[go: up one dir, main page]

JPS6030101B2 - Pattern formation method - Google Patents

Pattern formation method

Info

Publication number
JPS6030101B2
JPS6030101B2 JP4452476A JP4452476A JPS6030101B2 JP S6030101 B2 JPS6030101 B2 JP S6030101B2 JP 4452476 A JP4452476 A JP 4452476A JP 4452476 A JP4452476 A JP 4452476A JP S6030101 B2 JPS6030101 B2 JP S6030101B2
Authority
JP
Japan
Prior art keywords
photosensitive resin
positive photosensitive
film
positive
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4452476A
Other languages
Japanese (ja)
Other versions
JPS52127173A (en
Inventor
賢造 畑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4452476A priority Critical patent/JPS6030101B2/en
Publication of JPS52127173A publication Critical patent/JPS52127173A/en
Publication of JPS6030101B2 publication Critical patent/JPS6030101B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Element Separation (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 本発明は基板に形成された任意形状の凹部に選択的に金
属または絶縁物を埋設することによってパターンを形成
する方法に関するものであって、その特徴とするところ
はポジ型感光性樹脂と同ポジ型感光性樹脂の溶剤に溶解
しない材料よりなる層の2層構造にある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a pattern by selectively embedding a metal or an insulating material in a recess of an arbitrary shape formed in a substrate, and its feature is that It has a two-layer structure consisting of a type photosensitive resin and a layer made of a material that does not dissolve in solvents of the same positive type photosensitive resin.

まず従来例を説明する。半導体基板あるいは絶縁性基板
上に光蝕刻技術を用いパターン形成を行ない、さらに拡
散技術を用いて不純物拡散を行なって、所望の特性を有
する受動素子あるいは能動素子を前記半導体基板あるい
は絶縁性基板上に形成せしめ、いわゆるIC、偽1等を
構成できる。このようなIC、は1において前記半導体
基板あるいは絶縁性基板に設けた凹部のみに選択的に金
属あるいは絶縁物層を埋設し、特長あるIC、LSIを
構成する試みがなされてきた。たとえば第1図に示す如
く基板1に凹部2を形成し(第1図a)、絶縁物層また
は金属層3をスパッタ一、蒸着等の手段により形成し(
第1図b)、凸部4の前記絶縁物層または金属層3を除
去すれば図cの如く、凹部2に埋設された金属または絶
縁物層3のみが残ることになる。このようにして形成し
たパターンの応用例として第2図の如く絶縁分離がある
。ェピタキシャル成長層5を有する半導体基板6に前記
ェピタキシャル成長層5に達する深さまで例えばSi0
2あるいは多結晶シリコン7が埋設されており、素子が
形成されている領域はお互いに前記Si02あるいは多
結晶シリコン7によって絶縁分離される。8はSi02
膜、9は電極配線膜アルミニウム層である。
First, a conventional example will be explained. A pattern is formed on a semiconductor substrate or an insulating substrate using a photoetching technique, and an impurity is diffused using a diffusion technique to form a passive element or an active element having desired characteristics on the semiconductor substrate or an insulating substrate. It is possible to form a so-called IC, a pseudo-1, etc. Attempts have been made to construct ICs and LSIs with such features by selectively embedding metal or insulating layers only in recesses provided in the semiconductor substrate or insulating substrate. For example, as shown in FIG. 1, a recess 2 is formed in a substrate 1 (FIG. 1a), and an insulating layer or a metal layer 3 is formed by means such as sputtering or vapor deposition.
If the insulating layer or metal layer 3 of the convex portion 4 is removed as shown in FIG. 1b), only the metal or insulating layer 3 buried in the recessed portion 2 remains as shown in FIG. 1c. An example of the application of the pattern formed in this manner is insulation isolation as shown in FIG. For example, Si0 is applied to the semiconductor substrate 6 having the epitaxial growth layer 5 to a depth reaching the epitaxial growth layer 5.
2 or polycrystalline silicon 7 is buried, and the regions where elements are formed are insulated and separated from each other by the Si02 or polycrystalline silicon 7. 8 is Si02
The film 9 is an electrode wiring film aluminum layer.

従来前記した凹部に選択的に金属あるいは絶縁物を埋設
する方法として下記のごとき例がある。
Conventionally, there are the following examples of methods for selectively embedding metal or insulating material in the above-mentioned recesses.

従来例 1(第3図)半導体あるいは絶縁物等の基板1
1上にネガ型感光性樹脂あるいはポジ型感光性樹脂によ
り形成した樹脂パターン12をマスクとして、前記半導
体あるいは絶縁物等の基板11を腐蝕する液またはガス
によって凹部13を設ける(図b)。
Conventional example 1 (Figure 3) Substrate 1 of semiconductor or insulator, etc.
Using a resin pattern 12 formed of a negative-type photosensitive resin or a positive-type photosensitive resin on the substrate 1 as a mask, a recess 13 is formed using a liquid or gas that corrodes the substrate 11 such as a semiconductor or an insulator (FIG. b).

次いで前記基板11に設けた凹部13に埋設すべき、S
i02層あるいは金型膜1 4をスパッタ一法、黍着法
等により形成する(図c)。この状態において前記Si
02層あるいは金属層1 4は前記基板11に設けた凹
部と樹脂パターン12上に付着させることになる。次に
前記樹脂パターン12を溶解する溶液に浸せば、前記樹
脂パターン12が除去されると同時に樹脂パターン12
上のSi02層あるいは金属層14も除去され図dの如
く、基板11の凹部のみにSi02層あるいは金属層1
4が埋設されることになる。従来例 2(第4図) 基板21に光蝕刻法を用いて凹部22を設け(図a)、
Si02あるいは金属層23を蒸着法、スパッタ一法等
で付着せしめる。
Next, S to be buried in the recess 13 provided in the substrate 11.
The i02 layer or the mold film 14 is formed by sputtering, spraying, etc. (FIG. c). In this state, the Si
The 02 layer or the metal layer 14 is deposited on the recesses provided in the substrate 11 and on the resin pattern 12. Next, when the resin pattern 12 is immersed in a solution that dissolves the resin pattern 12, the resin pattern 12 is removed and the resin pattern 12 is removed.
The upper Si02 layer or metal layer 14 is also removed, and the Si02 layer or metal layer 1 is formed only in the concave portion of the substrate 11, as shown in Figure d.
4 will be buried. Conventional example 2 (Fig. 4) A recess 22 is provided on a substrate 21 using a photoetching method (Fig. a),
A Si02 or metal layer 23 is deposited by vapor deposition, sputtering, or the like.

この状態を図bに示す。次いで感光性樹脂24を塗布し
、前記感光性樹脂24に発生したピンホールを利用して
、前記Si02あるいは金属層23を腐蝕する溶液に示
すことによって、基板21の凸部に形成された層23は
除去され空洞25が発生する(図d)。すなわち第3図
dと同じ状態を形成することができる。従来のこのよう
なパターン形成方法にあっては例えば従来例1では金属
あるいは絶縁膜を直接、樹脂パターン上に付着せしめる
ために、前記金属層を形成する工程が樹脂パターンの劣
化する温度以上であれば正常なパターン形成はできない
This state is shown in Figure b. Next, a photosensitive resin 24 is applied, and the layer 23 formed on the convex portion of the substrate 21 is exposed to a solution that corrodes the Si02 or metal layer 23 using the pinholes generated in the photosensitive resin 24. is removed, creating a cavity 25 (Figure d). In other words, the same state as shown in FIG. 3d can be formed. In such a conventional pattern forming method, for example, in Conventional Example 1, in order to deposit a metal or an insulating film directly onto the resin pattern, the process of forming the metal layer may be performed at a temperature higher than the temperature at which the resin pattern deteriorates. Otherwise, normal pattern formation cannot be performed.

また絶縁膜がSi3N4、多結晶シリコン等にあっては
それらの生成温度は300つ0をはるかに越えるため、
樹脂はすでに分解され、パターン形成は不可能となる。
すなわち樹脂の耐熱温度約300qo以下で前記絶縁膜
、金属膜を形成せねばならないため、この方式で形成で
きる絶縁膜、金属膜にも限定があり実用的でない。また
、従来例2は従来例1を改良したもので、第4図bの如
く金属膜あるいは絶縁膜の形成が終ってから感光性樹脂
24を塗布するのであるから、前記金属膜あるいは絶縁
膜の形成条件に制約を受けることがないが、基板21の
凸部に形成された感光性樹脂24のピンホールを利用し
、金属膜あるいは絶縁膜23を除去する。
Furthermore, when the insulating film is made of Si3N4, polycrystalline silicon, etc., the formation temperature of these films far exceeds 300°C.
The resin has already decomposed and pattern formation is no longer possible.
That is, since the insulating film and the metal film must be formed at a resin heat resistance temperature of about 300 qo or less, there are limitations to the insulating film and metal film that can be formed by this method, making it impractical. Furthermore, Conventional Example 2 is an improvement over Conventional Example 1, in that the photosensitive resin 24 is applied after the formation of the metal film or insulating film as shown in FIG. 4b. Although there are no restrictions on the formation conditions, the metal film or insulating film 23 is removed using pinholes in the photosensitive resin 24 formed on the convex portions of the substrate 21.

このために次のような問題があった。すなわち腰23の
厚さは除去すべきパターン幅に比べて著しく小さく、ま
た、前述した樹脂24に発生したピンホールは第5図に
おいて角26に発生しやすい。このために膜23は側面
から除去されるが、パターン幅が広い場合には第5図a
の如く凸部の中心部には膜23′が残り、樹脂24を除
去しても第5図bの如く、正常なパターン形成ができな
い。また膜23を除去する液に長時間浸して置くと第6
図aの如く樹脂24の一部が破損され膜23が徐々に除
去されるが、結果的には第6図bの如く膜23が残って
しまい不完全なパターンを形成することになる。本発明
はかかる欠点を完全に除去し、確実なるパターン形成方
法に関するものである。
This caused the following problems. That is, the thickness of the waist 23 is significantly smaller than the width of the pattern to be removed, and the pinholes generated in the resin 24 described above tend to occur at the corners 26 in FIG. For this purpose, the film 23 is removed from the side, but if the pattern width is wide, as shown in FIG.
As shown in FIG. 5B, the film 23' remains at the center of the convex portion, and even if the resin 24 is removed, a normal pattern cannot be formed as shown in FIG. 5B. Also, if the membrane 23 is left immersed in the liquid for a long time, the sixth
As shown in FIG. 6A, part of the resin 24 is damaged and the film 23 is gradually removed, but as a result, the film 23 remains as shown in FIG. 6B, resulting in the formation of an incomplete pattern. The present invention completely eliminates such drawbacks and relates to a reliable pattern forming method.

次に本発明の構成について述べる。本発明の構成のポイ
ントは最初にポジ型感光性樹脂を塗布し、次いでネガ型
感光性樹脂等のポジ型感光性樹脂の溶剤に熔解しない材
料よりなる層を前記ポジ型感光性樹脂よりも著しく薄く
塗布し、基板全面に光を当て、次いでポジ型感光性樹脂
の現像液中もしくは溶液中に浸し、不要のポジ型感光性
樹脂を完全に除去し、除去すべき絶縁膜あるいは金属膜
の面を完全に露出させることにある。
Next, the configuration of the present invention will be described. The key point of the structure of the present invention is that a positive photosensitive resin is first coated, and then a layer made of a material that does not dissolve in the solvent of the positive photosensitive resin, such as a negative photosensitive resin, is applied to a layer that is significantly more than the positive photosensitive resin. Apply a thin layer, expose the entire surface of the substrate to light, then immerse it in a positive photosensitive resin developer or solution to completely remove unnecessary positive photosensitive resin, and then remove the surface of the insulating film or metal film to be removed. The goal is to fully expose the

次に本発明の構成をわかりやすくするために実験データ
を明示する。
Next, experimental data will be clearly explained in order to make the structure of the present invention easier to understand.

我々は半導体基板上に凹部が形成され、これに感光性樹
脂が塗布されている状態を実験的に把握した。
We have experimentally determined that a recess is formed on a semiconductor substrate and a photosensitive resin is applied to the recess.

第7図において半導体基板31には凹部32と凸部33
とが形成され、この上に感光性樹脂34が塗布されると
、その膜厚は比較的平坦領域の広い部分35と、前記凹
部32と凸部33との接点すなわち段部の頂点36とで
は著しく膜厚に差が発生する。これは頂点36付近にお
ける樹脂層34の流れが段差のために速くなり、かつ、
凹部領域へ引きづられるか、もしくは凸部領域へ引きづ
られるために薄く形成されるものと推定される。第8図
は第7図における頂点36の膜厚(第8図では段部での
最小膜厚)と凹部の比較的広い領域での膜厚35(第8
図では樹脂膜厚)との関係を示したものである。
In FIG. 7, a semiconductor substrate 31 has a concave portion 32 and a convex portion 33.
is formed, and when the photosensitive resin 34 is applied thereon, the film thickness is different between the relatively flat wide area 35 and the contact point between the recess 32 and the protrusion 33, that is, the apex 36 of the step. There is a significant difference in film thickness. This is because the flow of the resin layer 34 near the apex 36 becomes faster due to the step difference, and
It is presumed that it is formed thin because it is dragged toward the concave region or toward the convex region. FIG. 8 shows the film thickness at the apex 36 in FIG. 7 (minimum film thickness at the stepped part in FIG.
The figure shows the relationship with resin film thickness).

図においては段差と段差の傾斜角度別にデータを記載し
てある。図によれば、例えば比較的平坦部での膜厚(第
7図の35)が0.8仏mであれば頂点36の膜厚は半
分以下の0.36〃のとなり著しくピンホールを有する
膜厚となる。
In the figure, data is shown for each step and the inclination angle of the step. According to the figure, for example, if the film thickness at a relatively flat area (35 in Fig. 7) is 0.8 mm, the film thickness at the apex 36 is less than half, 0.36 mm, and there are significant pinholes. film thickness.

なお、第8図のデータはポジ型感光性樹脂AZ−135
0J(会社名:シツプレィ社)によるものである。次に
本発明の構成について説明する。第9図a〜eは本発明
の一実施例を示す。
The data in Figure 8 is for positive photosensitive resin AZ-135.
0J (company name: Situplay). Next, the configuration of the present invention will be explained. Figures 9a to 9e show an embodiment of the present invention.

半導体基板あるいはガラス、セラミック、樹脂等の絶縁
性基板もしくはCu、AI等の金属基板41(以下基板
41と略す)に光蝕刻法によりパターンが形成され、所
定の形状に凸部42と凹部43とを設ける(第9図a)
A pattern is formed on a semiconductor substrate, an insulating substrate such as glass, ceramic, resin, etc., or a metal substrate 41 (hereinafter referred to as substrate 41) such as Cu, AI, etc. by photolithography, and convex portions 42 and concave portions 43 are formed in a predetermined shape. (Figure 9a)
.

この場合段部の傾斜はできる限り急峻なことが望ましい
。したがって基板41のエッチングはケミカルエッチン
グよりもむしろプラズマエッチングあるいはイオンエッ
チングによる方法であれば角度600以上を得ることが
できる。次いでスパッタリング法あるし、は蒸着法によ
りSj02膜、Si3N4膜、AI203膜等の絶縁膜
あるいは多結晶シリコン膜、ェピタキシャル成長膜等の
半導体膜あるいは銅、アルミニウム等の金属膜44(以
下膜44と略す)を付着せしめる(第9図b)。
In this case, it is desirable that the slope of the stepped portion be as steep as possible. Therefore, if the substrate 41 is etched by plasma etching or ion etching rather than chemical etching, an angle of 600 or more can be obtained. Next, an insulating film such as an Sj02 film, a Si3N4 film, or an AI203 film, a semiconductor film such as a polycrystalline silicon film, an epitaxially grown film, or a metal film 44 (hereinafter referred to as film 44) such as a polycrystalline silicon film or an epitaxially grown film is formed by a sputtering method or a vapor deposition method. (omitted)) (Fig. 9b).

膜44の厚さは基板41に設けた凹部43を丁度埋設せ
しめる程度でも良いが、本発明にのべる以後の工程によ
って左右されるものである。第9図においては凹部43
の深さと膜44の厚さを同一としている。次にポジ型感
光性樹脂45、例えばAZ−1350J(商品名)を例
えばlAmの厚さにスピンナーにより塗布し、熱重合を
発生しない程度の低い温度60qo〜90qo適度で1
0〜3び分間熱処理し、前記ポジ型感光性樹脂45を乾
燥させ、さらに前記ポジ型感光性樹脂45上にネガ型感
光性樹脂46例えばKTFR(商品名)を0.6山肌の
厚さに塗布し、90℃で10〜30分間の乾燥を行なう
(第9図c)。
The thickness of the film 44 may be just enough to bury the recess 43 provided in the substrate 41, but it depends on the subsequent steps involved in the present invention. In FIG. 9, the recess 43
The depth of the film 44 and the thickness of the film 44 are made the same. Next, a positive photosensitive resin 45, such as AZ-1350J (trade name), is applied to a thickness of 1 Am using a spinner, and heated at a moderate temperature of 60 qo to 90 qo so as not to cause thermal polymerization.
Heat treatment is performed for 0 to 3 minutes to dry the positive photosensitive resin 45, and then a negative photosensitive resin 46 such as KTFR (trade name) is applied on the positive photosensitive resin 45 to a thickness of 0.6 cm. It is coated and dried at 90°C for 10-30 minutes (Figure 9c).

この状態で凸部の頂上Aの感光性樹脂の厚さは第8図を
適用すればポジ型感光性樹脂45は0.6〃凧、ネガ型
感光性樹脂46にあっては少なくとも0.14ムのとな
り著しく薄く、この頂上A附近での著しいピンホール発
生が見られる。特にネガ型感光性樹脂46において顕著
となる。頂上A付近でのピンホール量が多いほど本発明
の効果は大となる。ネガ型感光性樹脂においてピンホー
ル量が増大する膜厚は一般に0.6仏の程度であること
が知られている。頂点A付近の膜厚を0.6〃のにする
には第8図より平均的感光性樹脂層の膜厚は1.0〃の
であるから、第9図のネガ型感光性樹脂層46の膜厚は
1.0〃肌以下が望ましい。また最小の膜厚は実用的に
は0.1仏のである。これ以下の膜厚では膜厚の制御性
、ピンホールの極端な増大があって使用に耐えない。す
なわち次工程でのポジ型感光性樹脂の除去の際、ピンホ
ールの発生により凹部上のポジ型感光性樹脂層45も除
去され実用的でない。したがってネガ型感光性樹脂の平
均的膜厚は平坦部において0.1〜1.0A肌が望まし
い。一方ポジ型感光性樹脂とネガ型感光性樹脂との腰厚
の割合は実験的に10:1〜1:1が適切であつた。
In this state, if the thickness of the photosensitive resin at the top A of the convex portion is applied to FIG. 8, the thickness of the positive photosensitive resin 45 is 0.6, and the thickness of the negative photosensitive resin 46 is at least 0.14. The area next to the peak is extremely thin, and significant pinholes can be seen near this summit A. This is particularly noticeable in the negative photosensitive resin 46. The greater the number of pinholes near the top A, the greater the effect of the present invention. It is known that the film thickness at which the amount of pinholes increases in a negative photosensitive resin is generally about 0.6 mm. In order to make the film thickness near the vertex A 0.6〃, the average film thickness of the photosensitive resin layer is 1.0〃 from FIG. 8, so the negative photosensitive resin layer 46 in FIG. The film thickness is preferably 1.0 skin or less. Further, the minimum film thickness is practically 0.1 mm. If the film thickness is less than this, the controllability of the film thickness will be poor and the number of pinholes will be extremely large, making it unusable. That is, when the positive photosensitive resin is removed in the next step, the positive photosensitive resin layer 45 on the recessed portions is also removed due to the generation of pinholes, which is not practical. Therefore, it is desirable that the average film thickness of the negative photosensitive resin is 0.1 to 1.0 A in the flat area. On the other hand, the ratio of the thickness of the positive-working photosensitive resin to the negative-working photosensitive resin was experimentally found to be 10:1 to 1:1.

次に第9図cの状態で前記ポジ型感光性樹脂が感光する
波長の光、実際には高圧水銀灯から発せられる紫外光を
照射する。
Next, in the state shown in FIG. 9c, the positive photosensitive resin is irradiated with light of a wavelength to which it is sensitive, in fact ultraviolet light emitted from a high-pressure mercury lamp.

この状態で前記ポジ型感光性樹脂45は溶剤に対して熔
解しやすい状態となる。すなわちポジ型感光性樹脂45
の専用現像液あるいは希釈したNaOH液、アセトン液
に浸すことによって基板41上の凸部のポジ型感光性樹
脂45はネガ型感光性樹脂46に発生しているピンホー
ルを通して、前記溶剤によって溶解除去され、次いでこ
の部分のネガ型感光性樹脂46も付着力を失ない容易に
除去されてしまう。この状態を第9図dに示す。前記工
程において、溶剤に浸しながら10KHz〜500KH
z程度の超音波を加えるとポジ型感光性樹脂が溶解・除
去される速度が早く、かつ除去が確実となるばかりか、
凸部上のネガ型感光性樹脂の除去もより完全に処理する
ことができる。
In this state, the positive photosensitive resin 45 becomes easily soluble in a solvent. That is, positive photosensitive resin 45
By immersing the substrate in a special developer, diluted NaOH solution, or acetone solution, the positive photosensitive resin 45 on the convex portion of the substrate 41 is dissolved and removed by the solvent through the pinholes generated in the negative photosensitive resin 46. Then, the negative photosensitive resin 46 in this area also loses its adhesion and is easily removed. This state is shown in FIG. 9d. In the above process, the frequency of 10KHz to 500KH is immersed in a solvent.
Applying ultrasonic waves of about
The negative photosensitive resin on the convex portions can also be removed more completely.

さりこ第9図dの状態において10ぴC〜260qCで
熱処理を加えれば凹部に付着したポジ型感光性樹脂45
と膜44との密着が高まり、次工程で液のしみこみがな
くより完全なパターンを得ることができる。第9図dの
如く凸部の膜44は完全に露出しているから膜44を腐
蝕あるいは溶解する液に浸すことにより凸部の腰44は
基板41の表面まで完全に除去される。次いで樹脂層を
加熱した比S04液あるいはボイルしたアセトン溶液中
に浸すことにより前記樹脂層は除去され第9図eの状態
を得ることができる。前記工程において凹部のポジ型感
光性樹脂45の側面は膜44に囲まれ、凸部のポジ型感
光性樹脂45の側面は薄く形成され、特に頂点附近にピ
ンホールの多いネガ型感光性樹脂46で囲まれている。
したがって、ボジ型感光性樹脂45を溶解する溶液はピ
ンホールの多いネガ型感光性樹脂46の凸部のポジ型感
光性樹脂45の側面から浸透し、これを溶解せしめる。
一方、凹部のポジ型感光性樹脂45は側面を膜44で囲
まれ上面はネガ型感光性樹脂46で囲まれているが、織
部のネガ型感光性樹脂46で一部覆われていない部分も
隙間が著しく小さいため、溶液の侵入による熔解はごく
わずかしか確認されなかった。むしろ側面が露出してい
る凸部のポジ型感光性樹脂25の溶解速度が著しく早い
ものである。以上のべた如く本発明の上記実施例はポジ
型感光性樹脂の熔解容易性とネガ型感光性樹脂の段部で
の膜厚の著しい減少性を有効に活用したものであって、
除去すべき膜面を第9図dの如く完全に露出させること
にある。
If heat treatment is applied at 10 pC to 260 qC in the condition shown in Figure 9 d, the positive photosensitive resin 45 attached to the recesses will be removed.
The adhesion between the film 44 and the film 44 is improved, and a more complete pattern can be obtained in the next step without liquid seepage. As shown in FIG. 9D, the film 44 of the convex portion is completely exposed, so by immersing the film 44 in a liquid that corrodes or dissolves the film 44, the waist 44 of the convex portion is completely removed to the surface of the substrate 41. The resin layer is then removed by immersing it in a heated S04 solution or boiled acetone solution to obtain the state shown in FIG. 9e. In the process, the side surfaces of the positive photosensitive resin 45 in the concave portions are surrounded by the film 44, and the side surfaces of the positive photosensitive resin 45 in the convex portions are formed thin, and the negative photosensitive resin 46 has many pinholes especially near the apex. surrounded by
Therefore, the solution for dissolving the positive photosensitive resin 45 penetrates from the side surface of the positive photosensitive resin 45 in the convex portion of the negative photosensitive resin 46, which has many pinholes, and dissolves it.
On the other hand, the positive photosensitive resin 45 in the concave portion is surrounded by a film 44 on the sides and the negative photosensitive resin 46 on the top surface, but some parts are not covered with Oribe's negative photosensitive resin 46. Because the gap was extremely small, only a small amount of melting due to solution intrusion was observed. Rather, the rate of dissolution of the positive photosensitive resin 25 in the convex portions with exposed side surfaces is extremely fast. As described above, the above-mentioned embodiments of the present invention effectively utilize the ease of melting of the positive photosensitive resin and the remarkable ability to reduce the film thickness at the stepped portion of the negative photosensitive resin.
The purpose is to completely expose the film surface to be removed as shown in FIG. 9d.

また、凹部上のネガ型感光性樹脂は下面にあるポジ型感
光性樹脂のピンホールを防止するとともに第9図dの工
程でこの部分の樹脂が溶剤に熔解させないための防止膜
の役目もする。次に他の構成例について第10図a〜g
を用いて説明する。
In addition, the negative photosensitive resin on the concave part prevents pinholes in the positive photosensitive resin on the bottom surface, and also serves as a preventive film to prevent the resin in this area from being dissolved in the solvent in the step of FIG. 9d. . Next, regarding other configuration examples, Fig. 10 a to g
Explain using.

基板41に凸部42および凹部43を設ける工程(第1
0図a)、膜44を設ける工程(第10図b)、ポジ型
感光性樹脂45およびネガ型感光性樹脂46を塗布する
工程(第10図c)は前述した構成例と同一であるので
省略する。
Step of providing convex portions 42 and concave portions 43 on substrate 41 (first
0a), the step of providing the film 44 (FIG. 10b), and the step of applying the positive-type photosensitive resin 45 and the negative-type photosensitive resin 46 (FIG. 10c) are the same as the above-mentioned configuration example. Omitted.

次に第10図cの状態において全面に紫外光を照射して
おき、02あるいは02とN2の混合雰囲気を有するプ
ラズマ中において処理すれば、基板41の最上部にある
ネガ型感光性樹脂46は少しづつ灰化される。
Next, if the entire surface is irradiated with ultraviolet light in the state shown in FIG. It becomes ashes little by little.

特に凸部の頂上A付近はもっとも膜厚が薄いから第9図
dの如くネガ型感光性樹脂は除去され、次工程のポジ型
感光性樹脂の溶解を著しく助けることになる。(第10
図d)。次いでポジ型感光性樹脂を溶解する溶液、例え
ば専用の現像液、アセトソ、希釈したNa○伍夜に浸せ
ば凸部のポジ型感光性樹脂は容易に除去されると同時に
ネガ型感光性樹脂も除去されるものである(第10図e
)。除去すべき膜44は完全に露出されている。この工
程において前記構成例と同じく超音波振動を加えるとこ
の工程はより確実になることはすでにのべた通りである
。膜44を腐蝕あるいは溶解する液に浸す前に1000
0〜260ooで熱処理することにより凹部の膜44と
ポジ型感光性樹脂45との密着力を高め、さらに耐酸性
を向上させることができる。第10図fは膜44を完全
に除去した工程、第10図gは感光性樹脂層45,46
を完全に除去し、本発明の工程が終了した状態を示すも
のである。本構成例におけるボジ型感光性樹脂とネガ型
感光性樹脂の膜厚の割合は前記した構成例と同じく10
:1〜1:1が望ましい。
In particular, since the film thickness is the thinnest near the top A of the convex portion, the negative-type photosensitive resin is removed as shown in FIG. 9d, and this significantly helps the dissolution of the positive-type photosensitive resin in the next step. (10th
Figure d). Next, by immersing it in a solution that dissolves the positive photosensitive resin, such as a special developer, acetosol, or diluted Na○goya, the positive photosensitive resin on the convex portions can be easily removed, and at the same time, the negative photosensitive resin can also be removed. (Figure 10e)
). The membrane 44 to be removed is completely exposed. As mentioned above, this process becomes more reliable if ultrasonic vibration is applied in this process as in the above configuration example. 1000 before immersing the membrane 44 in a liquid that corrodes or dissolves it.
Heat treatment at a temperature of 0 to 260 oo increases the adhesion between the film 44 in the recess and the positive photosensitive resin 45, and further improves acid resistance. FIG. 10f shows a process in which the film 44 is completely removed, and FIG. 10g shows the photosensitive resin layers 45 and 46.
This figure shows the state in which the process of the present invention has been completed by completely removing . The film thickness ratio of the positive-type photosensitive resin and the negative-type photosensitive resin in this configuration example is the same as in the above-mentioned configuration example.
:1 to 1:1 is desirable.

第9図eあるいは第10図gの状態からは素子間の絶縁
分離あるいはBI等の平坦化プロセスの一工程として利
用できる。また、本発明の構成例においては基板41の
上部の樹脂をネガ型感光性樹脂として説明したが(第9
図、第10図で46)、これに限定するものではなく、
夫燃ゴム、PVA、ポリィミド等の樹脂あるいはワック
ス等であってもよく、本発明の効果は同様である。
The state shown in FIG. 9e or 10g can be used as a step in a planarization process such as isolation between elements or BI. Further, in the configuration example of the present invention, the resin on the upper part of the substrate 41 was described as a negative photosensitive resin (No. 9
46 in Figure 10), but is not limited to this,
Resins such as ferrite rubber, PVA, polyimide, wax, etc. may also be used, and the effects of the present invention will be the same.

すなわちポジ型感光性樹脂の溶剤に溶解しない材料であ
れば良い。次に本発明の効果についてのべる。
That is, any material may be used as long as it does not dissolve in the solvent of the positive photosensitive resin. Next, the effects of the present invention will be described.

■ 本発明はすでにのべた如く除去すべき膜44の表面
を完全に露出させ前記膜44の熔解液に浸すことができ
るため除去すべき膜44の完全な除去が実施でき、所望
のパターン形成ができる。
(2) As described above, in the present invention, the surface of the film 44 to be removed can be completely exposed and immersed in the solution of the film 44, so that the film 44 to be removed can be completely removed and the desired pattern can be formed. can.

■ さらに除去すべきでない面に対し、性質の異なる感
光性樹脂膜が2重に塗布され被覆されるため、この面に
おけるピンホール等の欠陥を著しく減少できるものであ
る。
(2) Furthermore, since photosensitive resin films with different properties are coated twice on the surface that should not be removed, defects such as pinholes on this surface can be significantly reduced.

■ また、本発明は光を与えることによって容易に熔解
するポジ型感光性樹脂を除去すべき膜44上に設けてあ
るため、従来例で説明した第5図、第6図に示した如く
の取り残し等による不良が発生せず、パターン形成の工
程が容易である。
(2) In addition, in the present invention, since the positive photosensitive resin that easily melts when exposed to light is provided on the film 44 to be removed, it is difficult to remove the film 44 as shown in FIGS. 5 and 6 described in the conventional example. There are no defects due to leftovers, etc., and the pattern forming process is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜cはパターン形成方法の原理的説明図、第2
図は本発明の応用例を示す図、第3図a〜d、第4図a
〜dは従来例の工程図、第5図a,b、第6図a,bは
従来例の欠点を説明するための図、第7図、第8図は本
発明を説明するための図、第9図a〜e、第10図a〜
gは本発明の一実施例を説明するための工程図である。 41・・・・・・基板、44・・・・・・膜、45・・
・・・・ポジ型感光性樹脂、46・・・・・・ネガ型感
光性樹脂。第1図第2図 第3図 第4図 第7図 第5図 第6図 第8図 第9図 第10図
Figures 1 a to c are explanatory diagrams of the principle of the pattern forming method;
The figures are diagrams showing application examples of the present invention, Figures 3 a to d, and Figure 4 a.
- d are process diagrams of the conventional example, FIGS. 5 a, b, and 6 a, b are diagrams for explaining the drawbacks of the conventional example, and FIGS. 7 and 8 are diagrams for explaining the present invention. , Figures 9a-e, Figures 10a-
g is a process chart for explaining one embodiment of the present invention. 41...Substrate, 44...Membrane, 45...
...Positive photosensitive resin, 46...Negative photosensitive resin. Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Figure 5 Figure 6 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】 1 凹凸面を有する基板の基板の前面凹凸面にそつて金
属または絶縁物層を前記凹凸面と略同一形状に付着させ
る工程と、前記金属または絶縁物層上にポジ型感光性樹
脂を塗布する工程と、前記ポジ型感光性樹脂上に同ポジ
型感光性樹脂と同一波長で感光しかつ前記ポジ型感光性
樹脂の溶剤に溶解しないネガ型感光性樹脂を塗布し、前
記ポジ型感光性樹脂の側面において他より薄く前記ネガ
型感光性樹脂を形成し、前記側面の前記ネガ型感光性樹
脂にピンホールを形成する工程と、前記ポジ型感光性樹
脂と同時に、前記ネガ型感光性樹脂を同一波長で露光す
る工程と、前記ポジ型感光性樹脂を溶解する液により前
記凹凸面の凸部上の前記ポジ型感光性樹脂を前記ピンホ
ールを介して除去する工程と、前記金属または絶縁物層
を腐蝕する液により前記凹凸面の凸部上の金属または絶
縁物層を除去する工程とからなるパターン形成方法。 2 ポジ型感光性樹脂を溶解する液により凹凸面の凸部
のポジ型感光性樹脂を除去する工程で超音波振動を加え
ながら溶解させることを特徴とする特許請求の範囲第1
項に記載のパターン形成方法。 3 ポジ型感光性樹脂を溶解する液により凹凸面の凸部
のポジ型感光性樹脂を除去した後、基板を100〜26
0℃で熱処理することを特徴とする特許請求の範囲第1
項に記載のパターン形成方法。 4 露光する工程の時に、プラズマ雰囲気中において凹
凸面の凸部のポジ型感光性樹脂の溶剤に溶解しない材料
よりなる層の一部または全部を除去する工程を併用する
ことを特徴とする特許請求の範囲第1項に記載のパター
ン形成方法。 5 プラズマ雰囲気がO_2またはO_2とN_2との
混合ガスよりなることを特徴とする特許請求の範囲第4
項記載のパターン形成方法。
[Scope of Claims] 1. A step of attaching a metal or insulating layer along the front surface of the substrate having an uneven surface in substantially the same shape as the uneven surface, and depositing a positive die on the metal or insulating layer. a step of applying a photosensitive resin, and applying a negative photosensitive resin that is sensitive to the same wavelength as the positive photosensitive resin and does not dissolve in the solvent of the positive photosensitive resin on the positive photosensitive resin; Forming the negative photosensitive resin thinner on the side surface of the positive photosensitive resin, forming pinholes in the negative photosensitive resin on the side surface, and simultaneously forming the negative photosensitive resin on the positive photosensitive resin. a step of exposing the negative photosensitive resin to light of the same wavelength; and a step of removing the positive photosensitive resin on the convex portions of the uneven surface through the pinhole using a liquid that dissolves the positive photosensitive resin. A pattern forming method comprising the steps of: removing the metal or insulating layer on the convex portions of the uneven surface using a liquid that corrodes the metal or insulating layer. 2. Claim 1, characterized in that in the process of removing the positive photosensitive resin on the convex portions of the uneven surface with a liquid that dissolves the positive photosensitive resin, the positive photosensitive resin is dissolved while applying ultrasonic vibrations.
The pattern forming method described in section. 3 After removing the positive photosensitive resin on the convex portions of the uneven surface with a liquid that dissolves the positive photosensitive resin, the substrate was
Claim 1 characterized in that the heat treatment is performed at 0°C.
The pattern forming method described in section. 4. A patent claim characterized in that, at the time of the exposure step, a step of removing part or all of the layer made of a material that does not dissolve in a solvent of the positive photosensitive resin on the convex portions of the uneven surface in a plasma atmosphere is also used. The pattern forming method according to item 1. 5. Claim 4, characterized in that the plasma atmosphere consists of O_2 or a mixed gas of O_2 and N_2.
The pattern forming method described in section.
JP4452476A 1976-04-19 1976-04-19 Pattern formation method Expired JPS6030101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4452476A JPS6030101B2 (en) 1976-04-19 1976-04-19 Pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4452476A JPS6030101B2 (en) 1976-04-19 1976-04-19 Pattern formation method

Publications (2)

Publication Number Publication Date
JPS52127173A JPS52127173A (en) 1977-10-25
JPS6030101B2 true JPS6030101B2 (en) 1985-07-15

Family

ID=12693900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4452476A Expired JPS6030101B2 (en) 1976-04-19 1976-04-19 Pattern formation method

Country Status (1)

Country Link
JP (1) JPS6030101B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231447Y2 (en) * 1986-04-16 1990-08-24
CN1293411C (en) * 2001-08-18 2007-01-03 三星电子株式会社 Manufacture for photosensitive insulating film pattern and reflection electrode and its liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231447Y2 (en) * 1986-04-16 1990-08-24
CN1293411C (en) * 2001-08-18 2007-01-03 三星电子株式会社 Manufacture for photosensitive insulating film pattern and reflection electrode and its liquid crystal display device

Also Published As

Publication number Publication date
JPS52127173A (en) 1977-10-25

Similar Documents

Publication Publication Date Title
JPS58210634A (en) Preparation of semiconductor device
JPS6030101B2 (en) Pattern formation method
JP3717348B2 (en) Stencil mask manufacturing method
JPH0458167B2 (en)
JP2797854B2 (en) Method for forming contact hole in semiconductor device
JP2789969B2 (en) Method for forming contact hole in semiconductor device
JPH022175A (en) Manufacture of thin film transistor
JP2946102B2 (en) Pattern formation method
JPH0119255B2 (en)
JPH0249017B2 (en)
JPS59926A (en) Method for selective etching of aluminum film
KR930006133B1 (en) Contact hole formation method of MOS device
JP2589471B2 (en) Method for manufacturing semiconductor device
JPS5852341B2 (en) Manufacturing method of semiconductor device
JPS596560A (en) Manufacture of semiconductor device
JPS6217373B2 (en)
JPS6366049B2 (en)
JPH05218212A (en) Manufacture of semiconductor device
JPH03110835A (en) Manufacture of semiconductor device
JPH03179727A (en) Formation of pattern
JPH02138751A (en) Manufacture of semiconductor device
JPH02148725A (en) Manufacture of semiconductor integrated circuit
JPS61189503A (en) Manufacture of diffraction grating
JPS63281444A (en) Semiconductor device and its manufacturing method
JPS6081830A (en) Taperetching process of aluminium film