine, a catalyst layer is formed on the wall surface of the sub-combustion chamber and on the surface of the knobby plug in the sub-combustion chamber. For example, nickel is applied to the wall surface of the sub-combustion chamber and the glow plug surface.
Forms a metal intermediate layer consisting of chromium, aluminum, etc.
A heat-resistant inorganic material layer such as an oxide such as zirconium oxide or a composite oxide of zirconium oxide and an oxide of a metal of subgroup 1 [a or l [a] of the periodic table is formed on the surface of the intermediate layer. It has been known that catalyst metals such as platinum and rhodium are supported on an inorganic material layer.

しかしながら、エンジンオイルやガソリン中に添加物な
どとして含まれているカルシウム(Ca) 、燐(P)
、鉛(pb )等の化合物が燃焼により分解し微粒子状
となって触媒表面に堆積し、表面の細孔を塞いで燃料ガ
スが内部に拡散する。iを妨げたり、触媒金属と反応し
て活性を低下せしめたりして触媒を被毒するため、従来
の触媒化された副燃焼室式ディーゼルエンジンにおいて
は短時間で性能が劣化していた。
However, calcium (Ca) and phosphorus (P), which are contained as additives in engine oil and gasoline,
, lead (PB), and other compounds are decomposed by combustion and deposited on the catalyst surface in the form of fine particles, which close the pores on the surface and allow fuel gas to diffuse inside. The performance of conventional catalytic sub-combustion chamber type diesel engines deteriorated in a short period of time because the catalyst was poisoned by interfering with i or reacting with the catalyst metal to reduce its activity.

(発明の目的) 本発明は上記従来技術における問題点を解決するための
ものである。その目的とするところは、長時間線動して
も触媒性能が低下しない触媒御された副燃焼室式ディー
ゼルエンジンを提供することにある。
(Object of the Invention) The present invention is intended to solve the problems in the prior art described above. The purpose is to provide a catalytically controlled sub-combustion chamber type diesel engine in which the catalyst performance does not deteriorate even when the engine is operated linearly for a long time.

(発明の構成) すなわち本発明の副燃焼室式ディーゼルエンジンは、副
燃焼室内壁面あるいはグロープラグの表面の少なくとも
一部に酸化物層を形成し、該酸化物層に触媒金属を担持
した後、該層上に更にアルミナ等の酸化物層を形成せし
めたことを特徴とする。
(Structure of the Invention) That is, in the sub-combustion chamber type diesel engine of the present invention, an oxide layer is formed on at least a part of the wall surface of the sub-combustion chamber or the surface of the glow plug, and after a catalyst metal is supported on the oxide layer, It is characterized in that an oxide layer such as alumina is further formed on the layer.

触媒金属を担持せしめて触媒層とした上に更に形成する
酸化物層は、下層の触媒層を被毒物質から守る保護層あ
るいは燃料ガス等の拡散を調節する状態調節層などとし
て働くものであるため、その性状が重要であり、酸化物
の種類。
The oxide layer that is formed on top of the catalytic layer by supporting the catalytic metal acts as a protective layer that protects the underlying catalytic layer from poisonous substances, or as a conditioning layer that adjusts the diffusion of fuel gas, etc. Therefore, its properties are important and the type of oxide.

平均粒径(比表面積)、粒径分布、厚み等を最適に選択
することが必要である。
It is necessary to optimally select the average particle size (specific surface area), particle size distribution, thickness, etc.

本発明に用い得る酸化物としては、各種結晶系のアルミ
ナ(At20.) 、 ’−/リカ(8i 0x ) 
ノ外に、例えばマグネシア(MgO)、カルシア(Ca
b)、イツトリア(ytos) eチタニア(T’O*
 ) tジルコニア(zroJ等の単一組成の金属酸化
物、および例えばzro、−YtOm e Zr□、 
−CaO等の複合酸化物すなわちCaT103 、 L
aAt03等のペロブスカイト型化合物、あるいはMg
A40+ t Fe(NIFe)04# Zn(TIZ
n)04等のスピネル型化合物、あるいはMgtSI0
4s鳩S 10H等の珪酸塩などの焼結性の無機酸化物
が挙げられる。またこれらを組合せて用いてもよい。
Oxides that can be used in the present invention include various crystalline alumina (At20.), '-/Rica (8i 0x)
Besides, for example, magnesia (MgO), calcia (Ca
b), Ittoria (ytos) e Titania (T'O*
) tzirconia (monocompositional metal oxides such as zroJ, and e.g. zro, -YtOm e Zr□,
- Complex oxides such as CaO, i.e. CaT103, L
Perovskite type compounds such as aAt03, or Mg
A40+ t Fe (NIFe) 04# Zn (TIZ
n) spinel type compounds such as 04, or MgtSI0
Examples include sinterable inorganic oxides such as silicates such as 4s Hato S 10H. Moreover, you may use these in combination.

好ましい酸化物としては、触媒金属の活性を低下させな
いもの例えばg、Siの酸化物、または活性を増す働き
のある金属例えばLB 、 Ce 。
Preferred oxides include those that do not reduce the activity of the catalytic metal, such as oxides of Si, and metals that increase the activity, such as LB and Ce.

Fe 、 Ni等を含む酸化物が挙げられる。Examples include oxides containing Fe, Ni, etc.

酸化物の比表面積は2aorrr/を以下、好ましくは
10ないし1oort/lのものを使用するとよい。
The specific surface area of the oxide is preferably 2 aorrr/l or less, preferably 10 to 1 oorrr/l.

粒径分布は狭い方が均一な層を形成するために好都合で
ある。
A narrower particle size distribution is more convenient for forming a uniform layer.

酸化物層の厚みは、酸化物の種類や比表面積を考慮して
決めるが、例えばアルミナを使用する場合には5ないし
200μm1好ましくは60ないし100μ園とする。
The thickness of the oxide layer is determined in consideration of the type of oxide and the specific surface area, but for example, when alumina is used, the thickness is 5 to 200 μm, preferably 60 to 100 μm.

また例えば比表面積の異なるアルミナ層を2層またはそ
れ以上に積層し、上層はど比表面積の小さなもの(平均
粒径の大きなもの)を使用すれば表面における細孔の閉
塞を効果的に防ぐことができる。
In addition, for example, if two or more alumina layers with different specific surface areas are stacked, and the upper layer is made of alumina with a small specific surface area (large average particle size), clogging of pores on the surface can be effectively prevented. Can be done.

上記においてアルミナ以外の酸化物も勿論同様にして使
用可能であり、また異なった種類の酸化物を最適に組合
せてもよい。各層の厚みも最適に選択できる。
In the above, oxides other than alumina can of course be used in the same manner, and different types of oxides may be optimally combined. The thickness of each layer can also be optimally selected.

本発明の副燃焼室式ディーゼルエンジン11媒化するた
めに使用する他の物または方法は。
Other materials or methods used to convert the auxiliary combustion chamber type diesel engine 11 of the present invention.

通常この分野において使用する物および方法を用いるこ
とができる。
Materials and methods commonly used in this field can be used.

(実施例) 以下に本発明の実施例を詳細に説明する。なお、本発明
は下記実施例に限定されるものではない。
(Example) Examples of the present invention will be described in detail below. Note that the present invention is not limited to the following examples.

実施例1: 第1図は本発明の触媒化されたディーゼルエンジンの副
燃焼室の断面図を表わす。図中、1はグロープラグ、2
は燃料噴射弁、6は副燃焼室、4は給気弁、5はピスト
ンを表わす。
Example 1: FIG. 1 represents a cross-sectional view of the sub-combustion chamber of a catalyzed diesel engine of the present invention. In the diagram, 1 is a glow plug, 2
6 represents a fuel injection valve, 6 represents an auxiliary combustion chamber, 4 represents an intake valve, and 5 represents a piston.

グロープラグ1の表面にニッケル(N+)−クロム(C
r)−アルミニウム(At)合金の中間層を50μmの
厚さに形成し、その上に重量比で95チZr02−5%
CaOの組成の複合酸化物層を窒素雰囲気下で溶射法に
より50μmの厚さに形成し、更にジニトロジアミノ白
金および塩化ロジウム溶液に浸漬した後取出し、乾燥し
焼成して触媒金属(Pi 、 R11)を担持した。次
いでこれを比表面m20rr?/f のアルミナスラリ
ー液に浸漬した後取出し、乾燥、焼成してアルミナ層を
50μmの厚さに形成した。
Nickel (N+)-chromium (C
r) - An intermediate layer of aluminum (At) alloy is formed to a thickness of 50 μm, and 95% Zr02-5% by weight is applied thereon.
A composite oxide layer having a composition of CaO was formed to a thickness of 50 μm by thermal spraying in a nitrogen atmosphere, and then immersed in dinitrodiaminoplatinum and rhodium chloride solution, taken out, dried, and fired to form a catalyst metal (Pi, R11). was carried. Next, convert this to the specific surface m20rr? /f was immersed in an alumina slurry solution, taken out, dried, and fired to form an alumina layer with a thickness of 50 μm.

第2図は第1図のグロープラグ1の破線で囲んだ表面部
分■の拡大断面図を示す。図中6はグロープラグ基材、
7はN1−Cr−At中間層、8はzro、 −CaO
(P t + Rh )層、9はアルミナ層を示す。
FIG. 2 shows an enlarged cross-sectional view of the surface portion (2) of the glow plug 1 shown in FIG. 1 surrounded by a broken line. 6 in the figure is the glow plug base material,
7 is N1-Cr-At intermediate layer, 8 is zro, -CaO
(P t + Rh) layer, 9 indicates an alumina layer.

実施例2: 実施例1と同様の方法により、ただしグロ−プラグ1の
表面にNl−Cr −At中間層7を形成した後頁にそ
・の上に二酸化珪素(s iot )中間層を溶射法に
より50μmの厚さに形成して触媒化したグロープラグ
を得た。
Example 2: By the same method as in Example 1, but after forming the Nl-Cr-At intermediate layer 7 on the surface of the glow plug 1, a silicon dioxide (SIOT) intermediate layer was thermally sprayed thereon. A catalyzed glow plug was obtained by forming it to a thickness of 50 μm by the method.

第5図は本実施例のグロープラグの表面部分の一部拡大
断面図である。図中10はSin。
FIG. 5 is a partially enlarged sectional view of the surface portion of the glow plug of this embodiment. 10 in the figure is Sin.

中間層を表わし、他は第2図において示したものと同じ
意味を表わす。
represents the middle layer, and the others have the same meaning as shown in FIG.

S10.中間層を形成することにより、剥離に対する強
度が更に強いものとなる。
S10. By forming the intermediate layer, the strength against peeling becomes even stronger.

実施例5: 実施例1と同様の方法により第1図の副燃焼室6の内壁
面を触媒化して本発明のディーゼルエンジンを得た。
Example 5: The inner wall surface of the auxiliary combustion chamber 6 shown in FIG. 1 was catalyzed by the same method as in Example 1 to obtain a diesel engine of the present invention.

実施例4: 実施例1と同様の方法により、ただしZrO2−CaO
(Pt 、 Rh)層8を形成した後その上に比表面積
1ooy/fの粒径の小さなアルミナ層を25μmの厚
さに形成し、更にその上に比表面積10め勺の粒径の大
きなアルミナ層を25μmの厚さに形成した。
Example 4: By the same method as in Example 1, except that ZrO2-CaO
After forming the (Pt, Rh) layer 8, a small alumina layer with a specific surface area of 1 ooy/f and a thickness of 25 μm is formed thereon, and a layer of alumina with a large particle size and a specific surface area of 10 mm is further formed on top of the layer 8. The layer was formed to a thickness of 25 μm.

第4図は本実施例のグロープラグの表面部分の一部拡大
断面図である。図中11は粒径の小さなアルミナ層、1
2は粒径の大きなアルミナ層を表わし、他は第2図にお
いて示したものと同じ意味を表わす。
FIG. 4 is a partially enlarged sectional view of the surface portion of the glow plug of this embodiment. In the figure, 11 is an alumina layer with small particle size, 1
2 represents an alumina layer with a large particle size, and the others have the same meanings as shown in FIG.

表面に粒径の大きなアルミナ層を設けることにより細孔
が被毒物質により閉塞し難いものとなる。
By providing an alumina layer with a large particle size on the surface, the pores are less likely to be clogged by poisonous substances.

実施例5: 実施例1と同様の方法により、ただしZrO。Example 5: By the same method as in Example 1, but using ZrO.

−CaO(Pi、 Rh)層8を形成した後その上に触
媒金属を担持しない比表面積1awr/yのZ rO2
−CaO層を50μmの厚さに形成した。
- ZrO2 with a specific surface area of 1 awr/y on which no catalytic metal is supported after forming the CaO (Pi, Rh) layer 8
A -CaO layer was formed to a thickness of 50 μm.

第5図は本実施例のグロープラグの表面部分の一部拡大
断面図である。図中16はZr02−’ CaO層を表
わし、他は第2図において示したものと同じ意味を表わ
す。
FIG. 5 is a partially enlarged sectional view of the surface portion of the glow plug of this embodiment. In the figure, 16 represents the Zr02-'CaO layer, and the others have the same meanings as shown in FIG.

表面に設ける酸化物層を触媒金属を担持した酸化物層と
同じにした場合には互いにしつかり固着するので剥離し
難いものとなる。
If the oxide layer provided on the surface is the same as the oxide layer supporting the catalyst metal, they will firmly adhere to each other and will be difficult to peel off.

実施例6: 実施例1と同様の方法により、ただしZrO。Example 6: By the same method as in Example 1, but using ZrO.

−Cab(Pt、Rh)層8を形成した後その上に触媒
金属を担持しない比表面積10m’/7のZr02− 
CaO層を25μmの厚さに形成し、更にその上に比表
面[100d/fの粒径の大きなアルミナ層を25μm
の厚さに形成した。
- Zr02 with a specific surface area of 10 m'/7 on which no catalyst metal is supported after forming the Cab (Pt, Rh) layer 8 -
A CaO layer was formed to a thickness of 25 μm, and an alumina layer with a large grain size of 25 μm with a specific surface of [100 d/f] was formed on top of the CaO layer to a thickness of 25 μm.
It was formed to a thickness of .

第6図は本実施例のグロープラグの表面部分の一部拡大
断面図である。図中、12および13は各々第4図およ
び第5図において示したものと同じ意味を表わし、他は
第2図において示したものと同じ意味を表わす。
FIG. 6 is a partially enlarged sectional view of the surface portion of the glow plug of this embodiment. In the figure, 12 and 13 have the same meanings as shown in FIGS. 4 and 5, respectively, and the others have the same meanings as shown in FIG. 2.

本実施例は実施例4および実施例5の特徴を合せ持ち、
剥離し難くまた表面の細孔の閉塞も起り難い。
This example has the features of Example 4 and Example 5,
It is difficult to peel off and blockage of pores on the surface is also difficult.

比較例: 触媒金属を担持した酸化物層の上にアルミナ層を設けな
いこと以外は実施例1と同様の方法により比較例のグロ
ープラグを得た。
Comparative Example: A glow plug of a comparative example was obtained in the same manner as in Example 1 except that an alumina layer was not provided on the oxide layer supporting the catalyst metal.

実根耐久試験: 供試エンジン2L−Tを使用し、回転数640゜rpm
 、全負荷の状態で連続高速耐久試験を30時間行った
Actual durability test: Using test engine 2L-T, rotation speed 640°rpm
A continuous high-speed durability test was conducted for 30 hours under full load.

着火性能評価試験: 実施例1および比較例において製造した触媒化したグロ
ープラグを装着したディーゼルエンジン副燃焼室サンプ
ルを所定温度に保ち、JIS −2号軽油を一定鴬(1
μt)噴射し、発生する二酸化炭素(CO,)の量を≠
カスクロマトグラフィーで定量した。結果を第7図に7
jeす。
Ignition performance evaluation test: Diesel engine auxiliary combustion chamber samples equipped with catalyzed glow plugs produced in Example 1 and Comparative Example were maintained at a predetermined temperature, and JIS-2 diesel oil was heated to a certain level (1
μt), and the amount of carbon dioxide (CO,) generated is ≠
It was quantified by Cass chromatography. The results are shown in Figure 7.
I'm jealous.

図より明らかなように1表面に酸化物層を設けない従来
品は初期の着火性能は高いか、耐久試験後は大幅に性能
が低下するのに対し。
As is clear from the figure, conventional products that do not have an oxide layer on one surface have high initial ignition performance, whereas the performance deteriorates significantly after the durability test.

表面に酸化物層を設けた本発明品は初期および耐久後に
おいてはとんと性能の変化がなく。
The product of the present invention, which has an oxide layer on its surface, shows no change in performance at the initial stage or after durability.

また耐久後においては従来品を大幅に上まわる着火性能
を示す。
Furthermore, after durability, the ignition performance significantly exceeds that of conventional products.

(発明の効果) 上述のように本発明の副然跣蚕式ディーゼルエンジンは
酸化物層に触媒金属を担持後、該層上に更に適当な酸化
物層を最適な厚さに担持するものであるため、下層の触
媒層を排気ガス中のカルシウム、#、鉛等の被窃物質か
ら保護するものとなり、長い間使用しても触媒性能が低
下せず、安定した着火性能および始動性を保持するもの
となり、エンジンの性能の安定に大きな効果を奏する。
(Effects of the Invention) As described above, in the diesel engine of the present invention, after the catalytic metal is supported on the oxide layer, an appropriate oxide layer is further supported on the layer to the optimum thickness. This protects the lower catalyst layer from stolen substances such as calcium, #, and lead in the exhaust gas, and the catalyst performance does not deteriorate even after long-term use, maintaining stable ignition performance and startability. This has a great effect on stabilizing engine performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の触媒化されたディーゼルエ
ンジン副燃焼室の断面図、 第2図は第1図のグロープラグの破線で囲んだ表面部分
■の拡大断面図。 第3図ないし第6図は本発明の他の実施例のグロープラ
グ表面の拡大断面図、 第7図は本発明の一実施例と比較例とを比べた、初期お
よび耐久紙におけるグロープラグ表面温度と二酸化炭素
発生幕の関係を示すグラフである。 図中、 1−・・グロープラグ、2・−・燃料噴射弁% 3・・
・副燃焼室、4・・・給気弁、5・・・ピストン、6・
−・グロープラグ基材、7・・・Nl−Cr−Al中間
層、 8・・・Zr0l−CaO(P t * Rh 
)層% 9−・・アルミナ層、1゜・・・SiO,中間
層、11−・・粒径の小さなアルミナ層、12−・・粒
径の大きなアルミナ層、13・・・Zr02−CaO層 特許用 願人 トヨタ自動車株式会社 牙 1 図 す 才2図 才3図 牙4図 う 牙5図 牙6図 3jP7図 グロープラグ表面温度(’C)
FIG. 1 is a cross-sectional view of a catalyzed diesel engine sub-combustion chamber according to an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of the surface portion (2) of the glow plug in FIG. 1 surrounded by a broken line. Figures 3 to 6 are enlarged cross-sectional views of glow plug surfaces of other embodiments of the present invention, and Figure 7 is a comparison of glow plug surfaces in initial and durable paper between an embodiment of the present invention and a comparative example. It is a graph showing the relationship between temperature and carbon dioxide generation curtain. In the diagram, 1--Glow plug, 2--Fuel injection valve% 3--
・Sub-combustion chamber, 4... Air supply valve, 5... Piston, 6.
- Glow plug base material, 7... Nl-Cr-Al intermediate layer, 8... Zr0l-CaO(Pt*Rh
) Layer% 9-...Alumina layer, 1゜...SiO, intermediate layer, 11-...Alumina layer with small particle size, 12-...Alumina layer with large particle size, 13...Zr02-CaO layer Patent Applicant: Toyota Motor Corporation Fang 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 3jP7 Glow plug surface temperature ('C)

Claims (1)

【特許請求の範囲】[Claims] 副燃焼室内壁面あるいはグロープラグの表面の少な(と
も一部に酸化物層を形成し、該酸化物層に触媒金属を担
持した後、該層上に更にアルミナ等の酸化物層を形成せ
しめたことを特徴とする副燃焼室式ディーゼルエンジン
An oxide layer is formed on a small part of the wall surface of the sub-combustion chamber or the surface of the glow plug, and after supporting the catalytic metal on the oxide layer, an oxide layer such as alumina is further formed on the layer. This is a sub-combustion chamber type diesel engine.
JP58140190A 1983-07-30 1983-07-30 Sub-combustion chamber type diesel engine Pending JPS6032927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58140190A JPS6032927A (en) 1983-07-30 1983-07-30 Sub-combustion chamber type diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58140190A JPS6032927A (en) 1983-07-30 1983-07-30 Sub-combustion chamber type diesel engine

Publications (1)

Publication Number Publication Date
JPS6032927A true JPS6032927A (en) 1985-02-20

Family

ID=15262997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58140190A Pending JPS6032927A (en) 1983-07-30 1983-07-30 Sub-combustion chamber type diesel engine

Country Status (1)

Country Link
JP (1) JPS6032927A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006492A1 (en) * 1996-08-13 1998-02-19 Toyota Jidosha Kabushiki Kaisha Exhaust emission control catalyst for diesel engines
KR20230079593A (en) * 2021-11-29 2023-06-07 주식회사 퓨어엔비텍 Ultrahigh molecular weight polyethylene-based hollow fiber membrane and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006492A1 (en) * 1996-08-13 1998-02-19 Toyota Jidosha Kabushiki Kaisha Exhaust emission control catalyst for diesel engines
US6426316B2 (en) 1996-08-13 2002-07-30 Toyota Jidosha Kabushiki Kaisha Exhaust emission control catalyst for diesel engines
KR20230079593A (en) * 2021-11-29 2023-06-07 주식회사 퓨어엔비텍 Ultrahigh molecular weight polyethylene-based hollow fiber membrane and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5210306B2 (en) Three-way catalyst
CA1340304C (en) Catalyst for the processing of internal combustion engine exhaust gases,process for producing said catalyst
JP4548968B2 (en) Ceramic support and ceramic catalyst body
US4868149A (en) Palladium-containing catalyst for treatment of automotive exhaust and method of manufacturing the catalyst
US5063192A (en) Catalyst for purification of exhaust gases
US4957896A (en) Catalyst for purification of exhaust gases
US4927799A (en) Catalyst for the purification of exhaust gas
US4367162A (en) Catalyst for purifying exhaust gases and a method for producing the catalyst
EP1319433B1 (en) Catalyst for purifying exhaust gas from internal combustion engine and purifying method thereof
US4910180A (en) Catalyst and process for its preparation
US4972811A (en) Ignition device with lowered ignition temperature
JPH04224220A (en) Honeycomb heater and catalytic converter
CN112384298A (en) Novel PGM nanoparticle TWC catalysts for gasoline exhaust applications
EP1474232B1 (en) Use of a catalyst for suppressing hydrogen sulfide
JPH10296085A (en) Exhaust gas-purifying catalyst
CN112805089A (en) Transition metal doped alumina for improved OSC and TWC performance
EP0399891B1 (en) Multifonctional catalysts which contain cerium, uranium and at least a metal for converting pollutants from exhaust gases of combustion engines, and their preparation
JPH09173850A (en) Non-selective oxidation catalyst and use thereof
EP1153649B1 (en) Catalyst for purification of exhaust gas
CN118829482A (en) Partitioned TWC catalyst for gasoline engine exhaust treatment
JPH07299360A (en) Catalyst for purifying exhaust gas
JPWO2006103781A1 (en) Exhaust gas purification device and exhaust gas purification catalyst
CN116018202A (en) Improved TWC catalyst for gasoline engine exhaust treatment
US4960574A (en) Palladium containing catalyst for treatment of automotive exhaust
JPS6032927A (en) Sub-combustion chamber type diesel engine