JPS6027664A - Method of joining ceramics and different materials - Google Patents
Method of joining ceramics and different materialsInfo
- Publication number
- JPS6027664A JPS6027664A JP13644383A JP13644383A JPS6027664A JP S6027664 A JPS6027664 A JP S6027664A JP 13644383 A JP13644383 A JP 13644383A JP 13644383 A JP13644383 A JP 13644383A JP S6027664 A JPS6027664 A JP S6027664A
- Authority
- JP
- Japan
- Prior art keywords
- intermediate layer
- ceramics
- temperature
- thermal expansion
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims description 61
- 239000000463 material Substances 0.000 title claims description 50
- 238000000034 method Methods 0.000 title claims description 26
- 238000005304 joining Methods 0.000 title claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 80
- 229910052581 Si3N4 Inorganic materials 0.000 description 26
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 26
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 14
- 238000005245 sintering Methods 0.000 description 11
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 9
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 229910010271 silicon carbide Inorganic materials 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 239000000843 powder Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 238000007731 hot pressing Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 238000007750 plasma spraying Methods 0.000 description 3
- 239000005368 silicate glass Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- IHOBBYHEOBWAPZ-UHFFFAOYSA-L steroid c Chemical compound [Na+].[Na+].C1CC2CC(OS([O-])(=O)=O)C(OS([O-])(=O)=O)CC2(C)C(CCC23C)C1C3CC(O1)C2C2(C)OC1OC2CC(C(C)C)=C(C)C IHOBBYHEOBWAPZ-UHFFFAOYSA-L 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- OGSYQYXYGXIQFH-UHFFFAOYSA-N chromium molybdenum nickel Chemical compound [Cr].[Ni].[Mo] OGSYQYXYGXIQFH-UHFFFAOYSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 法に関する。[Detailed description of the invention] Regarding the law.
車両用、船舶用、航空機用、発電用としてのガスタービ
ン、ターボ過給機、ディーゼル・エンジン、スターリン
グ・エンジン等の高温部品、及び原子力利用、石炭利用
、金属製造加工、窯業等の高温プシント用熱交換器、高
温構造材、更に産業機械用のローラ、弁、軸受等の耐食
耐摩耗性機械要素として、金属よりも耐熱性、耐食性、
耐摩耗性、高温強度、軽量性、寸法安定性等の点で優れ
たセラミックスを使用,することができれば、機能或は
性能を大幅に向上できる。High-temperature parts for vehicles, ships, aircraft, gas turbines, turbochargers, diesel engines, Stirling engines, etc. for power generation, and high-temperature presses for nuclear power, coal, metal manufacturing, ceramics, etc. As corrosion-resistant and wear-resistant mechanical elements such as heat exchangers, high-temperature structural materials, and rollers, valves, and bearings for industrial machinery, it has better heat and corrosion resistance than metals.
If it is possible to use ceramics that are excellent in terms of wear resistance, high temperature strength, light weight, dimensional stability, etc., the function or performance can be greatly improved.
特にセラミックスは資源が豊富であり、原料資源上から
も注目に価する。そこで、セラミックスを前記各種機械
部品として用いるためにはセラミックスと金属等の異種
材料とを接合する技術が必要となる。Ceramics in particular are rich in resources and are worthy of attention from the viewpoint of raw material resources. Therefore, in order to use ceramics as the various mechanical parts mentioned above, a technique for joining ceramics and dissimilar materials such as metals is required.
従来、窒化ケイ素、炭化ケイ素、ジルコニア、アルミナ
等のセラミックスを熱膨張率の異なる他の材料特に金属
と接合させる方法には下記のようなものがあり、夫々下
記のような欠点がある。Conventionally, there are the following methods for joining ceramics such as silicon nitride, silicon carbide, zirconia, and alumina with other materials having different coefficients of thermal expansion, particularly metals, and each method has the following drawbacks.
(1)機械的はめ合い
第1図に示すように金属部品(cL)の溝(b)へセラ
ミックス部品(c) ’rはめ込んだものや、第2図に
示すように金属部品(、z)に刻設した雌ネジ(d)に
セラミックス部品(C)の雄ネジ(g) t− 解合さ
せる等の機械的はめ合いでは、セラミックス部品(C)
が局所的応力集中に弱いため、はめ合いをゆるいものと
し且つ間隙に緩衝材をはさむ等の考慮が必要であり、強
固で寸法精度の高い接合が得られない。(1) Mechanical fitting Ceramic parts (c) 'r fitted into grooves (b) of metal parts (cL) as shown in Figure 1, or metal parts (,z) as shown in Figure 2. In mechanical fitting such as mating, the ceramic part (C) has a male thread (g) on the female thread (d) engraved on the ceramic part (C).
Since it is susceptible to local stress concentration, it is necessary to make the fit loose and to insert a cushioning material into the gap, making it impossible to obtain a strong joint with high dimensional accuracy.
(11)焼きばめ又は冷しばめ
第3図に示すようにはめ合いの外側となる金属部品(α
)を加熱してセラミックス部品(c)を嵌合し、金属部
品(a)の冷却収縮によシ接合するもの或ははめ合いの
内側となるセラミックス部品<c)’tt冷却して金属
部品(、)に嵌合し、セラミックス部品(1)の常温に
戻る際の膨張により接合するものがある。しかし、これ
では高温で使用すると外側の金属の熱膨張の方が太きい
ため接合力が失われてしまう。(11) Shrink fit or cold fit As shown in Figure 3, the metal parts (α
) is heated to fit the ceramic part (c), and the metal part (a) is cooled and shrinks to join or the ceramic part that will be the inside of the fit <c)'tt. , ) and are joined by expansion when the ceramic part (1) returns to room temperature. However, if this is used at high temperatures, the bonding strength will be lost because the thermal expansion of the outer metal is greater.
(iii) 接着剤法
第4図に示すようにセラミックス部品(1)と金属部品
(α)を熱硬化性樹脂等の有機系接着剤、セメント等の
無機系接着剤、又はロウ付合金等の金属系接着剤等の接
着剤(力で接合するものがある。しかし、これでは高温
で使用すると接着剤(力が接着強度を失うか又は異種材
料間の熱膨張率の差により、接合部が剥離し易い。(iii) Adhesive method As shown in Figure 4, the ceramic part (1) and the metal part (α) are bonded using an organic adhesive such as a thermosetting resin, an inorganic adhesive such as cement, or a brazing alloy. There are adhesives such as metal adhesives that join by force. However, when used at high temperatures, the adhesive (force) loses adhesive strength or the difference in coefficient of thermal expansion between different materials causes the joint to fail. Easy to peel off.
(1v)直接接合法
セラミックスと異種材料との接合面を直接高温下で接触
させ、化学反応させて接合させる方法がある。しかし、
これでは接合部の温度を変化させると、熱膨張率の差に
より接合部が破壊し易い。(1v) Direct bonding method There is a method in which the bonding surfaces of ceramics and dissimilar materials are brought into direct contact at high temperature to cause a chemical reaction and bonding. but,
In this case, if the temperature of the bonded portion is changed, the bonded portion is likely to be destroyed due to the difference in coefficient of thermal expansion.
本発明は従来の接合方法の欠点を除去する目的で為した
もので、機械的特性が優れ、耐食性、耐摩耗性を有し各
種の機械部品として大きな可能性全期待されているセラ
ミックスを、これと熱膨張率の異なるセラミックス又は
金属に対し、熱膨張率の順次変化するセラミックス中間
層を少な(とも一層介在せしめて接合することにより、
セラミックスと異種材料との接合を母材と同程度の強度
と剛性を有し、且つ温度変動によっても接合部には破壊
に至るような熱歪が発生しないようにして、これらのセ
ラミックスを例えばガスタービンの動翼、静翼や隔壁板
、ターボ過給機の翼車や軸受、ディーゼルエンジンのピ
ストン・ヘッドや排気弁、油圧又は水圧機器の弁、熱交
換器の伝熱管等の機械部品として利用することができ、
高い負荷や種々に変動する温度で使用することが可能と
なシ、従来の金属のみを用いる機械と比較して熱効率の
向上、燃料消費率の改善、より過酷な条件での運転、高
信頼性及び長寿命等を達成し得る、セラミックスと異種
材料との接合方法にかかるものである。The present invention was made with the aim of eliminating the drawbacks of conventional bonding methods, and is intended to utilize ceramics, which have excellent mechanical properties, corrosion resistance, and wear resistance, and are expected to have great potential as various mechanical parts. By joining ceramics or metals with different coefficients of thermal expansion to ceramics or metals with a ceramic intermediate layer whose coefficient of thermal expansion changes sequentially,
The bond between ceramics and dissimilar materials is to have the same level of strength and rigidity as the base material, and to prevent thermal strain that could lead to destruction from occurring in the bonded area even with temperature fluctuations. Used as mechanical parts such as turbine moving blades, stationary blades and bulkhead plates, turbocharger impellers and bearings, diesel engine piston heads and exhaust valves, hydraulic or water pressure equipment valves, heat exchanger heat transfer tubes, etc. can,
It can be used under high loads and varying temperatures, has improved thermal efficiency compared to conventional metal-only machines, has improved fuel consumption, can operate in harsher conditions, and is highly reliable. The present invention relates to a method for joining ceramics and dissimilar materials, which can achieve long life and the like.
すなわち、本発明はセラミックスと、それと異なる熱膨
張率を有するセラミックス又は金属(以下、異種材料と
する)との間に、少な(とも1層の中間層を介在せしめ
、加圧子加熱して接合することを特徴とする。That is, the present invention interposes a small (at least one) intermediate layer between ceramics and ceramics or metals having a different coefficient of thermal expansion (hereinafter referred to as different materials), and joins them by heating with a presser. It is characterized by
ここで、接合すべきセラミックスとしては、窒化ケイ素
(843N4)、炭化ケイ素(SiC)、ジルコニア(
ZrOz)、アルミナ(Atz03)等を主成分とし、
必要に応じて焼結促進剤、固溶体形成剤、強化剤等を含
有したものを使用できる。Here, the ceramics to be bonded include silicon nitride (843N4), silicon carbide (SiC), and zirconia (
The main components are ZrOz), alumina (Atz03), etc.
If necessary, a material containing a sintering accelerator, a solid solution forming agent, a reinforcing agent, etc. can be used.
セラミックスと異種材料との間に設ける中間層の数は、
少な(−とも一層が必要であり、一般には複数の層とす
る。これは、セラミ1ツクスと異種材料との間に母材と
同程度の強度と剛性を持つ接合を形成させ、かつ両者の
熱膨張率の差によって接合部に発生し得る熱歪を許容限
度以下に抑えるために必要である。The number of intermediate layers between the ceramic and the dissimilar material is
A single layer is required, and generally multiple layers are used. This is necessary to suppress thermal strain that may occur in the joint due to the difference in coefficient of thermal expansion to below an allowable limit.
例えば、第5図に示すように、前記中間層(C)をセラ
ミックスFA)側より異種材料(B)側にn層すなわち
、C1,・・・・・・、Ct、Cj+i、・・・・・・
、 C?Lとした場合、各中間層(qの熱膨張率はセラ
ミックス(A)。For example, as shown in FIG. 5, the intermediate layer (C) is formed from the ceramic FA) side to the dissimilar material (B) side as n layers, that is, C1, . . . , Ct, Cj+i, . . .・・・
, C? When L, the thermal expansion coefficient of each intermediate layer (q is ceramic (A).
CI+・・・・・・、 C?L、異種材料(B)の順に
増加または減少するようにし、且つ夫々隣り合う層の間
の熱膨張率の差を一定の限度内とする。該中間層の数は
少ない方が望ましいが、層間の熱膨張率の差を熱歪の許
容限度内におさえるに必要な数だけの中間層((l設け
ることが必要である。後述するように、各層の接合部は
強固な温度′r℃で加熱するが、この接合温度T℃から
室温まで冷却した時に、各層間に発生する熱歪全02%
以下にとどめることが、温度変化に対して信頼性の高い
接合を形成するために必要な条件である。但し、これは
接合部の最低使用温度を室温と想定してのことであるが
、更に低温での使用全考慮しても、上記の条件で略十分
である。CI+..., C? L and the dissimilar material (B) are made to increase or decrease in this order, and the difference in thermal expansion coefficient between adjacent layers is kept within a certain limit. It is desirable that the number of intermediate layers be small, but it is necessary to provide as many intermediate layers as necessary to suppress the difference in thermal expansion coefficient between layers within the allowable limit of thermal distortion. , the joints of each layer are heated to a strong temperature of 'r°C, but when cooled from this joining temperature T°C to room temperature, the total thermal strain that occurs between each layer is 02%.
The following conditions are necessary for forming a highly reliable bond against temperature changes. However, this is based on the assumption that the lowest operating temperature of the joint is room temperature, but the above conditions are approximately sufficient even when considering the use at even lower temperatures.
従って、室温と0℃との差を無視すれば、夫々隣9合う
層A−Cz −、C6−C1++、 −=、 Cn−B
において、0℃〜接合温度T’Cでの平均熱膨張率の差
をΔα(A−c、 )、・・・、Δα(Ci −Ci
−h )’、・・・、 Δα(Cn−B)とすると、熱
歪Δα(” +) ’ T+ ”’ +Δα(Ci−C
j−h)T、−、Δα(c、1−113)、Tが夫々0
.2%(2X10−3)以下となるよう各中間層(qの
組成を選定する。各層間の熱歪が02係を超えると、接
合後室温に冷却する過程で接合部に割几が生じたり、或
は使用条件下で温度変動や荷重負荷を行なった場合に接
合部又はその近傍で割れの発生や破壊が起こり易く、機
械部品として使用に耐えないものとなる。Therefore, if the difference between room temperature and 0°C is ignored, the nine adjacent layers A-Cz -, C6-C1++, -=, Cn-B, respectively.
, the difference in average thermal expansion coefficient from 0°C to junction temperature T'C is expressed as Δα(A-c, ), . . . , Δα(Ci −Ci
-h )',..., Δα(Cn-B), then thermal strain Δα("+) 'T+"' +Δα(Ci-C
j-h) T, -, Δα(c, 1-113), T is 0 respectively
.. The composition of each intermediate layer (q) is selected so that it is 2% (2X10-3) or less. If the thermal strain between each layer exceeds the coefficient 02, cracking may occur at the joint during cooling to room temperature after joining. Or, when temperature changes or loads are applied under usage conditions, cracking or destruction is likely to occur at or near the joint, making it unusable as a mechanical component.
次に、前記中間層(C)の材料の選択について説明する
。Next, the selection of the material for the intermediate layer (C) will be explained.
前述の如(中間層(qの材質は所定の熱膨張特性を備え
たものでなげればならないので、このようなセラミック
ス込)と異種材料<B)の、中間の熱膨張率を有し、か
つ接合温度も適合する材料があればこれを利用する。そ
のような材質を既存の材料として得ることは困難なこと
が一般的であるので、その場合には次のような手段を講
じて中間層材料を得る。It has a coefficient of thermal expansion intermediate between that of the above-mentioned (the material of the intermediate layer (q must have a predetermined thermal expansion characteristic, so such a ceramic is included) and a different material <B), If there is a material that also has a suitable bonding temperature, use it. Since it is generally difficult to obtain such a material as an existing material, in that case, the following method is taken to obtain the intermediate layer material.
熱膨張率の異なる2種の材料すなわちセラミックス(A
)と異種材料俣)の間の任意の値の熱膨張率を有する中
間層(C)は、前記2種の材料(〜(B)又は夫々と類
似の熱膨張率を有する2種以上の材料を混合することに
よって得る。例えば、窒化ケイ素の場合にはサイアロン
などの窒化ケイ素系固溶体が類似材料として利用でき、
炭化ケイ素の場合には金属ケイ素が同様に利用できる。Two materials with different coefficients of thermal expansion, namely ceramics (A
The intermediate layer (C) having a thermal expansion coefficient of an arbitrary value between ) and dissimilar materials) is made of the above two materials (~(B) or two or more materials having similar thermal expansion coefficients to each of them). For example, in the case of silicon nitride, a silicon nitride solid solution such as Sialon can be used as a similar material.
In the case of silicon carbide, metallic silicon can likewise be used.
次に、中間層(qの形成方法について説明する。Next, a method for forming the intermediate layer (q) will be explained.
セラミックス(A)と接合すべき異種材料(B)とを直
接に用いるか、又は両者(A) (B)に夫々類似した
熱膨張率を有する2種以上の材質を用いて、夫夫の含有
量が中間層C1,・・・、 Cnにおいてセラミックス
(A)側より異種材料(B)側へ減少又は増加させるこ
とにより、各層間の熱歪が0.2%以下となるように各
中間層(qの熱膨張率を選定する。By directly using the ceramic (A) and the dissimilar material (B) to be joined, or by using two or more materials having similar coefficients of thermal expansion to both (A) and (B), By decreasing or increasing the amount from the ceramic (A) side to the dissimilar material (B) side in the intermediate layers C1, ..., Cn, each intermediate layer is adjusted so that the thermal strain between each layer is 0.2% or less. (Select the coefficient of thermal expansion of q.
ここで、セラミックス(A)が窒化ケイ素、炭化ケイ素
である場合には異種材料(B)特に金属と比較して焼結
に必要とされる温度が高いため、単に−【ラミックス(
A)と異種材料(B)とを混合し、その組成比を変えた
場合、焼結最適温度が各中間層(qにおいて異なる場合
があり、異種材料(B)の溶融温度以下の温度にて加圧
加熱しても、十分な接合強度が得られない場合がある。Here, when the ceramic (A) is silicon nitride or silicon carbide, the temperature required for sintering the dissimilar material (B) is higher than that of a metal, so simply -
When A) and a different material (B) are mixed and their composition ratios are changed, the optimum sintering temperature may differ for each intermediate layer (q), and at a temperature below the melting temperature of the different material (B). Even with pressure heating, sufficient bonding strength may not be obtained.
このような場合には、更にセラミックス(A)のほかに
、セラミックス(A)又は異種材料(B)のいずれかの
溶融温度又は分解温度よりも低い溶融温度を有するケイ
酸ガラス等の材料を混合することによって、セラミック
ス(A)の焼結温度を低下させ、セラミックス(A)と
異種材料(B)の混合比の異なる各中間層(qの焼結、
接合温度を近付けることができ、接合強度を上昇させる
ことができる。In such a case, in addition to the ceramic (A), a material such as silicate glass having a melting temperature lower than the melting temperature or decomposition temperature of either the ceramic (A) or the different material (B) may be mixed. By doing so, the sintering temperature of the ceramics (A) is lowered, and each intermediate layer (q sintering,
The bonding temperature can be brought close to each other, and the bonding strength can be increased.
各中間層(qはセラミックス(A)側又は異種材料(切
側から順次焼結、接合して形成してもよく、或は各中間
層C1,・・・、Cnf先ず順次形成させ、しかる後に
セラミックス(A)及び異種材料(B)の(・ずれの溶
融温度又は分解温度よりも低い温度にて加熱し、中間各
層の焼結および各層(Δ) (C1(B)相互間の結合
を生起させてもよい。Each intermediate layer (q may be formed by sequentially sintering and joining from the ceramic (A) side or a different material (cut side), or each intermediate layer C1,...,Cnf may be formed sequentially first, and then Ceramics (A) and dissimilar materials (B) are heated at a temperature lower than the melting temperature or decomposition temperature of (misalignment) to cause sintering of each intermediate layer and bonding between each layer (Δ) (C1 (B)). You may let them.
この場合、この結合の形成は無加圧下の加熱によっては
、必ずしも十分に強度の高い結合を得ることができず、
少なくとも’ K9 f/ ca以上の加圧を行ないつ
つ加熱を行なうことが必要である。加圧の方法としては
簡単には大気圧と真空との圧力差を用いることができる
が、ホットプレス又は熱間静水圧プレスを利用するのが
望ましい。信頼性の高い接合を形成するには、圧力は高
いほど良いが、工業的実用性のためには、前記ホットプ
レス又は熱間静水圧プレスにより利用できる圧力として
は5000Kg//C+4程度が最高値と考えられる。In this case, it is not always possible to form a bond with a sufficiently high strength by heating without applying pressure.
It is necessary to heat while applying a pressure of at least K9 f/ca or higher. As a pressurizing method, a pressure difference between atmospheric pressure and a vacuum can be used simply, but it is preferable to use a hot press or a hot isostatic press. In order to form a highly reliable bond, the higher the pressure, the better; however, for industrial practicality, the maximum pressure that can be used with the hot press or hot isostatic press is approximately 5000 kg//C+4. it is conceivable that.
加熱、加圧前の接合中間層の形成の方法としては、粉体
を水系又は有機系溶媒に分散させたスラリーを塗布する
か或はスプレーすることにより粉体層として形成させる
方法、プラズマ・スプレー又はフレーム・スプレーによ
り半焼結状態の粉体層として形成させる方法、スパッタ
リング等のPVD法により緻密な膜として形成させる方
法、等がある。Methods for forming the bonding intermediate layer before heating and pressurizing include forming a powder layer by applying or spraying a slurry in which powder is dispersed in an aqueous or organic solvent, and plasma spraying. Alternatively, there is a method of forming a semi-sintered powder layer by flame spraying, a method of forming a dense film by a PVD method such as sputtering, and the like.
次に、熱膨張率の異なる′二種のセラミックスを本発明
の接合方法で接合した例と単に接合した例とを比較して
説明する。Next, an example in which two types of ceramics having different coefficients of thermal expansion are joined by the joining method of the present invention and an example in which they are simply joined will be compared and explained.
二種のセラミックスとして、酸化セリウム5重量%、酸
化アルミニウム3重量%金倉む窒化ケイ素焼結体と、炭
化ホウ素1.5重量%、炭素5重量%を含む炭化ケイ素
焼結体とを用い、夫々円板状の製品につぎ、互の接触面
を研摩した後、直接接触させて真空ホットプレス中で1
800℃にて2ooKgl/lriの圧力で接合を試み
た。しかし、接合面間に何らの中間層金膜げなかったた
め、この方法では二種類のセラミックスの接合は成功し
なかった。As two types of ceramics, a silicon nitride sintered body containing 5% by weight of cerium oxide and 3% by weight of aluminum oxide, and a sintered silicon carbide body containing 1.5% by weight of boron carbide and 5% by weight of carbon were used, respectively. Next, after polishing the contact surfaces of the disc-shaped products, they are brought into direct contact and heated in a vacuum hot press.
Bonding was attempted at 800°C and a pressure of 2ooKgl/lri. However, this method was not successful in joining the two types of ceramics because no intermediate gold film was deposited between the joint surfaces.
この理由としては、前記窒化ケイ素焼結体の熱膨張率は
、3.5Xb
結体の熱膨張率は5.0X10−6℃−1であるため、
1800℃で接合を試みた後常温まで冷却した時の界面
での熱歪が約06%になることがあげられる。The reason for this is that the thermal expansion coefficient of the silicon nitride sintered body is 3.5Xb, and the thermal expansion coefficient of the silicon nitride body is 5.0X10-6℃-1.
When joining is attempted at 1800° C. and then cooled to room temperature, the thermal strain at the interface is approximately 0.6%.
これに対して、窒化ケイ素40重量%、炭化ケイ素40
重量係、酸化セリウム10重量%、酸化アルミニウム1
0重量%からなる混合粉末をスラリー状として、前記炭
化ケイ素焼結体の研摩面上に塗布し、窒化ケイ素焼結体
を前記塗布層を挾むように重ねて、前記と同じ条件でホ
ットプレスを行なうことにより、強固な接合を形成させ
ることができた。On the other hand, 40% by weight of silicon nitride and 40% by weight of silicon carbide
Weight: 10% by weight of cerium oxide, 1% by weight of aluminum oxide
A mixed powder consisting of 0% by weight is applied as a slurry onto the polished surface of the silicon carbide sintered body, and the silicon nitride sintered body is stacked so as to sandwich the coated layer, and hot pressing is performed under the same conditions as above. This made it possible to form a strong bond.
窒化ケイ素、炭化ケイ素その他から成る前記中間層は別
途その組成を焼結体とした場合、熱膨張率は4.4X1
0−6℃−1であり、該膨張率の値をもとに前記接合体
の隣接する層間の熱膨張率の差は、窒化ケイ素焼結体と
中間層との間では0.9X10−6℃−1、該中間層と
炭化ケイ素との間ではり、6X10−6℃−1となる。When the intermediate layer made of silicon nitride, silicon carbide, etc. is made into a sintered body, the thermal expansion coefficient is 4.4X1.
0-6°C-1, and based on the value of the expansion coefficient, the difference in thermal expansion coefficient between adjacent layers of the joined body is 0.9X10-6 between the silicon nitride sintered body and the intermediate layer. C.-1, and the thickness between the intermediate layer and silicon carbide is 6X10-6 C.-1.
該焼結体を1800℃から常温まで冷却した時の熱歪は
前者で016%、後者で01チとなり、各層間の熱歪は
いずれも02%を十分下回っている。When the sintered body was cooled from 1800° C. to room temperature, the thermal strain was 0.16% for the former and 0.16% for the latter, and the thermal strain between each layer was well below 0.2% in both cases.
このように、セラミックス(A)と異種材料(I3)間
には一層乃至複数層の中間層(qが設けられており、各
層間の熱歪は接合温度〜常温で0.2%以下に抑えられ
るため破断しない。また、中間接合層は予め中間層とし
て形成され、加圧下にて加熱されて緻密化と給金形成が
行なわれるため、母材と同程度の振合強度と剛性を有す
る。In this way, one or more intermediate layers (q) are provided between the ceramic (A) and the dissimilar material (I3), and the thermal strain between each layer is suppressed to 0.2% or less from the bonding temperature to room temperature. Furthermore, since the intermediate bonding layer is formed in advance as an intermediate layer and heated under pressure to densify and form the bond, it has swing strength and rigidity comparable to those of the base material.
以上述べたように本発明のセラミックスと異種材料との
接合方法によれば、
(I) セラミックスと異種材料との間に、少な(とも
一層の中間層を介在せしめて接合するようにしたので、
熱膨張率の異なる異種材料特に金属とを接合することが
できる7、
(II) 接合部は母材と同程度の強度と剛性を有する
ため、高い荷重を負荷させて使用することができ、かつ
使用温度を低温から接合温度以下の高温まで変化させる
ことができる、(III) 従って、セラミックスと異
種材料とを接合させた部品を製作することができるので
、高温、腐食、摩耗等使用条件の厳しい部分のみセラミ
ックスを用い他の部分を金属として、機械の高性能化、
高信頼性、長寿命化をはかることができる、
等の種々の優れた効果を発揮する。As described above, according to the method of joining ceramics and dissimilar materials of the present invention, (I) Since the ceramics and dissimilar materials are joined with at least one intermediate layer interposed between them,
It is possible to join dissimilar materials, especially metals, with different coefficients of thermal expansion. The operating temperature can be changed from low temperatures to high temperatures below the bonding temperature. (III) Therefore, parts made by bonding ceramics and dissimilar materials can be manufactured, so they can be used even under severe operating conditions such as high temperatures, corrosion, and wear. Improving the performance of machines by using ceramics for only parts and metal for other parts.
It exhibits various excellent effects such as high reliability and long life.
以下に、本発明の実施例を掲げ、更に具体的に説明する
が、本発明はこれらの実施例のみに何ら限定されるもの
ではない。EXAMPLES Below, examples of the present invention will be listed and more specifically explained, but the present invention is not limited to these examples in any way.
実施例1
酸化アルミニウム10重量%、窒化アルミニウム5重量
φを含む窒化ケイ素焼結体の円柱状製品をセラミックス
として、クロム165重量%モリブデン15重量係、鉄
5重量係等を含むニッケル基合金であるハステロイCの
同径円柱状製品を異種材料として用い、夫々端面を研摩
し、下記第1表に示す6種の中間層の各成分の粉体混合
物をエタノール中にスラリーとして夫々分散させ、窒化
ケイ素焼結体端面上に/I61から/166まで順次ス
プレーすることにより中間層を形成し、該中間層を挾む
ようにハステロイC円柱を重ね、真空中で1250℃、
100Kgf/cdにてホットプレスすることにより強
固な接合を形成させることができた。Example 1 A cylindrical product of silicon nitride sintered body containing 10% by weight of aluminum oxide and 5% by weight of aluminum nitride is used as a ceramic, and a nickel-based alloy containing 165% by weight of chromium, 15% by weight of molybdenum, 5% by weight of iron, etc. Using cylindrical products of the same diameter of Hastelloy C as different materials, the end faces of each were polished, and a powder mixture of each component of the six types of intermediate layers shown in Table 1 below was dispersed as a slurry in ethanol. An intermediate layer was formed by sequentially spraying /I61 to /166 on the end face of the sintered body, and Hastelloy C cylinders were layered so as to sandwich the intermediate layer, and heated at 1250°C in a vacuum.
A strong bond could be formed by hot pressing at 100 Kgf/cd.
第 1 表
(各成分の含量はいずれも重量%)
窒化ケイ素焼結体の熱膨張率は3.5X10−6℃−1
ハステロイCの熱膨張率は13X10−6℃−1でアシ
、そのまま接合したのでは接合面間に発生する熱歪が非
常に大きなものとなシ接合は不可能である。。Table 1 (The content of each component is weight%) The coefficient of thermal expansion of the silicon nitride sintered body is 3.5X10-6℃-1
The coefficient of thermal expansion of Hastelloy C is 13×10 −6° C. −1, so if they are bonded as is, the thermal strain generated between the bonding surfaces will be extremely large, making it impossible to bond. .
しかし、前記の如(6層の中間層e 1. Si3 N
41A/L203 、 MyOの量を順次減少させると
共にNiの量をその分順次増加させて、各中間層の熱膨
張率を順次大にし、且つ高焼結温度の5isNa f多
く含む中間層にケイ酸ガラスを比例して多(添加するこ
とにより、焼結温度をハステロイCの融点温度以下に低
下させたので、各層間の熱歪を平均約015%とし0.
2%以下におさえたため接合温度から常温に冷却しても
、接合部に亀裂等は発生しなかった。すなわち、窒化ケ
イ素の分解温度は1900℃で、ハステロイCの融点は
1570℃Tあり、又5j3N4 K Atz03トM
yOk 混合した粉体系の焼結温度は1500℃以上で
あるが、低融点のケイ酸ガラス粉体’ksi3N+の量
に応じて混合することにより1250℃で焼結し得るよ
うにし、組成の異なる6層の中間層を単一の温度125
0℃にて焼結、接合することが可能となったのである。However, as mentioned above (6 intermediate layers e 1. Si3 N
41A/L203, by sequentially decreasing the amount of MyO and increasing the amount of Ni accordingly, the coefficient of thermal expansion of each intermediate layer was increased sequentially, and silicic acid was added to the intermediate layer containing a large amount of 5isNa f at a high sintering temperature. By adding a proportionate amount of glass, the sintering temperature was lowered to below the melting point of Hastelloy C, making the thermal strain between each layer about 0.15% on average.
Since the bonding temperature was kept below 2%, no cracks or the like occurred in the bonded portion even when the bonding temperature was cooled to room temperature. That is, the decomposition temperature of silicon nitride is 1900°C, the melting point of Hastelloy C is 1570°C, and 5j3N4K Atz03tM
yOk The sintering temperature of the mixed powder system is 1500°C or higher, but by mixing according to the amount of low melting point silicate glass powder 'ksi3N+, it can be sintered at 1250°C. The middle layer of the layer at a single temperature of 125
This made it possible to sinter and bond at 0°C.
比較例1−1
実施例1と同じセラミックス(窒化ケイ素焼結体の円柱
状製品)と異種材料(・・ステロイCの円柱状製品)と
を用い、下記第2表に示す組成の3種の中間贋金実施例
1と同様の方法により形成し、該中間層を挾んだ窒化ケ
イ素円柱と・・ステロイC円柱とを実施例1と同じ方法
でホットプレスした。Comparative Example 1-1 Using the same ceramics (silicon nitride sintered cylindrical product) and different materials (steroy C cylindrical product) as in Example 1, three types of compositions shown in Table 2 below were prepared. An intermediate layer was formed in the same manner as in Example 1, and a silicon nitride cylinder and a steroid C cylinder sandwiching the intermediate layer were hot pressed in the same manner as in Example 1.
第 2 表
ホットプレスした後常温へ冷却すると、接合中間層内に
亀裂の発生が認められ十分な接合を形成させることがで
きなかった。この理由は、中間層の数が少なすぎ、各層
間の平均熱歪が約0.6%となってしまい、0.2%を
上回ったためである。Table 2 When hot-pressed and then cooled to room temperature, cracks were observed in the bonded intermediate layer and a sufficient bond could not be formed. The reason for this is that the number of intermediate layers was too small and the average thermal strain between each layer was about 0.6%, which exceeded 0.2%.
比較例1−2
実施例1と同じセラミックス(窒化ケイ素焼結体の円柱
状製品)と異種材料(ハステロイCの円柱状製品)とを
用い、下記第5表に示す組成の6種の中間層を実施例1
と同様の方法により形成し、該中間層を挾んだ窒化ケイ
素円柱とハステロイC円柱とを1250℃、 100K
gf/cniの条件下でホットプレスシタ。Comparative Example 1-2 Using the same ceramics (cylindrical product of silicon nitride sintered body) and different materials (cylindrical product of Hastelloy C) as in Example 1, six types of intermediate layers with the compositions shown in Table 5 below were prepared. Example 1
A silicon nitride cylinder and a Hastelloy C cylinder sandwiching the intermediate layer were formed by the same method as above and heated at 1250°C and 100K.
Hot press under gf/cni conditions.
第 3 表
(各成分の含量はいずれも重量%)
ホットプレスしたが、中間層のうち特に窒化ケイ素焼結
体側寄りの層の焼結が不十分であυ、十分な接合を形成
させることができなかった。Table 3 (Content of each component is weight%) Although hot pressing was performed, the intermediate layer, especially the layer closer to the silicon nitride sintered body, was insufficiently sintered, making it difficult to form a sufficient bond. could not.
この理由は、低融点のケイ酸ガラスを含まないため、ケ
イ素焼結体側寄りの中間層の焼結温度が1250℃より
も高いことによる。The reason for this is that the sintering temperature of the intermediate layer closer to the silicon sintered body is higher than 1250° C. since it does not contain silicate glass with a low melting point.
実施例2
実施例1と同じセラミックス(窒化ケイ素焼結体の円柱
状製品)と異種材料(ハステロイCの円柱状製品)とを
用い、前記第1表に示す組成の6種の中間層を実施例1
と同様の方法によシ形成し、該中間層を挾んで窒化ケイ
素焼結体円柱とハステロイC円柱を接触させたままパイ
レックス・ガラス管内に真空封入し、炉内に送入した後
、炉の温度11250℃に昇温させ炉内空気と真空との
圧力差f 1Kg f /caが負荷される状態にて接
合を試みた。冷却後、ガラス容器を割って接合体を取り
出し′試験したところ、窒化ケイ素と・・ステロイCと
の間に十分な接合の形成が確認された。Example 2 Using the same ceramics (silicon nitride sintered cylindrical product) and different materials (Hastelloy C cylindrical product) as in Example 1, six types of intermediate layers with the compositions shown in Table 1 were created. Example 1
A silicon nitride sintered body cylinder and a Hastelloy C cylinder are sandwiched between the intermediate layer and vacuum sealed in a Pyrex glass tube while being in contact with each other, and then introduced into a furnace. Bonding was attempted under a condition where the temperature was raised to 11,250° C. and a pressure difference f 1 Kg f /ca between the air in the furnace and the vacuum was applied. After cooling, the glass container was broken and the bonded body was taken out and tested, and it was confirmed that a sufficient bond had been formed between the silicon nitride and the steroid C.
実施例2と同様に形成した中間層を窒化ケイ素焼結体円
柱とハステロイC円柱で挾み、これらが単に接触のみし
ている状態に保持し、ガラス管に封入することなく一1
気圧のアルゴン雰囲気中で1250℃に加熱した所、冷
却後接合部の緻密な接合は得られなかった。強固な接合
の形成には1気圧以上の加圧が必要である。The intermediate layer formed in the same manner as in Example 2 was sandwiched between a silicon nitride sintered body cylinder and a Hastelloy C cylinder, and these were held in a state where they were merely in contact with each other, and the intermediate layer was heated without being sealed in a glass tube.
When heated to 1250° C. in an argon atmosphere at atmospheric pressure, a dense bond at the bonded portion could not be obtained after cooling. Pressure of 1 atmosphere or more is required to form a strong bond.
実施例6
第6図に示すように、ディーゼルエンジンの排気弁(1
)の先端部品(2)ヲ、酸化イツトリウム3重量%を含
有し準安定結晶相である正方晶を含む部分安定化ジルコ
ニアの焼結体からなるジルコニア・セラミックスで製作
シ、ニモニック80 A (Nimonic 80 A
ニクロム195重量%、チタン2.5重量%、アルミ
ニウム1.5チ等を含むニッケル基合金)からなる金属
部品(3)の接合を下記の如(行なった。第6図中、(
4)は接合中間層、(5)は金属軸を示す。Example 6 As shown in Fig. 6, a diesel engine exhaust valve (1
The tip part (2) of ) is manufactured from zirconia ceramics consisting of a sintered body of partially stabilized zirconia containing 3% by weight of yttrium oxide and a metastable crystal phase of tetragonal crystal. A
A metal part (3) made of a nickel-based alloy containing 195% by weight of nichrome, 2.5% by weight of titanium, 1.5% of aluminum, etc.) was joined as follows.
4) shows the bonding intermediate layer, and (5) shows the metal shaft.
ジルコニア・セラミックスの先端部品(2)の背面は平
面に研摩し、下記第4表に示す組成の3種の中間層を順
次プラズマ・スプレーによす形成させた。The back side of the zirconia ceramic tip part (2) was ground flat and three intermediate layers having the compositions shown in Table 4 below were sequentially formed by plasma spraying.
(各成分の含量はいずれも重量%)
又、接合の相手である金属部品(3)の端面には第4の
中間層としてNj−Cγ−At−Yからなる合金Nをプ
ラズマ・スプレーによって形成させた。(The content of each component is % by weight) In addition, an alloy N consisting of Nj-Cγ-At-Y was formed as a fourth intermediate layer on the end face of the metal part (3) to be joined by plasma spraying. I let it happen.
その後、ジルコニア・セラミックスの弁先端部品(2)
と金属部品(3)とを真空中にて1200℃、100K
yf/caにてホットプレスすることによ多接合を形成
させることができた。After that, zirconia ceramic valve tip part (2)
and metal parts (3) in vacuum at 1200°C and 100K.
Multi-junctions could be formed by hot pressing at yf/ca.
ジルコニアセラミックスとステンレス鋼トの熱膨張率の
差は約3X10−6℃−1であるが、熱膨張率を順次変
化させた中間層の形成により、接合後室温に冷却した際
の熱歪全、各層の間にお(・ていずれも0.1%とし、
02%以下におさえることができたため、強固な結合の
生成が可能となった。The difference in thermal expansion coefficient between zirconia ceramics and stainless steel is approximately 3X10-6℃-1, but by forming an intermediate layer with sequentially varying thermal expansion coefficients, the total thermal strain when cooled to room temperature after bonding is reduced. Between each layer, each layer is 0.1%,
Since it was possible to suppress the amount to 0.2% or less, it became possible to form a strong bond.
このようにして、ジルコニア・セラミックの先端部品(
2)と金属部品(3)との間に接合を形成させた後、更
に金属部品(3)と同材質の金属軸(5トとを真空ホッ
トプレス中にて拡散接合により接合させ、ディーゼルエ
ンジンの排気弁(1)を製作した。In this way, the zirconia ceramic tip part (
After forming a bond between the metal part (3) and the metal part (3), the metal part (3) and the metal shaft (5) made of the same material are further bonded by diffusion bonding in a vacuum hot press, and the diesel engine An exhaust valve (1) was manufactured.
実施例4
第7図に示すように、タービン・ディスク((りを酸化
アルミニウム5重量%、窒化アルミニウム3重量%、酸
化ジルコニウム10重量%を含む窒化ケイ素焼結体から
なるセラミックスで外径約70諭のディスク状に製作し
、ニッケル・クロム・モリブデン鋼製の軸(7)との接
合を下記の如く行なった。Example 4 As shown in FIG. 7, a turbine disk (ceramics made of a silicon nitride sintered body containing 5% by weight of aluminum oxide, 3% by weight of aluminum nitride, and 10% by weight of zirconium oxide) with an outer diameter of about 70 mm It was manufactured in the shape of a disc, and was joined to a shaft (7) made of nickel-chromium-molybdenum steel as described below.
まず、窒化ケイ素焼結体製のタービン・ディスク(6)
の中心軸部を研摩した後、該研摩面上に前記第1表と同
じ組成の6層の中間層を順次形成させた。す1よりち、
イソプロピルアルコール中に5重量%の有機結合剤と0
.2重量%の解膠剤を添加した溶液中に上記各組成の混
合粉体を混合して泥漿状としたものを夫々作成し、スプ
レーガンにより順次スプレーすることによって中間層(
8)を形成させた。First, a turbine disk (6) made of silicon nitride sintered body
After polishing the central shaft portion of the sample, six intermediate layers having the same composition as shown in Table 1 were successively formed on the polished surface. From Su1,
5% by weight organic binder in isopropyl alcohol and 0
.. Mixed powders of each of the above compositions were mixed in a solution containing 2% by weight of a deflocculant to create a slurry, and the mixture was sequentially sprayed with a spray gun to form an intermediate layer (
8) was formed.
該中間層を形成させたディスク(6)を窒素雰囲気中で
徐々に400℃まで加熱して、溶媒等を除去した後、ホ
ットプレスにより前記金属製の軸(力との接合を行なっ
た。The disk (6) on which the intermediate layer was formed was gradually heated to 400° C. in a nitrogen atmosphere to remove the solvent and the like, and then joined to the metal shaft (force) by hot pressing.
接合には、第7図に示すようなセラミックス製のタービ
ン・ディスク(6)の片面のプロファイルに合った凹部
を有する黒鉛製の受台(9)を製作し、該受台(9)と
タービン・ディスク(6)の間隙には約2mの厚さに窒
化ホウ素粉体層を緩衝層αqとして設け、その上で金属
製の軸(7)をタービン・ディスク(6)の中心軸と十
分軸合せを行ないつつホットプレスのプランジャーに固
定した。ホットプレスの雰囲気を高純度アルゴンとし、
1200℃まで昇温した後、70Kg //lrAに加
圧し、接合を行なった。室温に冷却した後、ディスク軸
接合体を取り出し検査した断接合部に何らの欠陥は認め
られず、又、スピンテスターにて回転試験を行なったと
ころ回転数i oooooγ、pom。For joining, a graphite pedestal (9) having a recess that matches the profile of one side of the ceramic turbine disk (6) as shown in Fig. 7 is manufactured, and the pedestal (9) and the turbine are connected together.・In the gap between the disks (6), a boron nitride powder layer with a thickness of approximately 2 m is provided as a buffer layer αq, and on top of that, the metal shaft (7) is sufficiently aligned with the central axis of the turbine disk (6). It was fixed to the plunger of a hot press while being matched. The atmosphere of the hot press is high purity argon.
After raising the temperature to 1200° C., a pressure of 70 kg//lrA was applied to perform bonding. After cooling to room temperature, the disk shaft assembly was taken out and inspected. No defects were found in the broken joint, and a rotation test using a spin tester revealed that the number of rotations was i oooooo γ, pom.
まで破壊することなく、耐えることが確認された。It has been confirmed that it can withstand up to 100% without being destroyed.
第1図乃至第4図は従来のセラミックスと金属との接合
方法を示す図であり、第1図は機械的嵌合、第2図は機
械的螺合、第5図は焼ばめ・冷しばめによる接合、第4
図は接着剤による接合を夫々示す図、第5図は本発明の
接合方法の拡大模式図、第6図は本発明の接合方法によ
るディーゼルエンジンの排気弁を示す図、第7図は本発
明の接合方法によるタービンディスクを示す図である。
(A)はセラミックス、(B)は異種材料、(C)は中
間層、(2)は先端部品、(3)は金属部品、(4)は
接合中間層、(6)はタービンディスク、(力は軸、(
8)は中間層を示す。
特許出願人
石川島播磨重工業株式会社Figures 1 to 4 are diagrams showing conventional methods of joining ceramics and metal. Figure 1 is mechanical fitting, Figure 2 is mechanical threading, and Figure 5 is shrink fit/cold fitting. Joining by tightening, 4th
5 is an enlarged schematic diagram of the joining method of the present invention, FIG. 6 is a diagram showing an exhaust valve of a diesel engine by the joining method of the present invention, and FIG. 7 is a diagram showing the joining method of the present invention. It is a figure which shows the turbine disk by the joining method. (A) is ceramics, (B) is different material, (C) is intermediate layer, (2) is tip part, (3) is metal part, (4) is bonded intermediate layer, (6) is turbine disk, ( The force is the axis, (
8) indicates the middle layer. Patent applicant Ishikawajima Harima Heavy Industries Co., Ltd.
Claims (1)
ラミックス又は金属との間に、少な(とも1層の中間層
を介在せしめ、加圧子加熱して接合することを特徴とす
るセラミックスと異種材料との接合方法。1) A method of bonding ceramics and dissimilar materials characterized by interposing a small (at least one) intermediate layer between the ceramic and the ceramic or metal having a different coefficient of thermal expansion, and joining by heating with a presser. Joining method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13644383A JPS6027664A (en) | 1983-07-26 | 1983-07-26 | Method of joining ceramics and different materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13644383A JPS6027664A (en) | 1983-07-26 | 1983-07-26 | Method of joining ceramics and different materials |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6027664A true JPS6027664A (en) | 1985-02-12 |
Family
ID=15175230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13644383A Pending JPS6027664A (en) | 1983-07-26 | 1983-07-26 | Method of joining ceramics and different materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6027664A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6277187A (en) * | 1985-09-30 | 1987-04-09 | Nippon Kokan Kk <Nkk> | Solid phase joining method |
JP2010006054A (en) * | 2008-04-23 | 2010-01-14 | Boeing Co:The | Joined composite structure with graded coefficient of thermal expansion for extreme environment application |
JP2016222884A (en) * | 2014-12-30 | 2016-12-28 | ザ・ボーイング・カンパニーThe Boeing Company | Bonding of dissimilar ceramic components |
-
1983
- 1983-07-26 JP JP13644383A patent/JPS6027664A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6277187A (en) * | 1985-09-30 | 1987-04-09 | Nippon Kokan Kk <Nkk> | Solid phase joining method |
JP2010006054A (en) * | 2008-04-23 | 2010-01-14 | Boeing Co:The | Joined composite structure with graded coefficient of thermal expansion for extreme environment application |
JP2016222884A (en) * | 2014-12-30 | 2016-12-28 | ザ・ボーイング・カンパニーThe Boeing Company | Bonding of dissimilar ceramic components |
US10894747B2 (en) | 2014-12-30 | 2021-01-19 | The Boeing Company | Bonding dissimilar ceramic components |
US11780781B2 (en) | 2014-12-30 | 2023-10-10 | The Boeing Company | Bonding dissimilar ceramic components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7753643B2 (en) | Stacked laminate bolted ring segment | |
Katz | High-temperature structural ceramics | |
CN102732883B (en) | A kind of dispersed precious metal particle toughened composite thermal barrier coating and its preparation method | |
JPS5911056B2 (en) | Abradable seal composite structure | |
US4698271A (en) | Copper-silver-titanium filler metal for direct brazing of structural ceramics | |
US5304031A (en) | Outer air seal for a gas turbine engine | |
CN112570832A (en) | Silicon carbide cladding and brazing connection method thereof | |
CN111960844B (en) | Ceramic connecting piece and preparation method and application thereof | |
EP0225781B1 (en) | High thermal expansion coefficient ceramic sinter and a composite body of the same and metal | |
EP0109814B1 (en) | Joining silicon nitride to metals | |
CN106588064A (en) | Solder and connection method of carbon / carbon composites and nickel-base superalloys | |
JPS6027664A (en) | Method of joining ceramics and different materials | |
CN110480112B (en) | Reaction composite diffusion brazing connection method of Cf/SiC composite material and Ni-based high-temperature alloy | |
CN111825454A (en) | Preparation method of layered structure ceramic ring for mechanical seal | |
Thümmler | Engineering ceramics | |
CN113930710A (en) | A kind of thermal barrier coating material, its preparation method and application | |
Halbig et al. | Diffusion bonding of silicon carbide ceramics using titanium interlayers | |
CN116673477A (en) | ODS-W/Cu module with intermediate layer and its preparation method | |
JPS61250161A (en) | Cylinder liner | |
Wang et al. | Microstructure and mechanical properties of Al2O3 ceramic joints achieved by Ag‐SiO2 braze in air | |
Moorhead et al. | Adaptation of the DCB test for determining fracture toughness of brazed joints in ceramic materials | |
CN112047741A (en) | A kind of symmetrical layered gradient composite material and its preparation method and application | |
JPH02209689A (en) | Insulated piping for high temperatures | |
STEPHENS et al. | Microstructure and performance of Kovar/alumina joints made with Silver-Copper base active metal braze alloys | |
Chen et al. | Joining particulate and whisker ceramic composites by plastic flow |