JPS6029312B2 - atomization device - Google Patents
atomization deviceInfo
- Publication number
- JPS6029312B2 JPS6029312B2 JP14031880A JP14031880A JPS6029312B2 JP S6029312 B2 JPS6029312 B2 JP S6029312B2 JP 14031880 A JP14031880 A JP 14031880A JP 14031880 A JP14031880 A JP 14031880A JP S6029312 B2 JPS6029312 B2 JP S6029312B2
- Authority
- JP
- Japan
- Prior art keywords
- small hole
- nozzle
- atomization
- liquid
- nozzles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000889 atomisation Methods 0.000 title claims description 28
- 239000007788 liquid Substances 0.000 claims description 21
- 238000002485 combustion reaction Methods 0.000 description 16
- 239000003350 kerosene Substances 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 238000009826 distribution Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004278 EU approved seasoning Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 238000009688 liquid atomisation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000008155 medical solution Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B17/00—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
- B05B17/04—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
- B05B17/06—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
- B05B17/0607—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
- B05B17/0638—Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced by discharging the liquid or other fluent material through a plate comprising a plurality of orifices
- B05B17/0646—Vibrating plates, i.e. plates being directly subjected to the vibrations, e.g. having a piezoelectric transducer attached thereto
Landscapes
- Special Spraying Apparatus (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
Description
【発明の詳細な説明】
本発明は、灯油・軽油などの液体燃料、薬溶液、水、液
状調味料などの霧化装置に関するもので、その目的とす
るところは、極めてコンパクトで軽量で、構造が簡単で
、容易に霧化量調節が行え、しかも霧化特性が良好な霧
化装置を提供することにある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an atomizing device for liquid fuels such as kerosene and diesel oil, medical solutions, water, liquid seasonings, etc. The purpose of the present invention is to be extremely compact, lightweight, and structurally compact. To provide an atomizing device which is simple, can easily adjust the amount of atomization, and has good atomization characteristics.
従釆、液体の霧化には次のような種々の形式のものが提
案されている。Various types of liquid atomization have been proposed as follows.
例えば、【1’圧力ポンプにより液体に高圧力を印加し
ノズルから贋霧するもの、■ 高速回転体に液体を滴下
し霧化するもの、【31高圧力気体のジェット噴射を利
用した2流体燈霧式のもの、■ 超音波振動子の振中を
ホーン振動子により増中し、この振中振中部に液体を導
き霧化するいわゆる超音波霧化方式のもの、【51液槽
中に超音波を照射し、液槽液面でのキャビテーションの
発生を利用して霧化させるものなどがある。しかしなが
らこれら従来の溶化方法は種々の欠点を有していた。For example, [1' a pressure pump that applies high pressure to the liquid and atomizes it from a nozzle; Atomization type, ■ A so-called ultrasonic atomization type in which the vibration of an ultrasonic vibrator is increased by a horn vibrator, and the liquid is guided to the vibrating part and atomized. There are some that irradiate sound waves and create atomization by utilizing cavitation on the surface of the liquid tank. However, these conventional solubilization methods have various drawbacks.
すなわち、前述の‘11〜【3}のものはいずれも高圧
力ポンプや回転体などを必要とし、装置が大型化、高価
格化すると共に騒音も大きくまた霧化特性も、粒径、お
よび粒蚤分布などの点で特に満足すべきものでなかった
。また‘4’については振中増中用ホーンの加工精度・
組立精度などにより霧化性能が著しく影響を受け、この
点で高価格化すると共に、霧化特性も十分ではなかった
。さらに‘51は霧化粒径は小さく良好であるが粒蓬分
布が良好でなく、また、水の霧化では1.7MH2灯油
では1.2MHZという高周波帯での超音波動作が必要
とされ、特に灯油の霧化においては、ラジオノイズを発
生し、ラジオをはじめ、種々の機器への防書波の影響が
著しいものであった。以上のごとく従来の霧化装置は、
装置が大型化高価格化するとともに、騒音・霧化特性に
対する対策が不充分であった。In other words, all of the above-mentioned methods '11 to [3] require high-pressure pumps and rotating bodies, and the equipment becomes larger and more expensive, generates more noise, and the atomization characteristics vary depending on the particle size and particle size. The results were not particularly satisfactory in terms of flea distribution, etc. Regarding '4', the machining accuracy and
Atomization performance was significantly affected by assembly precision, resulting in high prices and insufficient atomization characteristics. Furthermore, although the atomized particle size of '51 is small and good, the particle distribution is not good, and when atomizing water, 1.7MH2 kerosene requires ultrasonic operation at a high frequency band of 1.2MHZ. In particular, when kerosene is atomized, radio noise is generated, and the influence of radio waves on various devices including radios is significant. As mentioned above, the conventional atomization device is
As equipment became larger and more expensive, measures against noise and atomization characteristics were insufficient.
本発明は、上述の従来の欠点を一掃したものであり、以
下本発明を温風暖房機に応用した一実施例について図面
と共に説明する。The present invention eliminates the above-mentioned conventional drawbacks, and an embodiment in which the present invention is applied to a hot air heater will be described below with reference to the drawings.
第1図は温風暖房機の断面図であり、この第1図に示す
ごとく温風機ケース1には、燃焼空気吸込口2、排気吐
出口3が設けられ、燃焼ファン4によって燃焼空気が燃
焼室(熱交換器も兼ねている)5に供給され、その後排
気されるようになっている。FIG. 1 is a cross-sectional view of a hot air heater. As shown in FIG. It is supplied to a chamber 5 (which also serves as a heat exchanger) and then exhausted.
一方燃料である灯油6は、カートリッジタンク7から、
液面が略一定に保たれるしべラ8、連結管9を通り霧化
部に送られる。また加熱されるべき室内空気は対流フア
ン1川こより吸込口1 1から本体ケースー内に吸込ま
れ、燃焼室5の外表面で熱交換された後に吹出口12よ
り温風となって吐出される。さて、霧化部は、内部にホ
ーン形状を成す加圧室13と環状の液供給室14とを有
する基体15を中心に構成されている。On the other hand, kerosene 6, which is fuel, comes from the cartridge tank 7.
The liquid is sent to the atomization section through a stylus 8 whose liquid level is kept substantially constant and a connecting pipe 9. In addition, indoor air to be heated is drawn into the main body case from the convection fan 1 through the suction port 11, heat exchanged on the outer surface of the combustion chamber 5, and then discharged from the blowout port 12 as warm air. Now, the atomizing section is constructed around a base body 15 that has a horn-shaped pressurizing chamber 13 and an annular liquid supply chamber 14 inside.
前記加圧室13は、液吐出方向の断面積が少なくとも減
少しない断面積非減少部16(本実施例では略一定)を
先端部に有し、ホーン形状と組み合わさって流体ガィオ
ード作用を果している。この断面積非減少部16は、前
記加圧室13のホーン形状部の途中に設けられてもよい
し、1つでなく、複数個設けられてもよい。前記加圧室
13の底部には、円形の電気的振動子17が支え部18
により固定されている。前記電気的振動子17は、ピェ
ゾセラミック19と前記支え部18と一体化された振動
板20と電極板21により構成され、いわゆる非対象/
ゞィモルフ構造のピェゾ振動子を形成している。前記加
圧室13の先端には、複数の小孔ノズル(例えば50〜
100一肌程度の小孔ノズル)22を有する薄板状のノ
ズル部23が設けられており、前記ノズル部23は図の
ように断面が曲面となった円板形となっている。燃焼空
気は、ェァガィド24,25により図のように1次空気
、2次空気として燃焼室5に送られる。The pressurizing chamber 13 has a non-reducing cross-sectional area part 16 (approximately constant in this embodiment) at the tip end, where the cross-sectional area in the liquid discharge direction does not decrease at least (approximately constant in this embodiment), and in combination with the horn shape, it functions as a fluid guide. . This non-reduced cross-sectional area portion 16 may be provided in the middle of the horn-shaped portion of the pressurizing chamber 13, or may be provided not only one but in plural. A circular electric vibrator 17 is attached to a support portion 18 at the bottom of the pressurizing chamber 13.
Fixed by The electric vibrator 17 is composed of a piezoceramic 19, a diaphragm 20 integrated with the support part 18, and an electrode plate 21, and is a so-called asymmetric/
It forms a piezo oscillator with a dimorph structure. At the tip of the pressurizing chamber 13, a plurality of small hole nozzles (for example, 50~
A thin plate-shaped nozzle part 23 having a small hole nozzle (about 100 mm diameter) 22 is provided, and the nozzle part 23 has a disk shape with a curved cross section as shown in the figure. Combustion air is sent to the combustion chamber 5 as primary air and secondary air by air guides 24 and 25 as shown in the figure.
1次空気は、混合気化部26に送られ、霧化粒子と混合
し保炎燃焼部27近傍を中心に燃焼する。The primary air is sent to the mixture vaporization section 26, mixed with atomized particles, and combusted mainly in the vicinity of the flame-holding combustion section 27.
これら燃焼空気は回転運動を与えられ、回転しながら噴
出するように構成する方が望ましい。また特に1次空気
は、前記ノズル部23の近傍に送られるように構成し、
ノズル部23近くでの液溜りを吹き飛ばすような構成が
良く、動に良好な霧化起動特性を実現することができる
。なお28,29は、ェアガイド24、基体15のサポ
ートである。操作部301こより運転開始指令が出され
ると、制御装置31は、室温などのルームサーモ32の
信号など種々の条件を判定し、燃焼すべき条件下にある
時は、ダンパ33をダンパコントローラ34により最大
風量になるよう設定すると共に燃焼ファン4を起動する
。同時に制御装置31内の振動子駆動部35を起動し、
電気的振動子17に10〜5皿HZ程度の交番電力(例
えば正弦波電圧)を供V給すると共に図示していないが
点火装置を起動する。これらの起動タイミングは必ずし
も同時でなくてもよい。燃焼ファン4が起動されるとそ
の風圧は、送圧管36により、レベラ8に供給され、液
面37に風圧を印加する。It is preferable that the combustion air be given rotational motion and ejected while rotating. In particular, the primary air is configured to be sent to the vicinity of the nozzle portion 23,
It is preferable to have a configuration that blows away the liquid pool near the nozzle portion 23, and it is possible to realize a good atomization start-up characteristic in terms of movement. Note that 28 and 29 are supports for the air guide 24 and the base 15. When a command to start operation is issued from the operation unit 301, the control device 31 determines various conditions such as room temperature and other signals from the room thermometer 32, and when the condition is such that combustion is desired, the damper 33 is controlled by the damper controller 34. Set the air volume to the maximum and start the combustion fan 4. At the same time, the vibrator drive section 35 in the control device 31 is activated,
Alternating power (for example, sine wave voltage) of about 10 to 5 Hz is supplied to the electric vibrator 17, and an ignition device (not shown) is activated. These activation timings do not necessarily have to be simultaneous. When the combustion fan 4 is activated, its wind pressure is supplied to the leveler 8 through the pressure pipe 36 and applies wind pressure to the liquid level 37.
燃焼ファン4の起動前の液面37は、少なくとも前記ノ
ズル部23より低い位置に設定されているが、燃焼ファ
ン4の作動による風圧が液面37に印加されることによ
り、図のようにノズル部まで完全に液(灯油)が充満す
るようになる。このような状態で前記電気的振動子17
に電圧が印加されると同振動子17は、ノズル部23の
方向に支え部18を支点として鼓状たわみを生じる。こ
のため電気的振動子17近傍の圧力が上昇する。この圧
力は加圧室13のホーン形状のために増中されノズル部
23の近傍では極めて大きな圧力となる。したがって小
径ノズル22からは灯油が吐出される。次に前述とは逆
極一性の電圧が電気的振動子17に供給されると、電気
的振動子17は前述とは逆方向にやはり鼓状たわみを生
じる。このため同振動子17の近傍は負圧力が発生する
。この負圧力により液供給室14からは灯油が吸い上げ
られ、一種のポンプ作用が生じる。例えば、ルームサー
モ32の信号を受けて、制御装置31がダンパ33を閉
じ、その結果液面37を押す風圧が低下しても、前述の
ポンプ作用により灯油を正常に吸い上げつづけることが
できる。これは、加圧室13がホーン形状をしているこ
と、および、断面糟非減少部16を有することによる流
体ダイオード作用、および、小径ノズル22の直径が小
さいことによる灯油の表面強力によって可能となるので
ある。前述のような電気的振動子17の往復鼓状たわみ
運動が10〜5皿HZ程度の高周波で発生するため、小
孔ノズル22から吐出される灯油の粒径は極めて小さく
数仏肌〜十数山肌程度の微粒怪粒子とすることができる
。The liquid level 37 before the combustion fan 4 is activated is set at least at a lower position than the nozzle part 23, but as wind pressure is applied to the liquid level 37 due to the operation of the combustion fan 4, the nozzle is raised as shown in the figure. The liquid (kerosene) will completely fill up to the top. In this state, the electric vibrator 17
When a voltage is applied to the vibrator 17 , the vibrator 17 causes a drum-shaped deflection in the direction of the nozzle portion 23 using the support portion 18 as a fulcrum. Therefore, the pressure near the electric vibrator 17 increases. This pressure is increased due to the horn shape of the pressurizing chamber 13, and becomes extremely large in the vicinity of the nozzle portion 23. Therefore, kerosene is discharged from the small diameter nozzle 22. Next, when a voltage having a polarity opposite to that described above is supplied to the electric vibrator 17, the electric vibrator 17 also causes a drum-shaped deflection in the opposite direction to that described above. Therefore, negative pressure is generated near the vibrator 17. This negative pressure causes kerosene to be sucked up from the liquid supply chamber 14, creating a kind of pumping effect. For example, even if the controller 31 closes the damper 33 in response to a signal from the room thermostat 32, and as a result the wind pressure pushing against the liquid level 37 decreases, kerosene can continue to be sucked up normally by the pump action described above. This is possible due to the horn-shaped pressurizing chamber 13, the fluid diode effect due to the non-reduced cross-sectional area 16, and the surface strength of the kerosene due to the small diameter of the small diameter nozzle 22. It will become. Since the above-mentioned reciprocating drum-like deflection motion of the electric vibrator 17 occurs at a high frequency of about 10 to 5 Hz, the particle size of the kerosene discharged from the small hole nozzle 22 is extremely small, ranging from a few Buddha's skin to a dozen or so. It can be made into microscopic particles as small as the surface of a mountain.
また、燃焼ファン4の風圧によって起動時のみ液面37
に圧力を印加するだけで灯油を正常に汲み上げることが
でき、ポンプなどの液体供給装置を必要とせず、極めて
簡単で低コストかつコンパクトな霧化装置とすることが
できる。第2図は、振動子駆動部35のブロック図であ
る。Also, due to the wind pressure of the combustion fan 4, the liquid level 37 is reduced only during startup.
Kerosene can be normally pumped up simply by applying pressure to the kerosene, and a liquid supply device such as a pump is not required, resulting in an extremely simple, low-cost, and compact atomization device. FIG. 2 is a block diagram of the vibrator drive section 35.
図において38は発振器であり、例えば正弦波発生器で
ある。発振器38の出力は、スイッチ手段39、デュー
ティ制御部40より成る平均電力制御部41を介して増
中器42に送られ、出力トランスなどの交流結合手段4
3を通して電気的振動子17に供給されるよう購成され
ている。前記平均電力制御部41のデューティ制御部4
0には、可変抵抗器44が設けられ、ダンパ33と連動
するように構成されている。すなわちダンパ33の開度
、つまり燃焼空気量に応じて電気的振動子17に供給さ
れる平均電力が制御されるよう構成されているため、燃
焼状態が燃焼量にかかわらず好ましい状態に保たれるの
である。さて、第1図におけるノズル部23は、良好な
霧化特性を得るべく、第3図cのように構成するのが良
い。In the figure, 38 is an oscillator, for example a sine wave generator. The output of the oscillator 38 is sent to an intensifier 42 via an average power control section 41 consisting of a switch means 39 and a duty control section 40, and is sent to an AC coupling means 4 such as an output transformer.
3 to be supplied to the electric vibrator 17. Duty control section 4 of the average power control section 41
0 is provided with a variable resistor 44 and configured to work in conjunction with the damper 33. In other words, since the structure is such that the average power supplied to the electric vibrator 17 is controlled according to the opening degree of the damper 33, that is, the amount of combustion air, the combustion state is maintained in a preferable state regardless of the amount of combustion. It is. Now, in order to obtain good atomization characteristics, the nozzle section 23 in FIG. 1 is preferably configured as shown in FIG. 3c.
すなわちノズル部23は、図のよう曲面(球面)を有す
る構造となっており、かつ、小孔ノズル22は、ノズル
部の中心が粗となるように配置されている。なお、この
実施例の場合は、ノズル部23の中心部に小孔ノズル2
2が全くなく、環状に小孔ノズル22が配置されている
。このように曲面を有するノズル部23を用い、しかも
小孔ノズル22を中心部が周囲に比べて粗に分布するよ
う配置すれば、霧化粒子が吐出後再結合して粗大粒子に
なる確率を小さくすることができ、かつ、霧化粒子分布
を均一化することができる。したがって、燃焼空気との
混合が良好となり、燃焼特性を良くすることができるの
である。すなわち、第3図aのようにノズル部23が平
板のもの、あるいは第3図bのように曲面の全面に小孔
ノズル22が設けられたものに比べその霧化粒子分布形
状は、図のようにa→b→cとなる程分散的形状となり
、しかも、図の濃淡で示すように、霧化粒子の均一分布
性が良くなるのである。また、ノズル部23近傍での灯
油6の圧力は極めて高く、かつ、高周波で(10〜5皿
HZ程度)変化している。例えば50〜100りの程度
の小孔ノズル22を加工できるノズル部23の板厚は大
変小さい(例えば30〜100山肌)から、第3図aの
ような平板では、強度が弱く、信頼性が問題となる。そ
こで、前述の如くノズル部23に曲面(球面)を持たせ
、そこに小孔ノズル22を設ければ、強度がすぐれ、信
頼性の高いノズルとなる。また第4図のようにノズル部
23全体に曲面を持たせず、1つの小孔ノズル22に1
つづつの曲面を持たせても良い。これによれば、ノズル
部23の厚さを厚くして強度を高くすることができると
共に小孔ノズル部22の入口での損失を小さくすること
ができ、霧化効率の向上が可能となり、さらには霧化特
性(微粒化など)を一層良好にすることができるのであ
る。第5図aは小孔ノズル22のノズル部23での配置
例を示す平面図である。小孔ノズル22は例えば、第5
図aのように各々の小孔ノズル22の直径がd、小孔ノ
ズル22間ピッチがそである配置をとることが可能であ
り、このような配置が好ましい霧化性能を保ちつつ、最
も高密度な4・孔/ズル22の配置である。次に第5図
aにおける中心線Sに沿って断面図を第5図bに示す。
小孔/スル22の点x,における流速(灯油の)分布は
『Poisevilleの法則』に従うと仮定すると第
5図cのようになる。このときの各ノズルにおける灯油
の流量をVとするとV=K‐(芸)4である。That is, the nozzle portion 23 has a structure having a curved surface (spherical surface) as shown in the figure, and the small hole nozzle 22 is arranged so that the center of the nozzle portion is rough. In the case of this embodiment, the small hole nozzle 2 is provided in the center of the nozzle part 23.
There are no small hole nozzles 22 at all, and small hole nozzles 22 are arranged in an annular manner. By using the nozzle part 23 having a curved surface in this way and arranging the small hole nozzle 22 so that the center part is distributed more coarsely than the surrounding area, the probability that the atomized particles will recombine after being discharged and become coarse particles can be reduced. It is possible to make the size of the particles smaller and to make the atomized particle distribution uniform. Therefore, the mixture with the combustion air becomes better, and the combustion characteristics can be improved. That is, compared to a case where the nozzle part 23 is a flat plate as shown in Fig. 3a, or a case where the small hole nozzle 22 is provided on the entire curved surface as shown in Fig. 3b, the atomized particle distribution shape is as shown in the figure. As shown in the figure, the more the atomized particles move from a to b to c, the more dispersed the shape becomes, and as shown by the shading in the figure, the uniform distribution of the atomized particles becomes better. Further, the pressure of the kerosene 6 near the nozzle portion 23 is extremely high and changes at a high frequency (about 10 to 5 Hz). For example, the thickness of the nozzle part 23 that can process small hole nozzles 22 of about 50 to 100 mm is very small (for example, 30 to 100 mm), so a flat plate like the one shown in Figure 3a has low strength and reliability. It becomes a problem. Therefore, if the nozzle portion 23 has a curved surface (spherical surface) and the small hole nozzle 22 is provided therein as described above, a nozzle with excellent strength and reliability can be obtained. Moreover, as shown in FIG. 4, the entire nozzle part 23 does not have a curved surface, and one small hole nozzle 22
It is also possible to have successive curved surfaces. According to this, the thickness of the nozzle part 23 can be increased to increase the strength, and the loss at the entrance of the small hole nozzle part 22 can be reduced, and the atomization efficiency can be improved. can further improve atomization characteristics (atomization, etc.). FIG. 5a is a plan view showing an example of the arrangement of the small hole nozzle 22 in the nozzle section 23. FIG. The small hole nozzle 22 is, for example, a fifth
As shown in Figure a, it is possible to adopt an arrangement in which the diameter of each small hole nozzle 22 is d and the pitch between the small hole nozzles 22 is s., and such an arrangement maintains the preferable atomization performance while achieving the highest This is a dense arrangement of 4 holes/holes 22. Next, FIG. 5b shows a cross-sectional view taken along the center line S in FIG. 5a.
Assuming that the flow velocity (kerosene) distribution at point x of the small hole/sole 22 follows "Poiseville's law", it becomes as shown in FIG. 5c. If the flow rate of kerosene in each nozzle at this time is V, then V=K-4.
今第5図bにおいて、各小孔ノズル22と同心の点ね(
均は加圧室内部)において直径その管路を仮定すると、
第5図dのような流速分布となり、このときの流量をV
′とすると、V′=K(多〉4
と考えることができる。Now in FIG. 5b, the point concentric with each small hole nozzle 22 (
Assuming that the diameter of the pipe is inside the pressurized chamber,
The flow velocity distribution becomes as shown in Figure 5d, and the flow rate at this time is V
′, it can be considered that V′=K(multi〉4).
すなわち上述の仮定が成り立てば、各々の小孔ノズル2
2は、お互いに独立であり、相互干渉がほとんどないと
考えられるのである。In other words, if the above assumptions hold, each small hole nozzle 2
2 are independent from each other, and it is considered that there is almost no mutual interference.
つまり、V′≧Vであれば小孔ノズル22間の相互干渉
が4・孔ノズル22内の流速、すなわち、霧化特性に著
しい影響を与えないと考えられる。In other words, if V'≧V, it is considered that the mutual interference between the small-hole nozzles 22 does not significantly affect the flow velocity in the four-hole nozzle 22, that is, the atomization characteristics.
よって小孔ノズル22のまわりの他の小孔ノズル22の
数をNとするときV′;K・そ4 /16≧N・V=N
・d2/16すなわちそZ4ノN・d
であれば小孔ノズル22間の相互影響による霧化性能の
劣下を防止できる。Therefore, when the number of other small hole nozzles 22 around the small hole nozzle 22 is N, V';K・So4/16≧N・V=N
- If d2/16, that is, Z4noN.d, deterioration in atomization performance due to mutual influence between the small hole nozzles 22 can be prevented.
第5図aのような小孔ノズル22の配置が最も高密度に
配置できるから、第5図aの配置における夕とdの関係
を求めてみると N=6であるかりそ之4ノ有.d
すなわちそZI.57・dであればよい。Since the arrangement of the small hole nozzles 22 as shown in Figure 5 a allows for the highest density arrangement, when we find the relationship between evening and d in the arrangement shown in Figure 5 a, we find that N = 6. .. d In other words, ZI. 57.d is sufficient.
しかしながら、実際は、小孔ノズル22での流速がきわ
めて速いため、そ;2・d程度が好ましい結果を与える
。以上のように、本発明は圧力室に液体を充填して電気
的振動子により加振し、前記圧力室に臨ませた複数個の
4・孔ノズルから吐出するよう機成したから、構成が簡
単でコンパクトかつ軽量であり、容易こ霧化量調節が行
え、しかも極めて優れた霧イ日特性を有する霧化装道を
提供することができる。However, in reality, since the flow velocity in the small hole nozzle 22 is extremely fast, a value of about 2·d gives a preferable result. As described above, the present invention has a structure in which a pressure chamber is filled with liquid, excited by an electric vibrator, and discharged from a plurality of four-hole nozzles facing the pressure chamber. To provide an atomization device that is simple, compact, and lightweight, allows easy adjustment of the amount of atomization, and has extremely excellent foggy characteristics.
また、前記小孔ノズルを曲面上に配置することにより、
さらに霧化特性の良好な霧化装置とすることが可能であ
り、搬送空気との混合などを行う場合には、その混合特
性をも良好にすることができる。Furthermore, by arranging the small hole nozzle on a curved surface,
Furthermore, it is possible to provide an atomizing device with good atomization characteristics, and when mixing with conveying air, the mixing characteristics can also be improved.
そして、実施例のごとく小孔ノズルを中心が粗となるよ
う配置することにより一層、霧化特性を向上させること
ができるものである。図面の簡単な説明第1図は本発明
の一実施例を温風暖房機に用いた断面図、第2図は同温
風暖房機における振動子駆動部の一実施例を示すブロッ
ク図、第3図a,b,cはノズル部における霧化粒子分
布を示す図、第4図は同ノズル部の他の実施例を示す断
面図、第5図a,b,c,dはノズル部の小孔ノズル配
置による特性を示す図である。Furthermore, by arranging the small hole nozzles so that the center is coarse as in the embodiment, the atomization characteristics can be further improved. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of an embodiment of the present invention used in a hot air heater, FIG. Figures 3a, b, and c are diagrams showing the atomized particle distribution in the nozzle part, Figure 4 is a sectional view showing another example of the same nozzle part, and Figure 5 a, b, c, and d are diagrams showing the atomized particle distribution in the nozzle part. It is a figure showing the characteristic by small hole nozzle arrangement.
8・・・レベラ、9・・・連結管、13・・・圧力室、
15…基体、17…電気的振動子、22…小孔ノズル、
23・・・ノズル部、35・・・振動子駆動部。8... Leveler, 9... Connecting pipe, 13... Pressure chamber,
15... Substrate, 17... Electric vibrator, 22... Small hole nozzle,
23... Nozzle section, 35... Vibrator drive section.
第2図第1図第3図 第3図 第4図 第5図Figure 2 Figure 1 Figure 3 Figure 3 Figure 4 Figure 5
Claims (1)
圧力室の液体を加振するための電気的振動子と、前記加
圧室に臨ませた複数個の小孔ノズルと、前記電気的振動
子に交番電力を供給する振動子駆動部とを備えたことを
特徴とする霧化装置。 2 複数個の小孔ノズルを、曲面上に配置したことを特
徴とする特許請求の範囲第1項記載の霧化装置。 3 複数個の小孔ノズルを中心が粗となるように配置し
たことを特徴とする特許請求の範囲第1項記載の霧化装
置。 4 複数個の小孔ノズルの直径をd、小孔ノズル間のピ
ツチをl、任意の1つの小孔ノズルの周りに隣接する小
孔ノズルの数をN個とするとき、l≧4√(N)・dと
したことを特徴とする特許請求の範囲第1項記載の霧化
装置。[Scope of Claims] 1. A base body having a pressure chamber for filling with liquid, an electric vibrator for exciting the liquid in the pressure chamber, and a plurality of small holes facing the pressurization chamber. An atomization device comprising: a nozzle; and a vibrator drive unit that supplies alternating power to the electric vibrator. 2. The atomization device according to claim 1, wherein a plurality of small hole nozzles are arranged on a curved surface. 3. The atomization device according to claim 1, wherein the plurality of small hole nozzles are arranged so that the center of the nozzles is coarse. 4 When the diameter of multiple small hole nozzles is d, the pitch between small hole nozzles is l, and the number of small hole nozzles adjacent to any one small hole nozzle is N, then l≧4√( The atomizing device according to claim 1, characterized in that N).d.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14031880A JPS6029312B2 (en) | 1980-10-06 | 1980-10-06 | atomization device |
CA000387254A CA1178191A (en) | 1980-10-06 | 1981-10-05 | Electric liquid atomizing apparatus |
US06/309,014 US4465234A (en) | 1980-10-06 | 1981-10-05 | Liquid atomizer including vibrator |
DE8181304631T DE3170523D1 (en) | 1980-10-06 | 1981-10-06 | Electric liquid atomizing apparatus |
EP81304631A EP0049636B1 (en) | 1980-10-06 | 1981-10-06 | Electric liquid atomizing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14031880A JPS6029312B2 (en) | 1980-10-06 | 1980-10-06 | atomization device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5765349A JPS5765349A (en) | 1982-04-20 |
JPS6029312B2 true JPS6029312B2 (en) | 1985-07-10 |
Family
ID=15266014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14031880A Expired JPS6029312B2 (en) | 1980-10-06 | 1980-10-06 | atomization device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6029312B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58122070A (en) * | 1981-10-15 | 1983-07-20 | Matsushita Electric Ind Co Ltd | Atomizing device |
JPS5888523A (en) * | 1981-11-20 | 1983-05-26 | Matsushita Electric Ind Co Ltd | Atomizing apparatus |
FR2649979B1 (en) * | 1989-07-20 | 1992-01-17 | Rhone Poulenc Chimie | PROCESS FOR HYDROGENATION OF HALOGENO NITROAROMATIC DERIVATIVES IN THE PRESENCE OF A SULFUR DERIVATIVE |
US8137087B2 (en) | 2007-04-05 | 2012-03-20 | Ricoh Company, Ltd. | Toner preparation method and apparatus, and toner prepared thereby |
-
1980
- 1980-10-06 JP JP14031880A patent/JPS6029312B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5765349A (en) | 1982-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6029312B2 (en) | atomization device | |
JPS5862411A (en) | Atomizer | |
JPS58122073A (en) | Atomizing device | |
JPS6321541B2 (en) | ||
JPS6246230B2 (en) | ||
JPS6161869B2 (en) | ||
JPS6246224B2 (en) | ||
JPS5888522A (en) | Atomizing apparatus | |
JPS6161870B2 (en) | ||
JPS6031558B2 (en) | atomization device | |
JPS6031556B2 (en) | atomization device | |
JPS6327065B2 (en) | ||
JPS622858B2 (en) | ||
JPS58156364A (en) | Atomizer | |
JPS59112866A (en) | Atomizer | |
JPS58180259A (en) | Atomizing device | |
JPS6135912B2 (en) | ||
JPS6246225B2 (en) | ||
JPS58109157A (en) | Atomizer | |
JPS6246229B2 (en) | ||
JPS58202071A (en) | Atomizer | |
JPS6112499B2 (en) | ||
JPS58216752A (en) | Atomizer | |
JPS6139862B2 (en) | ||
JPS5848224B2 (en) | Ultrasonic atomizer |