JPS6028183A - connector - Google Patents
connectorInfo
- Publication number
- JPS6028183A JPS6028183A JP58135883A JP13588383A JPS6028183A JP S6028183 A JPS6028183 A JP S6028183A JP 58135883 A JP58135883 A JP 58135883A JP 13588383 A JP13588383 A JP 13588383A JP S6028183 A JPS6028183 A JP S6028183A
- Authority
- JP
- Japan
- Prior art keywords
- contact
- hole
- female contact
- female
- male
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 55
- 239000000758 substrate Substances 0.000 claims description 51
- 238000003780 insertion Methods 0.000 claims description 45
- 230000037431 insertion Effects 0.000 claims description 45
- 230000009466 transformation Effects 0.000 claims description 27
- 239000004065 semiconductor Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 229910045601 alloy Inorganic materials 0.000 claims description 21
- 239000000956 alloy Substances 0.000 claims description 21
- 229910000734 martensite Inorganic materials 0.000 claims description 18
- 239000010408 film Substances 0.000 claims description 16
- 239000010409 thin film Substances 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000007712 rapid solidification Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 35
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 239000000853 adhesive Substances 0.000 description 14
- 230000001070 adhesive effect Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 230000003446 memory effect Effects 0.000 description 14
- 239000007788 liquid Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 238000004544 sputter deposition Methods 0.000 description 10
- 239000011888 foil Substances 0.000 description 9
- 238000003486 chemical etching Methods 0.000 description 8
- 229910000679 solder Inorganic materials 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000005219 brazing Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000005304 joining Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009760 electrical discharge machining Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910019590 Cr-N Inorganic materials 0.000 description 1
- 229910019588 Cr—N Inorganic materials 0.000 description 1
- 229910017532 Cu-Be Inorganic materials 0.000 description 1
- 241000252233 Cyprinus carpio Species 0.000 description 1
- 229910017086 Fe-M Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910008894 U—Mo Inorganic materials 0.000 description 1
- 235000015895 biscuits Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Coupling Device And Connection With Printed Circuit (AREA)
- Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は新規な電気コネクタ及びその部品に係り、特に
半導体装置(LSI)の実装に好適な多ビン電気コネク
タ及びその部品に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a novel electrical connector and its parts, and particularly to a multi-bin electrical connector and its parts suitable for mounting semiconductor devices (LSI).
ピンコネクタはピンとそれが挿入されるソケット及びそ
れらをパッケージする部分から成り、電気・電子接続部
品として広く使用されている。また、コンピュータの高
密度化に伴い、実装技術の1つとしてこれらコネクタ類
の重要性が再認識されつつある。従来のビンコネクタの
ピン及びソケット部の形状の一例を第1図に示す。ソケ
ット部2はほとんどが主にCu −Be合金からなるバ
ネ材によってできており、挿入されたピン1をソケット
部2のバネ力で接続する構造になっている。Pin connectors consist of pins, sockets into which they are inserted, and parts that package them, and are widely used as electrical and electronic connection parts. Furthermore, as computers become more densely packed, the importance of these connectors as one of the mounting techniques is being re-recognized. An example of the shape of the pin and socket portions of a conventional bin connector is shown in FIG. The socket part 2 is mostly made of a spring material mainly made of a Cu-Be alloy, and has a structure in which the inserted pin 1 is connected by the spring force of the socket part 2.
このソケット部2はいずれもピン挿入方向に平行に配置
され、ピン1はそのバネ材(あるいは円筒)の間にはさ
み込まれる構造になっている。近年、電気、電子部品の
高集積化、コンピュータの高密度化が進むにつれ、これ
らコネクタのコンパクト化、マイクロ化が要求されるよ
うになってきた。The socket portions 2 are arranged parallel to the pin insertion direction, and the pin 1 is sandwiched between the spring members (or cylinders). In recent years, as electrical and electronic components have become more highly integrated and computers have become more dense, there has been a demand for these connectors to be more compact and micronized.
これら要求に対し従来のソケット形状では、ピン挿入方
向に沿っである程度の高さが必要であるため、ソケット
パッケージの肉厚が厚くなり、コンパクト化に際し大き
な問題となる。また、ソケット形状が複雑なためコネク
タのマイクロ化に際しその加工が困難なことからその形
状の単純化が必要となっている。In order to meet these demands, conventional socket shapes require a certain level of height along the pin insertion direction, which increases the thickness of the socket package, which poses a major problem in making it more compact. In addition, since the shape of the socket is complex, it is difficult to process it when miniaturizing the connector, so it is necessary to simplify the shape.
一方、コンピュータの高密度化としてコネクタの多ビン
化がある。すなわち、一度に挿入されるビン数が多くな
るためコネクタを接合する際の力が急激に増大しており
、ピン数が多くなると従来構造のバネ力によるコネクタ
では人間の力による接合が不可能になることが予想され
る。そこでピン挿入又は抜去時には小さい力ででき、接
合時には信頼性のある接合が得られる低挿力または零挿
入力コネクタの開発が進められている。On the other hand, as the density of computers increases, the number of connector bins increases. In other words, as the number of pins inserted at once increases, the force required to join the connectors increases rapidly, and as the number of pins increases, it becomes impossible to join the connectors using human force using conventional spring force connectors. It is expected that Therefore, efforts are being made to develop low-insertion-force or zero-insertion-force connectors that require less force when inserting or removing pins and can provide reliable connections when joining.
特開昭57−185680には、平板上のバネ部材の中
央部に穴を設け、その穴部に雄接触子を挿入するものが
ある。しかし、このものは抜去が非常に困難である。JP-A-57-185680 discloses a device in which a hole is provided in the center of a spring member on a flat plate, and a male contact is inserted into the hole. However, this one is very difficult to remove.
特開昭58−71572号公報、同58−73973号
公報にはバイメタルの温度変化による変形によって極低
温下で動作するジョセフソン素子半導体装置の電気コネ
クタが示されている。しかし、これらのバイメタルによ
る電気コネクタは所定の太きさがなければ大きな変形が
得られないので、小型にできない。JP-A-58-71572 and JP-A-58-73973 disclose electrical connectors for Josephson element semiconductor devices that operate at extremely low temperatures due to deformation of bimetal due to temperature changes. However, these bimetallic electrical connectors cannot be made large in size unless they have a certain thickness, so they cannot be made smaller.
第1図(a)のソケットを形状記憶合金で構成した電気
コネクタが金属便覧(改訂4版、昭和57年12月発行
)に示されているが、これでは小型化ができない。An electrical connector in which the socket shown in FIG. 1(a) is made of a shape memory alloy is shown in the Metal Handbook (revised 4th edition, published in December 1981), but this does not allow miniaturization.
本発明の目的は、低挿入力で挿入でき、かつ小型にでき
るコネクタ及びその部品を提供するにある。An object of the present invention is to provide a connector that can be inserted with low insertion force and can be made compact, and its parts.
(発明の要点)
本発明は、雄接触子と雌接触子とが互いに接触して接続
してなるものにおいて、前記雌接触子は雄接触子が挿入
する穴部を有する形状記憶合金がらなり、その穴部を構
成する部分が雄接触子の挿入の上下方向に曲げ変形する
ように形状記憶を有していることを特徴とするコネクタ
にある。(Summary of the Invention) The present invention provides a device in which a male contact and a female contact are connected to each other in contact with each other, wherein the female contact is made of a shape memory alloy having a hole into which the male contact is inserted; The connector is characterized in that a portion constituting the hole has shape memory so as to bend and deform in the vertical direction of insertion of the male contact.
形状記憶合金として、A20〜10%、Zn10〜40
%を含むCu合金、5n23〜26%を含むCu合金、
At12〜15%、Ni3〜5%を含むCu合金、Ti
42〜48%と残部Niからなる合金等が一般に知られ
ている。その他Fe −M n系、Fe −Cr −N
i系、U−Mo系、M n −C(1系、A u −
Cd系など使用可能である。As a shape memory alloy, A20-10%, Zn10-40
Cu alloy containing %, Cu alloy containing 5n23-26%,
Cu alloy containing 12-15% At and 3-5% Ni, Ti
An alloy consisting of 42 to 48% Ni and the balance Ni is generally known. Other Fe-M n-based, Fe-Cr-N
i series, U-Mo series, M n -C (1 series, A u -
Cd type etc. can be used.
表は、−例としてCu At N1合金及びNi−’l
’i合金の組成(重量%)及び特性を示す。The table shows - as an example CuAtN1 alloy and Ni-'l
'i Shows the composition (wt%) and properties of the alloy.
これらの合金は、Mf点以下の温度での最終形状及びA
f点以上の温度での最終形状に形状記憶されることがで
きるので、これらの温度サイクルを受けることによって
それらの最終形状のサイクルを生じる。従って、使用温
度状態で雄接触子と雌接触子とが互いに所望の部分で接
触し導通するように形状記憶されればよい。These alloys are characterized by their final shape and A at temperatures below the Mf point.
Since they can be shape memorized to their final shape at temperatures above point f, subjecting them to these temperature cycles results in cycling of their final shape. Therefore, it is sufficient that the male contact and the female contact are memorized in shape so that they contact each other at desired portions and conduct electricity at the operating temperature.
本発明のコネクタは平板状の薄膜からなる雌接触子を構
成するのがよい。その厚さは100μm以下が好ましい
。The connector of the present invention preferably has a female contact made of a flat thin film. The thickness is preferably 100 μm or less.
本発明における雌接触子は、その穴部を構成する部分が
形状記憶合金のマンテンサイド変態温度より低い温度又
は母相変態温度・より高い温度に変化させることによっ
て雄接触子の挿入方向と周方向又は反対方向に曲げ変形
可能に形状記憶されているものが好ましい。更に本発明
におけるコネクタはその穴部に形状記憶合金のマンテン
サイド変態温度以下の低い温度状態にて雄接触子を挿入
し、次いで前記合金の母相変態温度に高めて形状記憶さ
れた元の形状に戻すようにするものが好寸しい。The female contact according to the present invention is produced by changing the temperature of the hole-forming part to a temperature lower than the mantenside transformation temperature of the shape memory alloy, or higher than the matrix transformation temperature, so that the male contact is inserted in the insertion direction and the circumferential direction. Alternatively, it is preferable that the shape is memorized so that it can be bent and deformed in the opposite direction. Further, in the connector of the present invention, a male contact is inserted into the hole at a low temperature below the mantenside transformation temperature of the shape memory alloy, and then raised to the matrix transformation temperature of the alloy to restore the original shape memorized. Something that allows you to return it to is ideal.
軟かいマルテンサイト状態で挿入するので、低挿入力に
よる挿入が可能になり、使用時では元の状態にもどって
強固な接続が得られる。Since it is inserted in a soft martensite state, it can be inserted with low insertion force, and when used, it returns to its original state to provide a strong connection.
また、本発明における雌接触子はその穴部を形状記憶合
金のマルテンサイト変態温度より低い温度状態で雄接触
子との接触部分でその占める空間より大きくなるように
形状記憶させ、その状態で雄接触子を挿入し、次いで前
記合金の母相変態温度以上に高めてその形状を元に戻す
ようにするものが好ましい。雌接触子の穴部を広げた状
態で挿入するので零挿入力による挿入が可能になり、使
用時では前述の通り強固に接続される。In addition, the female contact in the present invention has its hole memorized at a temperature lower than the martensitic transformation temperature of the shape memory alloy so that the contact area with the male contact becomes larger than the space occupied by the hole, and in that state, the male It is preferable that the contactor be inserted and then raised to a temperature higher than the matrix transformation temperature of the alloy to restore its original shape. Since the female contact is inserted with the hole widened, it can be inserted with zero insertion force, and as described above, a strong connection is achieved during use.
本発明は、平板状の形状記憶合金からなる雌接触子であ
って、該雌接触子は雄接触子を挿入する穴部を有し、前
記合金のマルテンサイト変態温度以下又は母相変態温度
以上の温度で雌接触子と雄接触子とが互いに電気的に接
続するように形状記憶されていることを特徴とするコネ
クタにある。The present invention provides a female contact made of a flat shape memory alloy, wherein the female contact has a hole into which a male contact is inserted, and the female contact has a hole portion into which a male contact is inserted, and is below the martensitic transformation temperature or above the matrix transformation temperature of the alloy. The connector is characterized in that the female contact and the male contact are shaped so as to be electrically connected to each other at a temperature of .
本発明における雌接触子の穴部は雌接触子の中心部にア
ルファベットのH字状のスリットが形成されているもの
、雌接触子の中心部に少なくとも2本のスリットが等間
隔に形成されているもの又は円を中心にこれらの2本以
上のスリットヲ設けるものが好ましく、更に雄接触子と
の接触部分で雄接触子が占める空間より小さくなってい
るのが好ましい。これらの雌接触子は前述と同様にマル
テンサイト変態温度以下の温度で雄接触子を挿入し、そ
の後使用温度状態での母相変態温度以上にすることによ
って強固な接続が得られる。The hole portion of the female contact in the present invention has an H-shaped slit formed in the center of the female contact, and at least two slits formed at equal intervals in the center of the female contact. It is preferable to have two or more slits centered around a circle, and it is further preferable that the space occupied by the male contact be smaller than the space occupied by the male contact at the contact area with the male contact. A strong connection can be obtained by inserting the male contacts into these female contacts at a temperature below the martensitic transformation temperature and then raising the temperature above the matrix transformation temperature in the operating temperature state, as described above.
本発明における雌接触子の穴部は挿入時に挿入される雄
接触子の占める空間より大きくなるように形状記憶され
ているのが好ましい。それによって零挿入力による雄接
触子の挿入が可能である。It is preferable that the hole portion of the female contact in the present invention has a shape memorized so as to be larger than the space occupied by the male contact inserted during insertion. Insertion of the male contact with zero insertion force is thereby possible.
本発明は、平板状の形状記憶合金からなる雌接触子であ
って、雌接触子は雄接触子を挿入する穴部を有し、その
穴部を絶縁基板に設けられた穴部に対応させて配置し、
絶縁基板に固着されていることを特徴とするコネクタに
ある。更にその雌接触子はその上部と下部に絶縁基板を
配置し、それらを互いに固着したものにある。このコネ
クタではより高密度の多ビン化が可能であり、更に小型
化が可能である。現在のコンピュータ用のLSI実装に
おいてはビン数が100〜200個であるが、将来は1
0Crn四方の基板に対して1000〜2000個にな
ると予想されている。本発明はこのようなビン数に対し
ても対処できるものである。The present invention provides a female contact made of a flat shape memory alloy, the female contact having a hole into which a male contact is inserted, and the hole corresponding to a hole provided in an insulating substrate. Place the
A connector characterized in that it is fixed to an insulating substrate. Further, the female contact has insulating substrates disposed on its upper and lower parts, and these are fixed to each other. With this connector, it is possible to have a higher density and a larger number of bins, and it is also possible to make it more compact. In the current LSI implementation for computers, the number of bins is 100 to 200, but in the future the number of bins is 100 to 200.
It is expected that there will be 1000 to 2000 pieces for a 0Crn square board. The present invention can also deal with such a number of bins.
更に、本発明は絶縁基板の上下面に同様に雌接触子を設
けることができる。絶縁基板の片面に設けるときはその
面の反対の面に雄接触子が設けられる。これらの雌接触
子同志及び雌接触子と雄接触子とは互いに導通される。Furthermore, in the present invention, female contacts can be similarly provided on the upper and lower surfaces of the insulating substrate. When provided on one side of an insulating substrate, a male contact is provided on the opposite side. These female contacts are electrically connected to each other and the female contacts and the male contacts are electrically connected to each other.
絶縁基板として多層印刷配線基板、プリント回路用基板
が用いられる。これらの雄接触子挿入用穴部に対応させ
て本発明の形状記憶合金からなる雌接触子が電気的に導
通させて設けることができる。A multilayer printed wiring board or a printed circuit board is used as the insulating substrate. Female contacts made of the shape memory alloy of the present invention can be electrically connected and provided in correspondence with these male contact insertion holes.
本発明は、棒状の形状記憶合金からなる雄接触子であっ
て、該雄接触子は雌接触子に挿入され、使用温度状態で
雌接触子と電気的に接続されるように屈曲形状となるよ
うに形状記憶されていることを特徴とする電気コネクタ
部品にある。更に、この雄接触子は絶縁基板に固着され
る。この絶縁基板は高密度配線が可能な多層配線板から
なるものが好ましい。雄接触子は使用温度状態として母
相変態温度以上又はマンテンサイド変態温度以下で屈曲
するように形状記憶されており、雌接触子への挿入時に
はこれらの温度で真直ぐに形状記憶されているものであ
る。本発明の雄接触子は金属の溶湯から直接細線に凝固
させたものが好ましい。The present invention is a male contact made of a rod-shaped shape memory alloy, and the male contact is inserted into a female contact and has a bent shape so as to be electrically connected to the female contact at operating temperature. An electrical connector part characterized by having a shape memory. Furthermore, this male contact is fixed to the insulating substrate. This insulating substrate is preferably a multilayer wiring board capable of high-density wiring. The male contact has a shape memorized so that it bends when the operating temperature is above the parent phase transformation temperature or below the mantenside transformation temperature, and when inserted into the female contact, the shape is memorized to be straight at these temperatures. be. The male contact of the present invention is preferably one that is directly solidified into a thin wire from a molten metal.
本発明は、急冷凝固してなる金属薄膜又は金属細線から
なることを特徴とする形状記憶合金からなる。バルク状
の形状記憶合金はこれらの薄膜又は細線に塑性加工する
ことがきわめて困難である。The present invention consists of a shape memory alloy characterized by being made of a thin metal film or thin metal wire formed by rapid solidification. It is extremely difficult to plastically process bulk shape memory alloys into these thin films or thin wires.
しかし、金属基板上に蒸着等の方法又は急速回転するロ
ール円周面上に注湯して急冷凝固することにより厚さ0
.1咽以下直径0.5 mm以下の薄膜又は細線を形成
させることができる。ロールとして室温で0,1a1t
/cm・Sec、 c以上の熱伝導率を有する鏡面加工
された面を有するものに注湯することにより、溶湯から
凝固するまでの冷却速度を103C/秒以上とすること
ができる。これにより微細な結晶粒のものが得られ、塑
性変形ができるので、複雑な形状にも加工できる。スパ
ッタリング、蒸着等の気相の方法で薄膜を形成するには
、絶縁基板に有する穴部に対応させてその部分に形状記
憶合金を形成させる必要がある。、この場合には、予め
金属箔を絶縁基板上に設けてその上に形状記憶合金を堆
積させ、絶縁基板の穴部に対応させて好ましくはエツチ
ングによって所定の平面形状に形成することができる。However, by vapor deposition on a metal substrate or by pouring the metal onto the circumferential surface of a rapidly rotating roll and rapidly solidifying it, the thickness can be reduced to zero.
.. A thin film or thin wire with a diameter of 0.5 mm or less can be formed. 0,1a1t at room temperature as a roll
By pouring the metal into a material having a mirror-finished surface having a thermal conductivity of c or more, the cooling rate from molten metal to solidification can be made to be 103 C/sec or more. This produces fine crystal grains that can be plastically deformed, so they can be processed into complex shapes. In order to form a thin film by a vapor phase method such as sputtering or vapor deposition, it is necessary to form a shape memory alloy in a hole in an insulating substrate in a corresponding manner. In this case, a metal foil may be provided on the insulating substrate in advance, the shape memory alloy may be deposited thereon, and the metal foil may be formed into a predetermined planar shape, preferably by etching, in correspondence with the holes in the insulating substrate.
(半導体装置の実装構造への応用)
本発明は、半導体装置と、該半導体装置を載置した多層
印刷配線基板と、該基板をコネクタに接続し、プリント
回路用基板に載置してなるものであって、前記コネクタ
は前記多層印刷配線基板に設けられた雄接触子を挿入す
る穴部を有する形状記憶合金よりなる雌接触子が該雌接
触子の穴部を絶縁基板に設けられた穴部に対応させて前
記絶縁基板に固着しており、前記雌接触子の穴部を構成
する部分が前記雄接触子の挿入の上下方向に曲げ変形す
るように形状記憶を有することを特徴とする半導体装置
の実装構造にある。多層基板へのコネクタの形成は前述
と同様に行うことができる。(Application to mounting structure of semiconductor device) The present invention comprises a semiconductor device, a multilayer printed wiring board on which the semiconductor device is mounted, the board connected to a connector, and mounted on a printed circuit board. In the connector, a female contact made of a shape memory alloy having a hole for inserting a male contact provided in the multilayer printed wiring board connects the hole of the female contact to a hole provided in an insulating board. and is fixed to the insulating substrate in a manner corresponding to the hole portion of the female contact, and has shape memory so that the portion constituting the hole of the female contact is bent and deformed in the vertical direction of insertion of the male contact. This is in the mounting structure of semiconductor devices. The connector can be formed on the multilayer board in the same manner as described above.
更に、本発明は、半導体装置と、該半導体装置を載置し
た多層印刷配線基板と、該基板を載置したプリント回路
用基板とを備えたものにおいて、該プリント回路用基板
は前記多層印刷配線基板に設けられた雄接触子を挿入す
る穴部を有する形状記憶合金からなる雌接触子が該雌接
触子の穴部を前記プリント回路用基板に設けられた前記
雄接触子挿入用穴部に対応させて固着しており、かつ前
記雌接触子の穴部を構成する部分が前記雄接触子の挿入
の上下方向に曲げ変形する構造を有することを特徴とす
る半導体装置の実装構造にある。Furthermore, the present invention includes a semiconductor device, a multilayer printed wiring board on which the semiconductor device is mounted, and a printed circuit board on which the board is mounted, wherein the printed circuit board has the multilayer printed wiring board on which the semiconductor device is mounted. A female contact made of a shape memory alloy having a hole for inserting a male contact provided on the board is inserted into the hole for inserting the male contact provided on the printed circuit board. The semiconductor device mounting structure is characterized in that the female contact is fixed in a corresponding manner and has a structure in which a portion constituting the hole of the female contact is bent and deformed in the vertical direction of insertion of the male contact.
本発明のコネクタをプリント基板に設けることにより多
層基板をプリント基板に直接半田付することなく接続す
ることができる。By providing the connector of the present invention on a printed circuit board, a multilayer board can be connected to the printed circuit board without direct soldering.
また、本発明は、半導体装置と、該半導体装置を載置し
た多層印刷配線基板と、該基板を載置したプリント回路
用基板とを備えたものにおいて、前記多層印刷配線基板
は前記半導体装置に設けられた雄接触子を挿入する穴部
を有する形状記憶合金からなる雌接触子が該雌接触子の
穴部を前記多層印刷配線基板に設けられた前記雄接触子
挿入用穴部に対応させて固着しており、かつ前記雌接触
子の穴部を構成する部分が前記雄接触子の挿入の上下方
向に曲げ変形するように構成されていることを特徴とす
る半導体装置の実装構造にある。Further, the present invention includes a semiconductor device, a multilayer printed wiring board on which the semiconductor device is mounted, and a printed circuit board on which the board is mounted, wherein the multilayer printed wiring board is attached to the semiconductor device. A female contact made of a shape memory alloy having a hole into which a male contact is inserted is provided, and the hole of the female contact corresponds to the hole for inserting the male contact provided in the multilayer printed wiring board. A mounting structure for a semiconductor device, characterized in that the female contact is fixed in place, and the part forming the hole of the female contact is bent and deformed in the vertical direction of insertion of the male contact. .
本発明のコネクタを多層基板に設けることにより半導体
装置を多層基板に半田付することなく接続することがで
きる。By providing the connector of the present invention on a multilayer board, a semiconductor device can be connected to the multilayer board without soldering.
(実施例1) 第2図は本発明の電気コネクタの断面図である。 (Example 1) FIG. 2 is a cross-sectional view of the electrical connector of the present invention.
この電気コネクタは雄接触子としてピン1の挿入方向4
(雌接触子2の肉厚方向)の構造を平板状として単純化
し、さらにコンパクト化及びマイクロ化に際し加工成形
が容易なものである。絶縁基板3のピン挿入用穴部6に
ピン挿入方向4に対して薄板状あるいは薄膜状の雌接触
子2を直角に配することを特徴とする。この雌接触子2
は形状記憶合金からなる。ピン1はビン挿入穴部6上に
形成されるピン接合用雌接触子にはスリット状などのす
き間が形成されており、その部分に押し込まれる。ピン
は母相変態温度以上又はマルテンサイト変態温度下で、
バネ力によってピンの接合力が働くように形状記憶され
ている。雌接触子2は基板3のビン挿入穴部6に接着な
どの方法で固着される。この構造は肉厚方向の厚さを従
来に比べ薄くでき、コネクタのコンパクト化に有効であ
る。This electrical connector has pin 1 inserted in direction 4 as a male contact.
The structure (in the thickness direction of the female contactor 2) is simplified by making it into a flat plate shape, and it is also easy to process and mold when making it compact and micro-sized. It is characterized in that a female contact 2 in the form of a thin plate or film is disposed in the pin insertion hole 6 of the insulating substrate 3 at right angles to the pin insertion direction 4. This female contact 2
is made of shape memory alloy. The pin 1 is pushed into a slit-like gap formed in the female contact for pin joining formed on the bottle insertion hole 6. The pin is above the matrix transformation temperature or below the martensitic transformation temperature,
The shape is memorized so that the connecting force of the pin is exerted by the spring force. The female contact 2 is fixed to the bottle insertion hole 6 of the substrate 3 by adhesive or other method. This structure allows the thickness in the wall direction to be made thinner than the conventional one, and is effective in making the connector more compact.
さらにこの構造の雌接触子2が基板上に平面的に設けら
れるためPVD法(蒸着、スパッタ法等)、CVD法、
溶湯急冷法及び溶射などの気相あるいは液相から直接成
形する方法により製造及び基板への一体成形が可能であ
る。雌接触子となる薄板あるいは薄膜を接着または形成
して、これをフォトリソグラフィ、化学エツチング等に
より所定の形状に一体成形が可能である。以上の利点は
、多ビンコネクタにおいて一度に多ピン接合部を成形で
き、また、微細加工も容易であることがらコネクタのマ
イクロ化に際し非常に有効である。Furthermore, since the female contact 2 with this structure is provided flatly on the substrate, PVD method (evaporation, sputtering method, etc.), CVD method, etc.
It can be manufactured and integrally molded onto a substrate by a method of directly molding from a gas or liquid phase, such as a molten metal quenching method or thermal spraying. It is possible to bond or form a thin plate or film to serve as a female contact and integrally mold this into a predetermined shape by photolithography, chemical etching, or the like. The above-mentioned advantages are very effective in micro-fabrication of connectors, since a multi-pin connector can be molded at one time in a multi-bin connector, and microfabrication is easy.
本発明のコネクタ構造において雌接触子に熱弾性型マル
テンサイト変態による形状記憶合金を適用すると次のよ
うな効果がある。形状記憶合金としては一般にCu−A
t−、ZnXCu−AA−Ni及びTi−H5合金が知
られているが、これはいずれも圧延、成形など加工が難
しい拐料である。第3図及び第4図に形状記憶合金を絶
縁基板3に形成したコネクタの接合プロセスの工程を示
す断面図である。形状記憶効果にはいくつかの種類のあ
ることが知られてい、るが、第3図は一方向形状記憶効
果を、第4図は二方向形状記憶効果をそれぞれ利用した
ものである。いずれの場合も形状記憶合金のマルテンサ
イト変態温度がコネクタの動作温度(一般には室温)以
下のものを使用する。第3図(a)は形状記憶合金から
なる雌接触子2を動作温度と平らな状態を記憶させたも
の、(b)はそれをマルテンサイト変態温度以下に下げ
た状態である。この状態で合金はマルテンサイト変態し
、それに伴い形状は変化しないが、非常に軟かな状態と
なる。(C)はこの軟かな状態でピン1を挿入し、(d
)で動作温度に戻すとマルテンサイトは元の母相に戻り
それに伴い合金が硬化し、形状記憶効果によって元の形
状((a)状態)に戻ろうとする力が働く。それに伴い
挿入されたピン1に大きな接合力が付与される。これら
の結果から、形状記憶効果を用いると低挿入力ピンコネ
クタが実現できる。In the connector structure of the present invention, when a shape memory alloy with thermoelastic martensitic transformation is applied to the female contact, the following effects can be obtained. Cu-A is generally used as a shape memory alloy.
t-, ZnXCu-AA-Ni, and Ti-H5 alloys are known, but these are all grains that are difficult to process such as rolling and molding. FIGS. 3 and 4 are cross-sectional views showing the process of joining a connector in which a shape memory alloy is formed on an insulating substrate 3. FIG. It is known that there are several types of shape memory effects, and FIG. 3 uses a one-way shape memory effect, and FIG. 4 uses a two-way shape memory effect. In either case, a shape memory alloy whose martensitic transformation temperature is lower than the operating temperature of the connector (generally room temperature) is used. FIG. 3(a) shows the female contact 2 made of a shape memory alloy in which the operating temperature and flat state have been memorized, and FIG. 3(b) shows the state in which it has been lowered to below the martensitic transformation temperature. In this state, the alloy undergoes martensitic transformation, and although the shape does not change accordingly, it becomes very soft. (C) Insert pin 1 in this soft state, and (d
), martensite returns to its original parent phase, the alloy hardens accordingly, and a force is exerted that tries to return to the original shape (state (a)) due to the shape memory effect. Accordingly, a large bonding force is applied to the inserted pin 1. From these results, it is possible to realize a low insertion force pin connector by using the shape memory effect.
第4図は(a)と(b)状態における変態に伴う可逆的
形状記憶をさせた状、薦によるものである。コネクタの
動作温度状態では(a)の状態になるように形状記憶さ
せ、次にマルテンサイト変態温度以下で(b)ノ状態に
なるように形状記憶させる。マルテンサイト変態温、度
まで冷却すると形状記憶効果によって特にスリッド状に
形成されたピン挿入穴部5′のすき間が開く。そこに(
C)のようにピンを挿入し、(d)に示すように動作温
度状態に戻すと形状記憶効果によって合金は母相状態に
戻り硬くなるとともに(a)状態に戻るので、雌接触子
とピ/とに接合力が負荷される。これを(e)に示すよ
うにもう一度マルチンサイト変態温度以下の状態まで冷
却するとピン挿入穴部が開き、ピンを容易に抜くことが
できる。このように二方向形状記憶効果を本発明コネク
タ構造に適用するとほぼ零挿入抜去力の電気コネクタが
実現できる。形状記憶合金は前述のように加工が難しい
ため、従来のソケット形状でマイクロ化しようとしても
形状が複雑なため加工が困難である。それに比べ、本発
明の構造は単純であるのでこのような難加工材で形状記
憶合金の適用が容易であり、本発明の大きな利点となる
。FIG. 4 shows the state in which reversible shape memory occurs due to transformation in states (a) and (b). At the operating temperature of the connector, the shape is memorized so as to be in the state (a), and then at below the martensitic transformation temperature, the shape is memorized so that it is in the state (b). When the material is cooled to the martensitic transformation temperature, the shape memory effect opens a gap particularly in the pin insertion hole 5' formed in a slid shape. there(
When the pin is inserted as shown in (C) and returned to the operating temperature state as shown in (d), the alloy returns to the matrix state due to the shape memory effect and becomes hard, returning to the state (a), so that the female contact and pin Bonding force is applied to /. When this is cooled again to a state below the martinsite transformation temperature as shown in (e), the pin insertion hole opens and the pin can be easily removed. By applying the two-way shape memory effect to the connector structure of the present invention in this way, an electrical connector with almost zero insertion/extraction force can be realized. As mentioned above, shape memory alloys are difficult to process, so even if an attempt is made to micronize a conventional socket shape, the shape is complicated and processing is difficult. In comparison, since the structure of the present invention is simple, shape memory alloys can be easily applied to such difficult-to-process materials, which is a great advantage of the present invention.
(実施例2) 本実施例では、雌接触子の形状加工を検討した。(Example 2) In this example, processing of the shape of the female contactor was studied.
雌接触子としては板厚0.08to+のCu−13e合
金からなるバネ材CJI8C1700)及び形状記憶合
金として前述の表に示すcu−ht−Ni系並びにNi
−’I’i系合金の溶湯急冷リボン材を用いた。As a female contact, a spring material CJI8C1700 made of a Cu-13e alloy with a plate thickness of 0.08 to
- A quenched molten ribbon material of an 'I'i alloy was used.
この急冷材は双ロール型急冷装置により作製したもので
厚さ0,06〜0.09mm幅5〜10日の薄板である
。製造条件は、ノズルとして0.8〜1. Orran
φの丸孔付石英製ノズQ=2用い、周速約10m/5(
DCu−Be製ロール(直径120 ttrm 1間に
高圧Arガス(圧力1. o 〜1.5 kg/Crn
” )で溶湯を噴出して急冷凝固させた。表中の緒特性
は室温において測定したものである。This quenching material was produced using a twin-roll type quenching device, and was a thin plate having a thickness of 0.06 to 0.09 mm and a width of 5 to 10 days. The manufacturing conditions are 0.8 to 1. Orran
Uses Q=2 quartz nozzle with φ round hole, circumferential speed approximately 10 m/5 (
DCu-Be roll (diameter 120 ttrm) High pressure Ar gas (pressure 1.o ~ 1.5 kg/Crn)
” ), the molten metal was spouted and rapidly solidified. The properties in the table were measured at room temperature.
第5図は前記合金薄板によって雌接触子2として外形を
円形に加工した4種類の平面形状を示す平面図である。FIG. 5 is a plan view showing four types of planar shapes in which the outer shape of the female contact 2 is machined into a circular shape using the thin alloy plate.
(a)及び(b)は雄接触子断面が円形の場合、(C)
、 (d)が矩形の場合である。これら加工には、ワイ
ヤによる放電加工、化学エツチング及び打抜を試みた。(a) and (b) when the male contact cross section is circular, (C)
, (d) is a rectangle. For these processes, we tried electrical discharge machining using a wire, chemical etching, and punching.
ワイヤによる放電加工では、最初にワイヤを通す穴をド
リルで加工した。ドリル径は最小0.1 mm径まで加
工が可能であった。ワイヤには最小0.1 wm直径の
銅線又は0.05 tran直径のタングステン線を使
用した。その結果、スリット7の幅は0.1閣まで可能
であった。また、化学エツチングでは、写真フィルムに
焼付けたスリット形状を、光硬化性樹脂を表面にぬった
リボンに重ね感硬させ未感光のスリット部表面の樹脂だ
けで洗浄しておとす。その結果、スリット部のみが樹脂
により被覆されない状態となる。これを塩化第2鉄溶液
中に浸漬してエツチングした結果、やはり、スリット7
の幅を0.1 mmまで加工が可能であった。In electrical discharge machining using wires, the holes through which the wires will be passed are first drilled. It was possible to process the drill to a minimum diameter of 0.1 mm. The wires used were copper wire with a minimum diameter of 0.1 wm or tungsten wire with a diameter of 0.05 tran. As a result, the width of the slit 7 could be up to 0.1 mm. In chemical etching, a slit shape printed on a photographic film is layered on a ribbon coated with a photocurable resin and cured, and only the unexposed slit surface is cleaned with the resin. As a result, only the slit portion is not covered with the resin. As a result of etching this by immersing it in a ferric chloride solution, the slit 7
It was possible to process the width down to 0.1 mm.
打抜きは8KD11のダイス鋼製金型によりクリアラン
スがゼロの状態で打抜いた。この方法によってもスリッ
ト幅を最小0.1 rtanまで加工することが可能で
あった。The punching was performed using an 8KD11 die steel die with zero clearance. This method also made it possible to process the slit width to a minimum of 0.1 rtan.
このように加工した雌接触子にピンを挿入して接合力を
評価した。雌接触子形状は第5図(a)、 (b)の場
合としてスリット7の長さ3叫、幅0.2mm中央部穴
部5の直径0.5gのもの、また(C)、 (d)では
矩形の一辺が3胴、スリット7の幅0.2mのものであ
る((d)の場合、中央のスリット7の長さを1.5w
nとした)。ビン形状は前者の(a) 、 (b)の雌
接触子に対しては直径0.8+++mの棒状、後者の(
C)、(d)に対しては0.4wmX1mの矩形の棒状
のものを使用した。雌接触子は動作状態で平らになるよ
うに形状記憶させ、ピンを液体窒素中にて挿入した。A pin was inserted into the thus processed female contact to evaluate the bonding force. The female contact shape is as shown in Figs. 5(a) and (b), with the slit 7 having a length of 3 mm, a width of 0.2 mm, and a diameter of the central hole 5 of 0.5 g, and (C) and (d). ), one side of the rectangle is 3 cylinders, and the width of the slit 7 is 0.2 m (in the case of (d), the length of the central slit 7 is 1.5 w).
n). The shape of the bottle is a rod with a diameter of 0.8+++m for the female contacts (a) and (b) of the former, and a rod shape of the latter (
For C) and (d), a rectangular bar measuring 0.4 wm x 1 m was used. The female contact was shaped so that it would be flat in the operating state, and the pin was inserted into liquid nitrogen.
なお、上述のCu−14%At−4%Ni合金薄板にス
リット加工したものを液体窒素中で変形させた後の温度
の上昇に伴う形状記憶効果による形状回復を光学顕微鏡
により連続的観察した。液体窒素中で直径1.5Bのピ
ンによって第4図(b)のように開いた状態に変形させ
、次いでこれを室温に戻した結果、室温での形状はほぼ
完全に元に回復していた。以上のような条件で接合した
場合これらの引抜力は(a)、(b)で2oog、(c
)、(d)で150gであった。この力は材質によって
あまシ大きな差は見られなかった。また、ビン接触部で
の接触抵抗は10mΩ以上であった。Note that the above-mentioned Cu-14%At-4%Ni alloy thin plate processed with slits was deformed in liquid nitrogen, and then shape recovery due to the shape memory effect accompanying temperature rise was continuously observed using an optical microscope. When it was deformed into the open state as shown in Figure 4(b) in liquid nitrogen using a pin with a diameter of 1.5B, and then returned to room temperature, the shape at room temperature was almost completely restored to its original shape. . When joined under the above conditions, the pulling forces are 2oog in (a) and (b), and (c
), (d) was 150g. There was no significant difference in this force depending on the material. Further, the contact resistance at the bottle contact portion was 10 mΩ or more.
第6図はピンコネクタを接合後、抜去を容易にするため
の構造にしたスリットの平面形状を示す平面図である。FIG. 6 is a plan view showing the planar shape of a slit designed to facilitate removal of the pin connector after joining.
(a)は、第5図(b)の3ケのスリット7を1ケにし
て扇型形状のスリット7及び(b)は第5図(C>の矩
形の下半分を取りのぞいた形状である。(a) has a fan-shaped slit 7 instead of the three slits 7 in Figure 5(b), and (b) has a shape with the lower half of the rectangle in Figure 5 (C> removed). be.
図中の斜線部8にビシを挿入し抜去時には矢印の方向に
スライドさせ接合状態から解放した状態で引き抜く。(
b)の形状を立体的に示したのが第7図である。スライ
ドする力は接合力の約1/10程度であシ容易に引抜く
ことができる。また、形状記憶合金では液体窒素温度下
でスライドした場合材料が軟かくなっているため約11
50以下の力でスライドが可能であったつ
形状記憶合金を雌接触子に適用した場合の二方向形状記
憶効果によるピンの挿入、抜去を試みた。A biscuit is inserted into the shaded area 8 in the figure, and when removed, slide it in the direction of the arrow to release it from the bonded state and then pull it out. (
FIG. 7 shows the shape of b) in three dimensions. The sliding force is about 1/10 of the bonding force, and it can be easily pulled out. In addition, with shape memory alloys, when sliding under liquid nitrogen temperature, the material becomes soft, so approximately 11
An attempt was made to insert and remove a pin using the two-way shape memory effect when a shape memory alloy, which could be slid with a force of 50 or less, was applied to the female contact.
スリット形状は第5図(a)及び(C)である。二方向
形状記憶させるため最初に2閲φあるいは1.2 X
1瓢矩形のピンを液体窒素温度下で挿入して強加工する
。これを2〜3回くシ返して形状記憶させた。The slit shapes are shown in FIGS. 5(a) and 5(C). In order to memorize the shape in two directions, first 2xφ or 1.2X
A rectangular pin is inserted under liquid nitrogen temperature and subjected to strong machining. This was repeated 2 to 3 times to memorize the shape.
この雌接触子に前記条件のピンを挿入したところ挿入、
抜去時にはピンと接合部にすき間ができるためそれに必
要な力はゼロであった。接合時には引抜力として150
gまで耐えることが分かシ、低挿入力コネクタが得られ
ることを確認した。When the pin under the above conditions was inserted into this female contact, it was inserted.
At the time of removal, a gap was created between the pin and the joint, so the force required for this was zero. When joining, the pulling force is 150
It was confirmed that a low insertion force connector could be obtained.
(実施例3)
本実施例では前記実施例2で加工した雌接触子をピン挿
入用穴部を有する基板に固定する方法について検討した
。雌接触子の材質は前記実施例2と同等であシ、基板材
質としてガラスエポキシ樹脂、エポキシ樹脂及びアルミ
ナ板を使用し7た。これら基板の穴などの加工は前者は
一般ドリルで、後者はCOxレーザでそれぞれ行なった
。まず、接着による固定方法を検討した。第8図は接着
の方式が異なる雌接触子の断面図である。(a)は基板
上に単純に接着剤9によって固定する方法である。(Example 3) In this example, a method of fixing the female contact fabricated in Example 2 to a substrate having a pin insertion hole was studied. The material of the female contact was the same as in Example 2, and the substrate material was glass epoxy resin, epoxy resin, and alumina plate. Holes and the like in these substrates were processed using a general drill for the former and a COx laser for the latter. First, we investigated a fixing method using adhesive. FIG. 8 is a sectional view of a female contact with a different adhesive method. (a) is a method of simply fixing onto the substrate with adhesive 9.
一般には接着強度が足シればどんな接着剤でもよいが、
形状記憶合金を使用とした時は室温と液体窒素までの熱
サイクルに耐えなければならない。In general, any adhesive can be used as long as it has sufficient adhesive strength, but
When shape memory alloys are used, they must withstand thermal cycles from room temperature to liquid nitrogen.
そのため、一般の有機接着剤ではこのサイクルに耐えな
い。これに耐えるのはアルミナ又はジルコニアと水ガラ
スなどからなる無機系接着剤である。Therefore, ordinary organic adhesives cannot withstand this cycle. Inorganic adhesives made of alumina or zirconia and water glass can withstand this.
さらに銀ペーストも十分乾燥させることにより、はぐり
強度が150.g程度と十分な接着強度が得られた。基
板がアルミナの場合500〜600tTで1h焼成する
と接着強度はさらに50%程度向上する。第8図(b)
は基板がセラミックスの場合熱サイクルに耐える接着と
して基板上にメタライズ後メッキ層10を設けた後ろう
材11によって接着する方法である。本実施例ではM
O−M nペーストにより1100Cで1hメタライズ
し、Niメッキを施した後鍋ろうにより接着した。いず
れの合金もはぐり強度300g以上の良好な接着が得ら
れた。Furthermore, by sufficiently drying the silver paste, the peel strength can be increased to 150. Sufficient adhesive strength of approximately 100 g was obtained. When the substrate is alumina, the adhesive strength is further improved by about 50% by firing at 500 to 600 tT for 1 hour. Figure 8(b)
In this method, when the substrate is made of ceramics, a metalized plating layer 10 is provided on the substrate as an adhesive that can withstand thermal cycles, and then a brazing material 11 is used for bonding. In this example, M
After metallizing with O-M n paste at 1100C for 1 hour and applying Ni plating, it was bonded using a pot solder. Good adhesion with peel strength of 300 g or more was obtained for all alloys.
このようなろう付接着及び前記実施例の化学エツチング
を用い雌接触子をピン挿入用穴部を有する基板上の穴部
への直接成形を試みた。ろう材として、インジウムはん
だ、銀ろう、鉛はんだ等が用いられる。その工程を示す
斜視図を第9図に示す。(a)は穴6のあいたアルミナ
基板3を示し、そ(7)上に、(b)の如く雌接触子と
なる重量でCu−14%A、1!、−4%Ni合金の薄
板12を前記ろう付で接着し、これを(C)に示すよう
に前記化学エツチングにより穴周囲に雌接触子となると
ころを残してエツチングした。この状態でさらにマスキ
ングを替え、ピン接合部スリットをエツチングして成形
した。この工程が可能なことから多数のビンに対応する
多数の雌接触子を一度に製造することが可能であること
が分った。Using such brazing adhesion and the chemical etching described in the above embodiment, an attempt was made to directly mold a female contact into a hole on a substrate having a hole for inserting a pin. Indium solder, silver solder, lead solder, etc. are used as the brazing material. A perspective view showing the process is shown in FIG. (a) shows an alumina substrate 3 with a hole 6, and on the alumina substrate 3 (7), Cu-14%A, 1! A thin plate 12 of -4% Ni alloy was bonded by the brazing described above, and this was etched by the chemical etching described above, leaving a portion that would become a female contact around the hole, as shown in (C). In this state, the masking was further changed, and the pin joint slit was etched and molded. It has been found that since this process is possible, it is possible to manufacture a large number of female contacts corresponding to a large number of bottles at once.
固定方法の他の例として第10図に示すように雌接触子
を2枚の基板間にはさむ方式を検討した。As another example of the fixing method, we considered a method in which the female contact is sandwiched between two substrates, as shown in FIG.
(a)は上下の基板のピン挿入用穴径が同じもの、(b
)は上下の穴径をピン径より若干大きくしてその穴をビ
ンのガイドとして働かすもの、(C)は上下基板を完全
に密着させるため下の基板に溝をもうけ、そこに雌接触
子を配置したものをそれぞれ示している。これらは前記
接着法に比べ構造はやや複雑になるが、固定強度の信頼
性が太きい。また、第8図(a)のように簡単に接着し
た後上部から基板ではさむことにより、熱サイクルにも
耐える固定が実現した。この固定方式を適用したビンコ
ネクタの斜視図を第11図及び第12図に示す。第11
図は第10図(b)の方銚、第12図は同じ<(c)の
方式を採用したもので、ピン数は30ピン、ピントビン
との間のピッチ間隔は2インチのものである。(a) The upper and lower boards have the same pin insertion hole diameter, (b)
) is the one in which the diameter of the upper and lower holes is slightly larger than the pin diameter and serves as a guide for the bottle, and (C) is the one in which a groove is made in the lower board to make the upper and lower boards come into contact with each other completely, and a female contact is inserted there. Each arrangement is shown. These methods have a slightly more complicated structure than the adhesive method described above, but the reliability of the fixing strength is high. Furthermore, as shown in FIG. 8(a), by simply adhering and then sandwiching it between substrates from above, a fixation that can withstand thermal cycles was realized. A perspective view of a bin connector to which this fixing method is applied is shown in FIGS. 11 and 12. 11th
The figure shows the orientation of FIG. 10(b), and FIG. 12 uses the same method of <(c), the number of pins is 30, and the pitch between the pins and the focusing bin is 2 inches.
ピンは直径0.8關の丸形で雌接触子のスリット形状は
長さ3間で、第5図(b)の形状である。基板はアクリ
ル樹脂である。第11図は基板をネジ18によって固定
したもの、第12図は下の基板17の両端に上の基板1
5を挿入し、固定するガイド溝16を設け、矢印のよう
に上部基板を横からさしこむような構造となっている。The pin has a round shape with a diameter of 0.8 mm, and the slit shape of the female contact has a length of 3 mm, as shown in FIG. 5(b). The substrate is acrylic resin. Figure 11 shows the board fixed with screws 18, and Figure 12 shows the upper board 1 attached to both ends of the lower board 17.
A guide groove 16 is provided in which the upper board 5 is inserted and fixed, and the upper board is inserted from the side as shown by the arrow.
第11図の場合、雌接触子の位置を固定するだめに下部
基板上に簡単な接着により固定する必要があるが、第1
2図の場合、下部基板上の溝に置くだけで位置が固定さ
れるだめ、1ピンだけの接合部が破損などの不具合があ
ってもすぐに交換が可能であるという利点がある。In the case of Fig. 11, in order to fix the position of the female contact, it is necessary to fix it on the lower board with simple adhesive.
In the case of Figure 2, the position is fixed simply by placing it in the groove on the lower board, and there is an advantage that even if there is a problem such as damage to the joint of only one pin, it can be replaced immediately.
(実施例4)
cu−Ni−ht系形状記憶合金をスパッタ法により種
々のピン挿入用穴部を有する絶縁基板上にCu、kt箔
を載置し、その上に積層複合化した。合金の組成として
Cu−4%N t−14%At(重量)とし、無酸素銅
(JIS1種)、電解Ni(純度99.5%)及びAt
(純度99.8%)を配合し真空中(10−一〜10−
’Torr )にて1チャージ2.5kgを高周波溶解
し、これを直径95咽の金型に鋳込んだ。得られたイン
ゴットから直径90m、厚さ5馴の円板を機械加工によ
り切り出し、スパッタ用ターゲットとした。スパッタ装
置には2極DC−マグネトロン型を用いた。装置の容器
内を3 X 10”I’orrの真空にした後、Arを
30μm)(gの圧力まで導入して電極直距離60叫、
5m’l’Q r r
AreEE、、、電力200Wのスパッタ条件でCu箔
。(Example 4) Cu-Ni-ht type shape memory alloy was placed on an insulating substrate having various pin insertion holes by sputtering, and Cu and Kt foils were laminated thereon. The composition of the alloy is Cu-4%Nt-14%At (weight), oxygen-free copper (JIS type 1), electrolytic Ni (purity 99.5%) and At.
(purity 99.8%) in vacuum (10-1 to 10-1)
One charge of 2.5 kg was melted by high frequency at a pressure of 2.5 Torr and cast into a mold with a diameter of 95 mm. From the obtained ingot, a disk with a diameter of 90 m and a thickness of 5 mm was cut out by machining and used as a sputtering target. A two-pole DC-magnetron type sputtering device was used. After creating a vacuum of 3 x 10"I'orr in the chamber of the device, Ar was introduced to a pressure of 30 μm) (g) and the direct distance between the electrodes was 60".
5m'l'Q r r AreEE, Cu foil under sputtering conditions of power 200W.
A4箔(いずれも厚さ20μm)の片側にデポジットし
た。これらの基板上にデポジットした際のスパッタ膜厚
のスパッタ時間の依存性は時間と共にほぼ直線的に増加
し、4.5hで50μm近くまで積層でき、その積層し
たままの状態で良好にA4箔に密着していた。Cu箔上
においてもほぼ同様のスパッタ膜厚の時間依存性及び密
着性の高い膜が得られた。これらスパッタ膜のマルテン
サイト変態開始温度(MS)は四端子電気抵抗測定の結
果、−123tl::であった。従って、この形状記憶
合金は、液体窒素と室温の間で顕著な形状記憶効果を示
し、それらの温度間で動作させる部材に用いることがで
きる。It was deposited on one side of A4 foil (both 20 μm thick). The dependence of the sputtered film thickness on the sputtering time when deposited on these substrates increases almost linearly with time, and it can be deposited to a thickness of nearly 50 μm in 4.5 hours, and it can be easily converted into A4 foil in the laminated state. They were in close contact. A film with almost the same sputtered film thickness time dependence and high adhesion was also obtained on the Cu foil. The martensitic transformation initiation temperature (MS) of these sputtered films was -123 tl:: as a result of four-terminal electrical resistance measurement. Therefore, this shape memory alloy exhibits a significant shape memory effect between liquid nitrogen and room temperature, and can be used for members that operate between these temperatures.
急冷した組織を走査電子顕微鏡で観察すると表面で直径
約2〜3μmの微細結晶層となり曲げ変形に対して粒界
への応力集中を緩和するため曲げ延性が向上した。When the rapidly cooled structure was observed with a scanning electron microscope, a fine crystal layer with a diameter of about 2 to 3 μm was formed on the surface, and the bending ductility was improved because stress concentration at the grain boundaries was alleviated against bending deformation.
このようにkt及びCu箔上に形状記憶合金をデポジッ
トした基板を第10図に示す化学エツチングによる工程
で雌接触子f:製造した。厚さ50μmのA7箔との複
合体では約2μm以上、同じくCu箔との複合体では約
4μm以上の厚さの形状記憶合金を積層させることによ
り良好な形状記憶効果が認められ、また互いに密着した
複合体が形成されていた。A female contact f: was manufactured using the chemical etching process shown in FIG. 10 using a substrate in which the shape memory alloy was deposited on the KT and Cu foils in this manner. A good shape memory effect was observed by laminating shape memory alloys with a thickness of about 2 μm or more in a composite with a 50 μm thick A7 foil, and about 4 μm or more in a composite with a Cu foil, and they also adhered to each other. A complex was formed.
本実施例では、外径1wn5中央部穴部5の直径0.5
+o+、スリット7の長さ3配、幅0.28のものを化
学エツチングにより製造した。このものを液体窒素中に
て直径0.8咽のピンを挿入し、中央部穴部5をより大
きく開口する曲げの強加工を施し、次いで室温に戻した
が、雌接触子の接触部は元の平らな状態に戻ることが確
認された。次にこのものを再び液体窒素中に入れ、同様
にピンを挿入したが全く抵抗なく挿入でき、それを室温
に戻し、その引抜力は約100gであり、零挿入力コネ
クタが得られる。In this embodiment, the outer diameter is 1wn5, and the diameter of the central hole 5 is 0.5.
+o+, three lengths of slits 7, and a width of 0.28 were manufactured by chemical etching. A pin with a diameter of 0.8 mm was inserted into this product in liquid nitrogen, and the center hole 5 was bent to make it larger.Then, it was returned to room temperature, but the contact part of the female contact It was confirmed that it returned to its original flat state. Next, this product was placed in liquid nitrogen again, and a pin was inserted in the same way without any resistance. When it was returned to room temperature, the pulling force was about 100 g, and a zero insertion force connector was obtained.
(実施例5)
本実施例では、雄接触子としてピンを形状記憶合金によ
って製造した例を示す。形状記憶合金として前述の表の
cu−p、t−Nt金合金溶湯を直径120mmの13
e含有Cu基合金製ロール表面に高圧Arガスによって
石英製ノズルより噴射して直径約0.5■の細線を急冷
凝固させ、製造した。(Example 5) This example shows an example in which a pin as a male contact was manufactured from a shape memory alloy. As a shape memory alloy, the cup-p, t-Nt gold alloy molten metal shown in the table above was used as a shape memory alloy with a diameter of 120 mm.
A fine wire with a diameter of about 0.5 cm was rapidly solidified by injecting high-pressure Ar gas from a quartz nozzle onto the surface of a roll made of e-containing Cu-based alloy.
この細線の特性は前述の表とはソ同じである。この細線
を用いて第1図(a)の形状のピンを母相変態温度以上
で塑性加工によって雌接触子との接触部分を曲げて”く
”の字状にした。次いでこのものを液体窒素中でその接
触部分がストレートになるように塑性加工した。このよ
うにして得られたピンを第1図(a)に示す雌接触子に
液体窒素中で挿入し、次いで母相変態温度以上である動
作温度にした結果、前述のゞ゛<″の字状に曲がり、ピ
ンと雌接触子とは互いに電気的に接続することが確認さ
れた。このものの引抜力は雌接触子に形状記憶合金を用
いたものに比較し、小さいものであった。The characteristics of this thin line are the same as those shown in the table above. Using this fine wire, a pin having the shape shown in FIG. 1(a) was plastically worked at a temperature higher than the matrix transformation temperature to bend the contact portion with the female contact into a dogleg shape. This material was then plastically worked in liquid nitrogen so that the contact area was straight. The pin thus obtained was inserted into the female contact shown in FIG. It was confirmed that the pin and the female contact were electrically connected to each other.The pulling force was smaller than that of a female contact made of a shape memory alloy.
なお、液体窒素中での挿入に際し、予めストレートに変
形なせなくても軟いマルテンサイト状態にあるので、低
挿入力による挿入が可能である。In addition, when inserting in liquid nitrogen, even if it cannot be deformed straight in advance, it is in a soft martensitic state, so insertion can be performed with low insertion force.
(実施例6)
本実施例はLSI実装に適用した例を示す。第13図は
本発明の電気コネクタが使用されたLSIパッケージ1
9.19’を実装したプリント回路用基板22の斜視図
である。LS119.19’はセラミック多層印刷配線
基板20に半田付され、更に本発明のコネクタ21に接
続されている。本発明のコネクタはプリント回路用基板
22に半田25によって接合されている。(Embodiment 6) This embodiment shows an example applied to LSI implementation. Figure 13 shows LSI package 1 in which the electrical connector of the present invention is used.
9.19' is a perspective view of the printed circuit board 22 on which the circuit board 9.19' is mounted. LS119.19' is soldered to a ceramic multilayer printed wiring board 20 and further connected to a connector 21 of the present invention. The connector of the present invention is joined to a printed circuit board 22 by solder 25.
第14図はプリント回路用基板4スに本発明のコネクタ
を載置し、そのコネクタに多層印刷配線基板20を載置
した断面の構成図である。本発明のコネクタはセラミッ
ク絶縁基板15のビン1′挿入用の穴部6に雌接触子2
とプリント回路用基板22に挿入するビン1″とを電気
的に接続する導電膜23が設けられ、その上部に形状記
憶合金よりなる雌接触子2が上部のセラミック絶縁基板
14とによって固定されている。本発明の雌接触子2は
前述のように溶湯急冷、蒸着、スパッタリング等によっ
て薄膜状に形成され、その薄膜を絶縁基板に張付け、エ
ツチングによって前述のように所定の形状にしたもので
ある。FIG. 14 is a cross-sectional configuration diagram in which a connector of the present invention is placed on a printed circuit board 4, and a multilayer printed wiring board 20 is placed on the connector. The connector of the present invention has a female contact 2 inserted into a hole 6 for inserting a pin 1' in a ceramic insulating substrate 15.
A conductive film 23 is provided to electrically connect the pin 1'' inserted into the printed circuit board 22, and a female contact 2 made of a shape memory alloy is fixed to the top of the conductive film 23 by an upper ceramic insulating board 14. The female contact 2 of the present invention is formed into a thin film by quenching molten metal, vapor deposition, sputtering, etc. as described above, and the thin film is attached to an insulating substrate and etched into a predetermined shape as described above. .
第15図はプリント回路用基板■に本発明の22は通常
の方法で配線が形成され、そのものにビン1′の挿入用
穴部に形状記憶合金からなる雌接触子2が前述と同様に
形成される。配線膜24と雌接触子2とは導電性ペース
ト等で接合される。Fig. 15 shows wiring 22 of the present invention formed on a printed circuit board 2 by a conventional method, and a female contact 2 made of a shape memory alloy formed in the insertion hole of the bottle 1' in the same manner as described above. be done. The wiring film 24 and the female contact 2 are bonded together using a conductive paste or the like.
雌接触子2は樹脂で26の如くコートされる。第14図
ともにビン1′の挿入は軟かいマルテンサイト状態で行
うのが低挿入力で挿入できる。The female contact 2 is coated with resin as shown at 26. In both FIG. 14, inserting the bottle 1' in a soft martensite state allows insertion with low insertion force.
第14図及び第15図において雌接触子2をスパッタリ
ング棹び蒸着等の気相で形成させるにはビン挿入用穴部
を塞ぐ必要があるので、金属の箔膜を絶縁基板3又はプ
リント回路用基板22の上に固着し、その上に形状記憶
合金を形成させ、エツチングによって所望の形状にする
。In FIGS. 14 and 15, in order to form the female contact 2 in a gas phase such as by sputtering or evaporation, it is necessary to close the hole for inserting the bottle, so a metal foil film is used on the insulating substrate 3 or printed circuit. It is fixed onto a substrate 22, a shape memory alloy is formed thereon, and etched into the desired shape.
第16図は同じ<LSI実装用に適用した本発明の電気
コネクタの他の例を示す断面図である。FIG. 16 is a sectional view showing another example of the electrical connector of the present invention applied to LSI mounting.
絶縁基板30両面に形状記憶合金からなる雌接触子2,
2′を設けた構造である。雌接触子2.2′は互いに電
気的に接続するように導電膜23が設けられており、雌
接触子2には多層印刷配線基板20及び2′にはプリン
ト回路用基板22に設けられたビン1″′が挿入される
。雌接触子を講成する薄膜は前述と同仔に種々の方法で
製造できるが、スパッタリング、蒸着等の気相で形状記
憶合金を形成させるには前述と同様にビン挿入用穴部を
金属箔で塞いで行うことができる。Female contacts 2 made of shape memory alloy on both sides of the insulating substrate 30,
2'. The female contacts 2 and 2' are provided with a conductive film 23 so as to be electrically connected to each other. Bottle 1''' is inserted. The thin film forming the female contact can be manufactured by various methods similar to those described above, but forming the shape memory alloy in a gas phase such as sputtering or vapor deposition can be performed using the same method as described above. This can be done by covering the bottle insertion hole with metal foil.
本実施例によれば軟かいマルテンサイト状態、或いは低
温で雌接触子の穴部の空間が大きく広がるように形状記
憶させることにより低挿入力による挿入ができ、かつエ
ツチング技術によって製造が可能なのでマイクロ化が可
能となり、かつ一体成形による生産性の高い電気コネク
タが得られる。According to this embodiment, the female contact can be inserted with low insertion force by forming a soft martensitic state or by forming a shape memory so that the space in the hole of the female contact expands greatly at low temperatures, and can be manufactured using etching technology. It is possible to obtain an electrical connector with high productivity through integral molding.
第17図は多層印刷配線基板20に本発明の形状記憶合
金を使用したコネクタ2を設けたLSI実装構造を示す
断面図である。多層印刷配線基板20への薄膜のコネク
タ2は前述と同様に形状記憶合金を溶湯急冷によって製
造した薄帯を使用するもの、蒸着、スパッタリング等の
気相で形成させる方法等によって通常の方法で製造した
多層印刷配線基板上に導通させて直接薄膜を形成させ、
エツチング技術によって所望の形状に形成させることが
できる。FIG. 17 is a sectional view showing an LSI mounting structure in which a multilayer printed wiring board 20 is provided with a connector 2 using the shape memory alloy of the present invention. The thin film connector 2 to the multilayer printed wiring board 20 can be manufactured by a conventional method such as using a thin strip made of a shape memory alloy by rapidly cooling a molten metal as described above, or by a vapor phase method such as vapor deposition or sputtering. A thin film is formed directly on the printed multilayer printed circuit board by making it conductive.
It can be formed into a desired shape by etching technology.
本発明によれば、低挿入力で挿入でき、かつマイクロ化
、コンパクト化が可能でしかも一体成形が可能な電気コ
ネクタが製作できる。According to the present invention, it is possible to manufacture an electrical connector that can be inserted with low insertion force, can be made microscopic and compact, and can be integrally molded.
第1図は従来のピッコネクタの・ビン(雄接触子)及び
雌接触子(ソケット)の斜視図、第2図は本発明のコネ
クタの接続状況を示す断面図、第3図は一方向形状記憶
効果を利用した本発明のコイ・フタの接続状況を示す断
面図、第4図は二方向形状記憶効果を利用した本発明の
ビンコネクタの接続状況を示す断面図、第5図は本発明
の雌接触子の平面図、第6図は本発明の他の例を示ず雌
接触子の平面図と雄接触子の挿入又は抜去の状況を示す
平面図、第7図は第6図(b)の雌接触子と雄接触子と
の挿入時及び抜去時の状態を示す斜視図、第8図は絶縁
基板上に雌接触子を形成させた本発明の他の例を示すコ
ネクタ部品、第9図は接着及び化学エツチングによって
本発明の雌接触子を一体成形する製造工程を示す斜視図
、第10図は絶縁基板間に雌接触子をはさみ込んだ本発
明のコネクタ部品の断面図、第、11図及び第12図は
第10図の断面金有するものの多ピンコネクタ構造を示
す斜視図、第13図は本発明のコネクタを使用したLS
I実装を示す斜視図、第14図〜第17図は同じ<LS
I実装に本発明の電気コネクタを適用した断面である。
1、t/ 、 1.///、 1“″・・・雄接触子(
ビン)、2゜2′・・・雌接触子、3.14・・・絶縁
基板、5・・・雄接触子(ピン)挿入用穴部、7・・・
スリット、9・・・接着剤、10・・・メタライズ層、
メッキ層、11・・・ろう、12・・・形状記憶合金の
薄膜、19.19’・・・半導体装置(LSI)、20
・・・多層印刷配線基板、21・・・コネクタ、22・
・・プリント回路用基板、23.24・・・導電膜、2
5・・・半田、26・・・保護膜。
代理人 弁理士 高橋明夫
% 1 口
(cL) (b)、 (C)
電2日
(αつ
ろ
(シ)
第 3 図
第40
第 5 口
(OL) (b)
(C) (cL)
第 6 図
宅 9口
l′
(6しン
<b)
案 9 図
第 10 口
第 11図
第 12凶
第 131Fig. 1 is a perspective view of a conventional pin connector (male contact) and female contact (socket), Fig. 2 is a sectional view showing the connection state of the connector of the present invention, and Fig. 3 is a unidirectional shape. FIG. 4 is a cross-sectional view showing the connection state of the carp/lid of the present invention using the memory effect. FIG. 4 is a cross-sectional view showing the connection state of the bin connector of the present invention using the two-way shape memory effect. FIG. FIG. 6 is a plan view of the female contact, not showing other examples of the present invention, and a plan view showing the state of insertion or removal of the male contact, and FIG. 7 is a plan view of the female contact shown in FIG. FIG. 8 is a perspective view showing the state of insertion and removal of the female contact and male contact in b), and FIG. 8 is a connector component showing another example of the present invention in which the female contact is formed on an insulating substrate; FIG. 9 is a perspective view showing the manufacturing process of integrally molding the female contact of the present invention by adhesion and chemical etching, and FIG. 10 is a sectional view of the connector component of the present invention in which the female contact is sandwiched between insulating substrates. 11 and 12 are perspective views showing the structure of a multi-pin connector having the cross-sectional metal shown in FIG. 10, and FIG. 13 is an LS connector using the connector of the present invention.
Perspective views showing I mounting, Figures 14 to 17 are the same <LS
It is a cross section of the electrical connector of the present invention applied to I-mounting. 1, t/, 1. ///, 1""...male contact (
bottle), 2゜2'...Female contact, 3.14...Insulating board, 5...Male contact (pin) insertion hole, 7...
slit, 9... adhesive, 10... metallized layer,
Plating layer, 11... Brazing, 12... Thin film of shape memory alloy, 19.19'... Semiconductor device (LSI), 20
...Multilayer printed wiring board, 21...Connector, 22.
...Printed circuit board, 23.24...Conductive film, 2
5...Solder, 26...Protective film. Agent Patent Attorney Akio Takahashi % 1 (cL) (b), (C) Den 2nd (αtsuro (shi)) Figure 3 Figure 40 5th (OL) (b) (C) (cL) 6th Illustration 9 Kuchi l' (6 Shin<b) Plan 9 Figure 10 Kuchi 11 Figure 12 Kuchi 131
Claims (1)
おいて、前記雌接触子は前記雄接触子が挿入される穴部
を有する形状記憶合金からなシ、前記雌接触子の穴部を
構成している部分が前記雄接触子の挿入の上下方向に曲
げ変形する構造を有していることを特徴とするコネクタ
。 2、前記雌接触子は平板状の薄膜からなる特許請求の範
囲第1項に記載のコネクタ。 3゜前記雌接触子の穴部に前記合金のマルテンサイト変
態温度以下の温度で前記雄接触子が挿入され、前記合金
の母相変態温度以上に保たれている特許請求の範囲第1
項又は第2項に記載のコネクタ。 4、前記雌接触子の穴部を構成する部分は前記合金のマ
ルテンサイト変態温度以下の温度状態で前記接触部分で
の雄接触子の占める空間より大きな空間になるように形
状記憶を有し、かつ前記接触状態で前記雄接触子の占め
る空間より小さな空間になるように形状記憶されている
特許請求の範囲第1項〜第3項のいずれかに記載のコネ
クタ。 5、形状記憶合金からなる雌接触子であって、該雌接触
子は雄接触子を挿入する穴部を有し、該雌接触子の穴部
を構成している部分が雄接触子の挿入の上下方向に曲げ
変形する構造を有していることを特徴とするコネクタ。 6、前記穴部は前記雌接触子の中心部にアルフーアペッ
トの8字状にスリットが設けられている特許請求の範囲
第1項〜第5項のいずれかに記載のコネクタ。 7、前記雌接触子は平板状の薄膜よりなる特許請求の範
囲第5項又は第6項に記載のコネクタ。 8、前記雌接触子の穴部を構成する部分は該穴部に挿入
される雄接触子との接触部で該雄接触子の占める空間よ
り小さい空間を有するように形状記憶されている特許請
求の範囲第5項〜第7項のいずれかに記載のコネクタ。 9、雄接触子を挿入する穴部を有し、形状記憶合金から
なる雌接触子であって、該雌接触子は前記穴部を絶縁基
板上に設けられた穴部に対応させて前記絶縁基板に固着
しており、前記雌接触子の穴部を構成している部分が雄
接触子の挿入の上下方向に曲げ変形する構造を有してい
ることを特徴とするコネクタ。 10、前記雌接触子の上面と下面に前記絶縁基板が固着
されている特許請求の範囲第9項に記載のコネクタ。 11、前記絶縁基板は多層印刷配線基板であって、該配
線基板の前記雄接触子を挿入する穴部に前記雌接触子の
穴部を対応させて前記雌接触子を前記配線基板に固着し
た特許請求の範囲第9項又は第10項に記載のコネクタ
。 12、前記絶縁基板はプリント回路用基板であって、該
回路用基板の前記雄接触子を挿入する穴部に前記雌接触
子の穴部に対応させて前記雌接触子を前記回路用基板に
固着した特許請求の範囲第9項又は第10項に記載のコ
ネクタ。 13、雄接触子を挿入する穴部を有する形状記憶合金か
らなる雌接触子であって、該雌接触子は前記穴部を絶縁
基板上に設けられた穴部に対応させて前記絶縁基板に固
着しており、前記穴部を構成している部分が雄接触子の
挿入の上下方向に曲げ変形するように形状記憶を有して
おり、かつ前記絶縁基板上の雌接触子が設けられた反対
面側に雄接触子が設けられていることを特徴とするコネ
クタ。 14、棒状の形状記憶合金からなる雄接触子であって、
該雄接触子は雌接触子に挿入し、使用温度状態で前記雌
接触子と接続されるように屈曲形状となるように形状記
憶を有することを特徴とするコネクタ部品。 15、前記雄接触子は絶縁基板に設けられている特許請
求の範囲第14項に記載のコネクタ部品。 16、急冷凝固してなる金属薄膜又は金属細線からなる
ことを特徴とする形状記憶合金。 17、前記金属薄膜又は金属細線は室温でo、1r11
t/α・秒・C以上の熱伝導率を有する部材の表面に注
湯凝固してなる特許請求の範囲第16項に記載の形状記
憶合金。 18、雄接触子を挿入する穴部を有し、形状記憶合金か
らなるものであって、該雌挑触子は前記穴部を絶縁基板
上に設けられた穴部に対応させて前記絶縁基板の上下面
に固着しており、前記雌接触子の穴部を構成している部
分が雄接触子の挿入の上下方向に曲げ変形する構造を有
していることを特徴とするコネクタ。 19、前記上下面の雌接触子は前記絶縁基板に設けられ
た穴部を通して電気的に接続している特許請求の範囲第
18項に記載のコネクタ。 句、半導体装置と、該半導体装置を載置した多層印刷配
線基板と、該基板をコネクタに接続し、プリント回路用
基板に載置してなるものであって、前記コネクタは前記
多層印刷配線基板に設けられた雄接触子を挿入する穴部
を有する形状記憶合金よりなる雌接触子が該雌接触子の
穴部を絶縁基板に設けられた穴部に対応させて前記絶縁
基板に固着しており、前記雌接触子の穴部を構成する部
分が前記雄接触子の挿入の上下方向に曲げ変形する構造
を有することを特徴とする半導体装置の実装構造。 21、半導体装置と1.該半導体装置を載置した多層印
刷配線基板と、該基板を載置したプリント回路用基板と
を備えたものにおいて、該プリント回路用基板は前記多
層印刷配線基板に設けられた雄接触子を挿入する穴部を
有する形状記憶合金からなる雌接触子が該雌接触子の穴
部を前記プリント回路用基板に設けられた前記雄接触子
挿入用穴部に対応させて固着しており、かつ前記雌接触
子の穴部を構成する部分が前記雄接触子の挿入の上下方
向に曲げ変形する構造を有することを特徴とする半導体
装置の実装構造。 22、半導体装置と、該半導体装置を載置した多層印刷
配線基板と、該基板を載置したプリント回路用基板とを
備えたものにおいて、前記多層印刷配線基板は前記半導
体装置に設けられた雄接触子を挿入する穴部を有する形
状記憶合金からなる雌接触子が該雌接触子の穴部を前記
多層印刷配線基板に設けられた前記雄接触子挿入用穴部
に対応させて固着しており、かつ前記雌接触子の穴部を
構成する部分が前記雄接触子の挿入の上下方向に曲げ変
形するように構成されていることを特徴とする半導体装
置の実装構造。[Scope of Claims] 1. A device in which a male contact and a female contact are in contact with each other and connected, wherein the female contact is made of a shape memory alloy having a hole into which the male contact is inserted; A connector characterized in that a portion constituting the hole of the female contact has a structure that bends and deforms in the vertical direction of insertion of the male contact. 2. The connector according to claim 1, wherein the female contact comprises a flat thin film. 3. The male contact is inserted into the hole of the female contact at a temperature below the martensitic transformation temperature of the alloy, and is maintained above the matrix transformation temperature of the alloy.
The connector according to paragraph 2 or paragraph 2. 4. The portion constituting the hole of the female contact has shape memory so that the space is larger than the space occupied by the male contact at the contact portion at a temperature below the martensitic transformation temperature of the alloy; The connector according to any one of claims 1 to 3, wherein the connector is shaped so that the space occupied by the male contact is smaller than that occupied by the male contact in the contact state. 5. A female contact made of a shape memory alloy, the female contact having a hole into which a male contact is inserted, and the portion of the female contact forming the hole into which the male contact is inserted. A connector characterized by having a structure that bends and deforms in the vertical direction. 6. The connector according to any one of claims 1 to 5, wherein the hole portion is provided with a slit in the shape of a letter 8 at the center of the female contact. 7. The connector according to claim 5 or 6, wherein the female contact comprises a flat thin film. 8. A patent claim in which the part constituting the hole of the female contact has a shape memorized so that it has a smaller space than the space occupied by the male contact at the contact part with the male contact inserted into the hole. The connector according to any one of the ranges 5 to 7. 9. A female contact made of a shape memory alloy and having a hole into which a male contact is inserted; 1. A connector, which is fixed to a substrate and has a structure in which a portion forming a hole of the female contact is bent and deformed in a vertical direction when a male contact is inserted. 10. The connector according to claim 9, wherein the insulating substrate is fixed to the upper and lower surfaces of the female contact. 11. The insulating substrate is a multilayer printed wiring board, and the female contact is fixed to the wiring board by making the hole of the female contact correspond to the hole into which the male contact of the wiring board is inserted. A connector according to claim 9 or 10. 12. The insulating board is a printed circuit board, and the female contact is inserted into the circuit board so that the hole for inserting the male contact of the circuit board corresponds to the hole of the female contact. A connector according to claim 9 or claim 10, which is fixed. 13. A female contact made of a shape memory alloy having a hole into which a male contact is inserted; the part constituting the hole has shape memory so as to bend and deform in the vertical direction when the male contact is inserted, and the female contact is provided on the insulating substrate. A connector characterized in that a male contact is provided on the opposite side. 14. A male contact made of a rod-shaped shape memory alloy,
A connector component characterized in that the male contact has shape memory so as to assume a bent shape so as to be inserted into a female contact and connected to the female contact at operating temperature. 15. The connector component according to claim 14, wherein the male contact is provided on an insulating substrate. 16. A shape memory alloy comprising a thin metal film or thin metal wire formed by rapid solidification. 17. The metal thin film or metal wire has o, 1r11 at room temperature.
The shape memory alloy according to claim 16, which is formed by pouring and solidifying the metal onto the surface of a member having a thermal conductivity of t/α·sec·C or more. 18. The device is made of a shape memory alloy and has a hole into which a male contact is inserted, and the female contact is inserted into the insulating substrate by making the hole correspond to the hole provided on the insulating substrate. The connector is fixed to the upper and lower surfaces of the connector, and has a structure in which a portion constituting the hole of the female contact is bent and deformed in the vertical direction of insertion of the male contact. 19. The connector according to claim 18, wherein the female contacts on the upper and lower surfaces are electrically connected through holes provided in the insulating substrate. A semiconductor device, a multilayer printed wiring board on which the semiconductor device is mounted, and the board is connected to a connector and placed on a printed circuit board, the connector being connected to the multilayer printed wiring board. A female contact made of a shape memory alloy having a hole into which a male contact is inserted is fixed to the insulating substrate with the hole of the female contact corresponding to the hole provided in the insulating substrate. A mounting structure for a semiconductor device, characterized in that a portion of the female contact that constitutes the hole is bent and deformed in a vertical direction of insertion of the male contact. 21. Semiconductor device and 1. A device comprising a multilayer printed wiring board on which the semiconductor device is mounted and a printed circuit board on which the board is mounted, wherein the printed circuit board has a male contact provided on the multilayer printed wiring board inserted therein. A female contact made of a shape memory alloy and having a hole therein is fixed in such a manner that the hole of the female contact corresponds to the male contact insertion hole provided in the printed circuit board, and 1. A mounting structure for a semiconductor device, wherein a portion constituting a hole of a female contact has a structure that bends and deforms in the vertical direction of insertion of the male contact. 22. A device comprising a semiconductor device, a multilayer printed wiring board on which the semiconductor device is mounted, and a printed circuit board on which the board is mounted, wherein the multilayer printed wiring board is a male provided on the semiconductor device. A female contact made of a shape memory alloy having a hole into which the contact is inserted is fixed with the hole of the female contact corresponding to the hole for insertion of the male contact provided in the multilayer printed wiring board. A mounting structure for a semiconductor device, characterized in that a portion of the female contact that constitutes the hole is bent and deformed in a vertical direction of insertion of the male contact.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58135883A JPS6028183A (en) | 1983-07-27 | 1983-07-27 | connector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58135883A JPS6028183A (en) | 1983-07-27 | 1983-07-27 | connector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6028183A true JPS6028183A (en) | 1985-02-13 |
JPH047552B2 JPH047552B2 (en) | 1992-02-12 |
Family
ID=15162006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58135883A Granted JPS6028183A (en) | 1983-07-27 | 1983-07-27 | connector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6028183A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6332475U (en) * | 1986-08-18 | 1988-03-02 | ||
JP2006351537A (en) * | 2005-06-16 | 2006-12-28 | Robert Bosch Gmbh | Device and method for electric connection of electronic circuit provided in housing |
JP2008186781A (en) * | 2007-01-31 | 2008-08-14 | Yazaki Corp | Structure of terminal connection hole provided in metal plate, connection structure between metal plate and terminal, and method of connecting terminal to metal plate |
JP2014143131A (en) * | 2013-01-25 | 2014-08-07 | Auto Network Gijutsu Kenkyusho:Kk | Noise filter built-in type connector |
-
1983
- 1983-07-27 JP JP58135883A patent/JPS6028183A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6332475U (en) * | 1986-08-18 | 1988-03-02 | ||
JP2006351537A (en) * | 2005-06-16 | 2006-12-28 | Robert Bosch Gmbh | Device and method for electric connection of electronic circuit provided in housing |
JP2008186781A (en) * | 2007-01-31 | 2008-08-14 | Yazaki Corp | Structure of terminal connection hole provided in metal plate, connection structure between metal plate and terminal, and method of connecting terminal to metal plate |
JP2014143131A (en) * | 2013-01-25 | 2014-08-07 | Auto Network Gijutsu Kenkyusho:Kk | Noise filter built-in type connector |
Also Published As
Publication number | Publication date |
---|---|
JPH047552B2 (en) | 1992-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0130719B1 (en) | A connector and packaging structure for a semiconductor device employing the connector | |
JP3401767B2 (en) | Multilayer ceramic substrate and method of manufacturing the same | |
US5098864A (en) | Process for manufacturing a metal pin grid array package | |
US4569692A (en) | Low thermal expansivity and high thermal conductivity substrate | |
EP2224479A2 (en) | Metal-ceramic composite substrate and method of its manufacture | |
US4480013A (en) | Substrate for use in semiconductor apparatus | |
EP0502887A4 (en) | Metal pin grid array package including dieletric polymer sealant | |
US3503721A (en) | Electronic components joined by tinsilver eutectic solder | |
US4659404A (en) | Method of making low thermal expansivity and high thermal conductivity substrate | |
RU2159482C2 (en) | Connecting leads of electronic component (design versions), electronic component (design versions) and its manufacturing process (options) | |
JPS6028183A (en) | connector | |
US8294036B2 (en) | Electronic component and electronic component module | |
US4806725A (en) | Circuit substrate and thermal printing head using the same | |
JP3454876B2 (en) | Laminated conductor and method of manufacturing the same | |
EP0078582A2 (en) | Electrical circuits | |
JPS5990938A (en) | Printed circuit board for semiconductor device | |
JP2709501B2 (en) | Semiconductor element connection method | |
EP0587296A1 (en) | Tab tape and method for producing it | |
JPS63148696A (en) | electronic circuit board | |
JPH01143391A (en) | Manufacture of molded substrate | |
JPH02501967A (en) | Method for manufacturing high-strength lead frames that can be molded into semiconductor packages | |
JP2553265B2 (en) | TAB tape carrier | |
JPS63261733A (en) | metal board | |
JPH02224256A (en) | Semiconductor element connection structure | |
Klemencic et al. | Multilayer Circuit Boards with Molybdenum‐copper Metal Cores |