[go: up one dir, main page]

JPS60264314A - Method for concentrating phosphoric acid or nitric acid - Google Patents

Method for concentrating phosphoric acid or nitric acid

Info

Publication number
JPS60264314A
JPS60264314A JP12063984A JP12063984A JPS60264314A JP S60264314 A JPS60264314 A JP S60264314A JP 12063984 A JP12063984 A JP 12063984A JP 12063984 A JP12063984 A JP 12063984A JP S60264314 A JPS60264314 A JP S60264314A
Authority
JP
Japan
Prior art keywords
phosphoric acid
nitric acid
acid
water
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12063984A
Other languages
Japanese (ja)
Inventor
Yonekichi Tanaka
田中 米吉
Yoshihiro Shida
志田 義廣
Isao Etsuno
越野 勇夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP12063984A priority Critical patent/JPS60264314A/en
Publication of JPS60264314A publication Critical patent/JPS60264314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To concentrate effectively phosphoric acid or nitric acid or an aqueous solution containing the acid, by neutralizing the aqueous solution containing the phosphoric acid or nitric acid with an alkali, concentrating the resultant salt in a reverse osmosis membrane apparatus, and electrolyzing the concentrate with an ion exchange membrane. CONSTITUTION:A washing waste liquor 1 containing phosphoric acid or nitric acid for etching is neutralized with an alkali 2, and the resultant neutralized water 4 is then stored in a holding tank 5. The neutralized water 4 is passed through a high-pressure pump 6 and reverse osmosis membrane apparatuses 7 and 7' in two stages to give permeated water 9' utilizable as washing water. Unpermeated water 8 and 8' containing concentrated phosphates or nitrates is circulated through the holding tank 5 at the same time. The concentrate in the holding tank 5 is then fed to an intermediate chamber (N) of an electrolytic cell 10 divided with a cation exchange membrane 12 and an anion exchange membrane 13, and a current is passed across a cathode 16 and an anode 20 while circulating an alkali 2' through a cathodic compartment (A) and dilute phosphoric acid or nitric acid through an anodic compartment (K) to carry out the electrolysis. Thus, the alkali 2 is obtained from the cathodic compartment (A) and used for neutralization, and phosphoric acid or nitric acid 21 in a high concentration is obtained from the anodic compartment (K).

Description

【発明の詳細な説明】 本発明はリン酸または硝酸を含む水溶液を濃縮して高濃
度のリン酸または硝酸を得る方法に関するもので、たと
えばアルミ電解箔コンデンサー製造時のエツチング工程
で使用されるリン酸、硝酸を含む洗浄廃水よp IJン
酸。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of concentrating an aqueous solution containing phosphoric acid or nitric acid to obtain highly concentrated phosphoric acid or nitric acid. Cleaning wastewater containing acid, nitric acid, and nitric acid.

硝酸を高濃度に回収することを目的とするものである。The purpose is to recover nitric acid at a high concentration.

アルミ箔電解コンデンザー製造工程は、力性アルカリに
よるアルミ箔の脱脂を行なった後エツチングとして塩酸
、硫酸、硝酸、リン酸等の鉱酸でそれぞれ洗浄を行ない
、アルミ箔表面上の不純物を除去している。
The aluminum foil electrolytic capacitor manufacturing process involves degreasing the aluminum foil using a strong alkali, and then cleaning with mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid as etching to remove impurities on the surface of the aluminum foil. There is.

」二重エツチングは1種または2種以上の鉱酸で順次浸
漬を行なうが、それぞれの種類の異なる鉱酸に浸漬する
浴液槽の後段に必ず、純水等によシ水洗を行なう水洗工
程を有している。
”Double etching involves sequential immersion in one or more types of mineral acids, but it is a rinsing process in which rinsing with pure water, etc. is always performed after the bath tank in which each immersion is performed in a different type of mineral acid. have.

これ等の水洗工程からは前記各種の鉱酸をコ00〜50
0ppm程度含む洗浄廃水が排出されるが。
From these water washing processes, the various mineral acids mentioned above are
Washing wastewater containing about 0 ppm is discharged.

塩酸あるいは硫酸の場合はこれを中和すればその放流に
特に問題がない。
In the case of hydrochloric acid or sulfuric acid, there is no particular problem in discharging it as long as it is neutralized.

しかしながら近時、湖沼、閉鎖性海域の藻類異常発生に
よる魚貝類の斃死が社会的問題となっており、その原因
は、生活汚水、工場排水等に含まれる窒素、リン等に起
因するといわれ、したがって前述のリン酸あるいは硝酸
の場合、これを中和したのみで放流することは好ましく
ない。
However, recently, the death of fish and shellfish due to abnormal algal blooms in lakes and closed sea areas has become a social problem.The cause is said to be due to nitrogen, phosphorus, etc. contained in domestic sewage, industrial wastewater, etc. In the case of the aforementioned phosphoric acid or nitric acid, it is not preferable to discharge it only after neutralizing it.

窒素あるいはリンを除去する方法として、従来から物理
化学的方法、生物学的方法が実施されているが、硝酸イ
オンはもっばら生物学的方法によらざるをえない。しか
しながら生物学的方法による硝酸イオンの除去はアルカ
リ度の添加、栄養源(BOD)の添加等を考慮せねばな
らず、さらに余剰汚泥の処理も必要となシ、処理が煩雑
でけっして経済的な方法とは云えない。
Physicochemical methods and biological methods have been used to remove nitrogen or phosphorus, but nitrate ions must be removed by biological methods. However, the removal of nitrate ions by biological methods requires consideration of addition of alkalinity and nutrient source (BOD), etc. Furthermore, it is also necessary to treat excess sludge, and the treatment is complicated and not economical. I can't say it's a method.

一方リン酸は、生物学的方法によっても若干節1・″ 
除去することはできるが9通常はカルシウム塩を添加し
、不溶性沈殿物として除去する物理化学的方法で除去す
るのが一般的である。
On the other hand, phosphoric acid has been determined by biological methods to some extent.
Although it can be removed, 9 it is generally removed by a physicochemical method that adds calcium salt and removes it as an insoluble precipitate.

本発明者等は、前述したリン酸あるいは硝酸を少量含む
洗浄廃水を処理するにあたり、生物学的方法あるいは沈
殿除去法以外の方法。
The present inventors have developed a method other than the biological method or the precipitation removal method to treat the cleaning wastewater containing a small amount of phosphoric acid or nitric acid.

たとえば、イオン交換方法、逆浸透膜方法等で酸を濃縮
し、かつこれを回収することを検討したが、イオン交換
方法においては、イオン交換樹脂が有する交換容量がさ
ほど大きくないので、経済的方法でなく、かつ回収し得
る酸の濃度が比較的薄く工業的には実施不可能であった
For example, we have considered concentrating the acid and recovering it using ion exchange methods, reverse osmosis membrane methods, etc.; Moreover, the concentration of the acid that could be recovered was relatively low, making it impossible to implement it industrially.

一方逆浸透膜方法においてはリン酸、硝酸を濃縮した場
合、濃縮側のpHが1以下と極端に低くなるため耐酸性
逆浸透膜が要求され、さらにリン酸、硝酸は水溶液中で
H+ PO,−またはNO3−と解離しているため加圧
下において水素イオンの径は0.52オングストローム
(ストークス径)と最小イオン径であるだめ、いかなる
逆浸透膜をも透過してしまい、それに従いリン酸イオン
、硝酸イオン等も透過してしまうので、排除率(透過水
中のイオン濃度/原水中のイオン濃度X]、OO)は、
極めて悪く、処理が不完全となるという問題が生じた。
On the other hand, in the reverse osmosis membrane method, when phosphoric acid and nitric acid are concentrated, the pH on the concentrated side becomes extremely low, below 1, so an acid-resistant reverse osmosis membrane is required. - or NO3-, the hydrogen ion diameter under pressure is the minimum ion diameter of 0.52 angstroms (Stokes diameter), so it will pass through any reverse osmosis membrane, and the phosphate ion will pass through any reverse osmosis membrane. , nitrate ions, etc. also permeate, so the rejection rate (ion concentration in permeated water/ion concentration in raw water X], OO) is
The problem was that the treatment was incomplete.

したがって洗浄廃水中のリン酸または硝酸をアルカリで
中和し、リン酸または硝酸を塩の形として逆浸透膜装置
で処理すれば、リン酸イオン、硝酸イオンは効果的に濃
縮することが可能となり、かつ耐酸性の逆浸透膜を使用
することなくリン酸イオン、硝酸イオンの濃縮という点
では問題がない。しかしながらこのような処理方法で#
得られる濃縮液はリン酸塩または硝酸塩の水溶液であり
、酸として回収するという本発明の課題を達し得ない。
Therefore, by neutralizing phosphoric acid or nitric acid in cleaning wastewater with an alkali and treating the phosphoric acid or nitric acid in salt form with a reverse osmosis membrane device, phosphate ions and nitrate ions can be effectively concentrated. , and there is no problem in concentrating phosphate ions and nitrate ions without using an acid-resistant reverse osmosis membrane. However, with this processing method #
The resulting concentrate is an aqueous solution of phosphate or nitrate, and cannot achieve the objective of the present invention of recovering it as an acid.

本発明者等はこの点に鑑みて、逆浸透膜装置による塩の
濃縮と、イオン交換膜を用いる電解槽による塩の分解と
を巧みに組み合せることにより、リン酸または硝酸を含
む水溶液から効果的に高濃度のリン酸、硝酸を濃縮でき
ることを見い出しだ。
In view of this, the present inventors have developed an effective method for converting aqueous solutions containing phosphoric acid or nitric acid by skillfully combining salt concentration using a reverse osmosis membrane device and salt decomposition using an electrolytic cell using an ion exchange membrane. It was discovered that it is possible to concentrate highly concentrated phosphoric acid and nitric acid.

すなわち本発明はリン酸または硝酸を含む水溶液を濃縮
して高濃度のリン酸または硝酸を= 5 = 得るにあたり、当該水溶液にアルカリを加えて中和する
ことにより、リン酸まだは硝酸をリン酸塩捷たは硝酸塩
となし、当該中和液を逆浸透膜装置で処理して前記塩を
濃縮し9次いで当該濃縮液をイオン交換膜を用いる電解
槽で電解することにより高濃度のリン酸または硝酸を回
収することを特徴とするリン酸または硝酸の濃縮方法に
関するものである。
That is, in the present invention, when concentrating an aqueous solution containing phosphoric acid or nitric acid to obtain highly concentrated phosphoric acid or nitric acid, by adding an alkali to the aqueous solution and neutralizing it, phosphoric acid or nitric acid can be converted to phosphoric acid or nitric acid. The neutralized solution is treated with a reverse osmosis membrane device to concentrate the salt, and then the concentrated solution is electrolyzed in an electrolytic cell using an ion exchange membrane to form a highly concentrated phosphoric acid or nitrate. The present invention relates to a method for concentrating phosphoric acid or nitric acid, which is characterized by recovering nitric acid.

以下に本発明をリン酸を含む洗浄廃水を例にして1図面
を参照して説明する。
The present invention will be described below with reference to one drawing, using washing wastewater containing phosphoric acid as an example.

まずリン酸を100〜500ppm程度含有する洗浄廃
水1に力性ソーダあるいはアンモニア水などのアルカリ
2を注入ポンプ3で添加して中和し、当該中和水4を滞
留槽5に貯留する。
First, an alkali 2 such as sodium hydroxide or aqueous ammonia is added to a cleaning waste water 1 containing about 100 to 500 ppm of phosphoric acid using an injection pump 3 to neutralize it, and the neutralized water 4 is stored in a retention tank 5 .

次いで高圧ポンプ6を駆動し、当該中和水4を加圧下で
逆浸透膜装置7に供給して、リン酸塩を濃縮した非透過
水8を得、当該非透過水8を滞留槽5へ循環する。一方
送過水9をさらに加圧下で逆浸透膜装置7′に供給して
透過水9中に含まれ残留リン酸塩を濃縮し、非−6− 透過水8′を同じように滞留槽5へ循環する。
Next, the high-pressure pump 6 is driven to supply the neutralized water 4 under pressure to the reverse osmosis membrane device 7 to obtain non-permeated water 8 in which phosphate is concentrated, and the non-permeated water 8 is transferred to the retention tank 5. circulate. On the other hand, the permeate water 9 is further supplied under pressure to the reverse osmosis membrane device 7' to concentrate residual phosphates contained in the permeate water 9, and the non-permeate water 8' is sent to the retention tank 5 in the same way. circulate to.

なお逆浸透膜装置7′から得られる透過水9′は洗浄廃
水1中のリン酸塩が96〜99%以上排除されており、
しだがってエツチング工程などの水洗水として再使用す
ることができる。
In addition, the permeated water 9' obtained from the reverse osmosis membrane device 7' has 96 to 99% or more of the phosphates in the washing waste water 1 removed,
Therefore, it can be reused as rinsing water for etching processes, etc.

逆浸透膜装置7への被処理液の供給圧力は10〜50k
g鷹、好ましくは20〜30 kglt品とし、供給水
量、循環水量は透過水9および非透過水8中のイオン濃
度を勘案しながら適宜決定すればよい。
The supply pressure of the liquid to be treated to the reverse osmosis membrane device 7 is 10 to 50k.
The product is preferably a 20 to 30 kglt product, and the amount of water to be supplied and the amount of circulating water may be appropriately determined while taking into account the ion concentrations in the permeated water 9 and non-permeated water 8.

逆浸透膜として酢酸セルローズ、芳香族ポリアミド、ポ
リエーテルアミド、ポリエステル架橋膜が市販されてい
るが9本発明に用いる逆浸透膜としてはpH使用範囲が
広く、耐バクテリヤ、耐酸化性に優れているものであれ
ば格別膜選定において限定されるものではない。
Cellulose acetate, aromatic polyamide, polyetheramide, and polyester crosslinked membranes are commercially available as reverse osmosis membranes.9 The reverse osmosis membrane used in the present invention can be used in a wide pH range and has excellent resistance to bacteria and oxidation. There is no limitation in selecting a particular membrane as long as it is suitable.

本発明における逆浸透膜装置7のリン酸塩の、1 、縮
、滞、槽5に中和よ4オ受けいゎ、2.ッチ式で濃縮す
る方法あるいは透過水9′の流量に相当する中和水4を
滞留槽5へ供給して連続的に濃縮する方法などがあり、
状況に応じて選択できる。
In the present invention, the phosphate in the reverse osmosis membrane device 7 is: 1. Condensed, stagnated, and neutralized in the tank 5. 2. There are two methods, such as a method of concentrating with a switch method, and a method of continuously concentrating by supplying neutralized water 4 corresponding to the flow rate of permeated water 9' to the retention tank 5.
You can choose depending on the situation.

また図面では逆浸透膜装置7をシリーズに2基用いてい
るが、これに限定されることなく洗浄廃水中のリン酸濃
度に応じて1基あるいはそれ以上のシリーズ通水とする
ことができる。なお後段の電解槽でリン酸を効率よく回
収上のような逆浸透膜処理によシリン酸塩濃度を濃くし
た濃縮液を次に電解槽10で電解しリン酸を得る。
Further, in the drawing, two reverse osmosis membrane devices 7 are used in a series, but the invention is not limited to this, and one or more reverse osmosis membrane devices 7 can be used in series depending on the phosphoric acid concentration in the washing wastewater. In addition, phosphoric acid is efficiently recovered in the subsequent electrolytic cell.The concentrated solution, which has been enriched in silicate concentration by the reverse osmosis membrane treatment as described above, is then electrolyzed in the electrolytic cell 10 to obtain phosphoric acid.

すなわち滞留槽5内の濃縮液を第1循環ポンプ11を駆
動して、カチオン交換膜12とアニオン交換膜13で隔
離された中間室Nに循環通液し、一方アルカリ槽14に
あらかじめ貯留しである力性ソーダあるいはアンモニア
水などのアルカリ2′を第2循環ポンプ15を駆動して
That is, the concentrated liquid in the retention tank 5 is circulated through the intermediate chamber N separated by the cation exchange membrane 12 and anion exchange membrane 13 by driving the first circulation pump 11, while it is stored in the alkaline tank 14 in advance. The second circulation pump 15 is driven with an alkali 2' such as aqueous soda or aqueous ammonia.

カチオン交換膜12で隔離されるとともに陰極16を有
する陰極室Aに循環通液する。さらにあらかじめリン酸
槽17に貯留しである希リン酸1日を第3循環ポンプ1
9を駆動して、アニオン交換膜13で隔離されるととも
に陽極20を有する陽極室Kに循環通液する。
The liquid is circulated through a cathode chamber A which is separated by a cation exchange membrane 12 and has a cathode 16. Furthermore, dilute phosphoric acid stored in the phosphoric acid tank 17 in advance is transferred to the third circulation pump 1.
9 is driven to circulate the liquid through an anode chamber K which is separated by an anion exchange membrane 13 and has an anode 20.

このような各液を循環通液して陰極16および陽極20
に電流を通じると以下のような電解が生じる。
Each of these liquids is circulated through the cathode 16 and the anode 20.
When a current is passed through, the following electrolysis occurs.

すなわち中間室N中のリン酸イオンは陽極20に引かれ
、アニオン交換膜13を通過して陽極室Kに移動し、ま
たリン酸塩を構成するカチオン、たとえばリン酸塩がリ
ン酸ナトリウムの場合はナトリウムイオンが、リン酸塩
がリン酸アンモニウムの場合はアンモニウムイオンが、
陰極16に引かれ、カチオン交換膜12を通過して陰極
室Aに移動する。
That is, the phosphate ions in the intermediate chamber N are attracted to the anode 20, pass through the anion exchange membrane 13, and move to the anode chamber K, and the cations constituting the phosphate, for example, when the phosphate is sodium phosphate, is a sodium ion, and if the phosphate is ammonium phosphate, an ammonium ion is
It is attracted by the cathode 16, passes through the cation exchange membrane 12, and moves to the cathode chamber A.

このように中間室Nから移動したリン酸イオン、および
カチオンの量に相当して陽極室にでは酸素ガスが発生す
るとともにリン酸濃度が増加し、また陰極室Aでは水素
ガスが発生するとともにアルカリ濃度が増加する。 −
9一 本発明においてはこのような電解により濃度を増加させ
た高濃度リン酸21を系外に回収し。
Corresponding to the amount of phosphate ions and cations transferred from the intermediate chamber N, oxygen gas is generated and the phosphoric acid concentration increases in the anode chamber, and hydrogen gas is generated and the alkali concentration increases in the cathode chamber A. Concentration increases. −
91 In the present invention, the high concentration phosphoric acid 21 whose concentration has been increased by such electrolysis is recovered outside the system.

再度リン酸槽17に希リン酸を貯留して上述の電解を続
行する。なお電解の続行により中間室Nに流れているリ
ン酸塩の濃度が低下し。
Dilute phosphoric acid is stored in the phosphoric acid tank 17 again and the above-mentioned electrolysis is continued. Note that as the electrolysis continues, the concentration of phosphate flowing into the intermediate chamber N decreases.

この濃度の低下に伴ない電解効率が低下してくるので、
リン酸塩の濃度が11000pp前後に低下したら第1
循環ポンプ11の駆動を停止するとともに電解を中断し
、滞留槽5内の濃度の低下したリン酸塩を再度逆浸透膜
装置7,7′で濃縮する。
As the concentration decreases, the electrolytic efficiency decreases,
When the concentration of phosphate decreases to around 11,000pp, the first
The driving of the circulation pump 11 is stopped and the electrolysis is interrupted, and the phosphate whose concentration has decreased in the retention tank 5 is concentrated again by the reverse osmosis membrane devices 7 and 7'.

あるいはこのようなバッチ式運転でなく、中間槽N内の
リン酸塩濃度が常に1000 ppm以上となるように
、逆浸透膜装置7.7′で濃縮しながら電解を連続的に
行なうこともできる。
Alternatively, instead of such batch operation, electrolysis can be performed continuously while concentrating with the reverse osmosis membrane device 7.7' so that the phosphate concentration in the intermediate tank N is always 1000 ppm or more. .

一方アルカリ槽14におけるアルカリ2′は電解の続行
によりその濃度が増加するので、これを図中の一点鎖線
で示したごとく洗浄廃水の中和用のアルカリ2として回
収再使用する。
On the other hand, since the concentration of the alkali 2' in the alkali tank 14 increases as the electrolysis continues, this is recovered and reused as the alkali 2 for neutralizing the cleaning waste water, as shown by the dashed line in the figure.

理論的には洗浄廃水1に加えたアルカリ分は−10− 電解によりアルカリ槽]4に回収されるので。Theoretically, the alkaline content added to washing wastewater 1 is -10- It is recovered in the alkaline tank]4 by electrolysis.

アルカリ2′を中和用アルカリ2として再使用すること
により、中和用アルカリの系外からの補給は必要ない。
By reusing the alkali 2' as the neutralizing alkali 2, there is no need to replenish the neutralizing alkali from outside the system.

■ なお電解における印加電圧としては2〜200/可、好
捷しくは5〜]0甘ムとし、電流としては1〜]、oh
A m’ 、好ましくは2〜5 A /(1m’とする
とよい。
■ The applied voltage in electrolysis is 2~200/possible, preferably 5~]0, and the current is 1~], oh
A m', preferably 2 to 5 A/(1 m').

本実施態様ではリン酸を含む洗浄廃水からリン酸を回収
する例を説明しだが、全く同様な方法で硝酸を含む洗浄
廃水から硝酸を回収することができる。また図面で説明
した電解方法はひとつの例であり、リン酸塩溶液を流す
室の位置あるいは電極の位置など種々の方法があり9本
発明は本実施態様に限定されるものではない。要はイオ
ン交換膜を用いた電解によりリン酸塩、あるいは硝酸塩
からリン酸7::(あるいは硝酸とアルカリが回収し得
るものであればいかなるものでもさしつかえない。
Although this embodiment describes an example in which phosphoric acid is recovered from washing wastewater containing phosphoric acid, nitric acid can be recovered from washing wastewater containing nitric acid in exactly the same manner. Furthermore, the electrolysis method explained in the drawings is just one example, and there are various methods including the position of the chamber through which the phosphate solution flows, the position of the electrodes, etc. 9 The present invention is not limited to this embodiment. In short, any phosphoric acid 7:: (or nitric acid and alkali) can be recovered from phosphate or nitrate by electrolysis using an ion exchange membrane.

以上説明したごとく本発明によればリン酸あるいは硝酸
を含む水溶液にアルカリを添加[−で中和することによ
り、リン酸塩あるいは硝酸塩として捷ず逆浸透膜装置で
濃縮するので。
As explained above, according to the present invention, by neutralizing an aqueous solution containing phosphoric acid or nitric acid with an alkali, the solution is concentrated in a reverse osmosis membrane device without being washed as a phosphate or nitrate.

使用する逆浸透膜として特に耐酸性のものを必要とせず
、かつ酸そのものを濃縮するより効果的に濃縮でき、丑
だ後段の電解槽において比較的低コストで高濃度のリン
酸あるいは硝酸が回収でき、かつ電解により生ずるアル
カリを回収して前記リン酸あるいは硝酸の中和に用いる
ことによりさらにコストを低下せしめることができ、ア
ルミ電解箔コンデンザー製造時に排出される洗浄水の処
理だけでなく、リン酸あるいは硝酸を含む各種の産業廃
水の処理に適用することができる。
It does not require a particularly acid-resistant reverse osmosis membrane to be used, and it can be concentrated more effectively than concentrating the acid itself, and high-concentration phosphoric acid or nitric acid can be recovered at a relatively low cost in the electrolytic tank after the waste. By recovering the alkali generated by electrolysis and using it to neutralize the phosphoric acid or nitric acid, costs can be further reduced. It can be applied to the treatment of various industrial wastewaters containing acid or nitric acid.

以下に本発明の効果をより明確にするために実施例を説
明する。
Examples will be described below to make the effects of the present invention more clear.

実施例−1 純水]、OOJにリン酸(T−13PO,として)を5
001溶解し、 pH4,5〜5.0になるようアンモ
ニア水で中和を行ない、これを原水としフローシートに
従った処理を行なった。
Example-1 Pure water], phosphoric acid (as T-13PO,) in OOJ
001 was dissolved and neutralized with aqueous ammonia to a pH of 4.5 to 5.0. This was used as raw water and treated according to the flow sheet.

使用した逆浸透膜装置は、 1.00ψX 10]、6
1.膜は東し製(商品名5P−1,10)を使用し、原
水を温度26℃において30〜4okg/aAに加圧循
環しながら濃縮をはかったところ約5時間後において濃
縮水のリン酸アンモニウム濃度は2.5〜3.0%のも
のが15〜20氾採取できた。
The reverse osmosis membrane device used was 1.00ψX 10], 6
1. A membrane made by Toshi (product name 5P-1, 10) was used, and the raw water was concentrated while being circulated under pressure at 26°C to 30 to 4 ok/aA. After about 5 hours, phosphoric acid in the concentrated water was removed. Fifteen to twenty samples were collected with an ammonium concentration of 2.5 to 3.0%.

一方送過水のリン酸アンモニウム塩濃度は2〜amg/
ρであった。電解槽は巾10cmX高さ20(2)×厚
さ4anとし、陰極、陽極共同じ寸法で陰極に近接して
カチオン交換膜(旭化成製アシプレックスに−101)
 、陽極に近接してアニオン交換膜(旭化成製アシプレ
ックスA−101,)をはさみ、白金−チタンをそれぞ
れ陽極および陰極とし、カチオン交換膜とアニオン交換
膜の間に濃縮水を上昇流で1. m/ hとして導入さ
せた。電解反応時間は約12分である。陽極室側には0
.05規定のリン酸水溶液を供給する・ とともに陰極
室側には0105規定のアンモニア水を供給し、 60
voll、 10A、mp、の電流を印加した一コー3
− ところ、陽極室側のリン酸濃度は2〜2.5%に増加し
、まだ陰極室側のアンモニア水の濃度は0.5〜0.7
チとなり中和用として充分に回収できる濃度に増加して
いた。
On the other hand, the concentration of ammonium phosphate salt in the feed water is 2~amg/
It was ρ. The electrolytic cell has a width of 10 cm, a height of 20 cm, and a thickness of 4 an.
An anion exchange membrane (Aciplex A-101, manufactured by Asahi Kasei Co., Ltd.) is sandwiched close to the anode, platinum-titanium is used as the anode and cathode, respectively, and concentrated water is applied in an upward flow between the cation exchange membrane and the anion exchange membrane. It was introduced as m/h. The electrolytic reaction time is about 12 minutes. 0 on the anode chamber side
.. 05N phosphoric acid aqueous solution is supplied, and 0105N ammonia water is supplied to the cathode chamber side, 60
Vol. 3 with a current of 10 A, mp applied.
- However, the phosphoric acid concentration on the anode chamber side has increased to 2 to 2.5%, and the ammonia water concentration on the cathode chamber side is still 0.5 to 0.7%.
The concentration had increased to the point where it could be recovered sufficiently for neutralization.

実施例−2 純水100(Jに硝酸(HNoaとして)を5001T
1g/ρ溶解し、アンモニアでpH6〜7になるよう中
和を行ない、これを原水とし実施例−1と同様に処理を
行なったところ、電解槽より得られる硝酸は約2〜2.
4チであった。
Example-2 Pure water 100 (J and nitric acid (as HNoa) 5001T
When 1 g/ρ was dissolved and neutralized with ammonia to pH 6-7, this was used as raw water and treated in the same manner as in Example 1. Nitric acid obtained from the electrolytic cell was approximately 2-2.
It was 4chi.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様の一例を示すフローの説明図で
ある。 l・・・洗浄廃水、2・・・アルカリ、3・・・注入ポ
ンプ4・・・中和水、5・・・滞留槽、 6・・・高圧
ポンプ7・・・逆浸透膜装置、 8・・・非透過水、9
・・・透過水10・・・電解槽、11・・・第1循環ポ
ンプ。 12・・・カチオン交換膜、13・・・アニオン交換膜
。 14・・・アルカリ槽、 15・・・第2循環ポンプ、
16・・・陰極17・・・リン酸槽+’ 1B・・・希
リン酸、19・・・第3循環ポンプ20・・・陽極、2
1・・・高濃度リン酸N・・・中間室、 A・・・陰極
室、 K・・・陽極室−14=
The drawing is an explanatory diagram of a flow showing an example of an embodiment of the present invention. l... Washing waste water, 2... Alkali, 3... Injection pump 4... Neutralized water, 5... Retention tank, 6... High pressure pump 7... Reverse osmosis membrane device, 8 ...Non-permeable water, 9
... Permeated water 10... Electrolytic cell, 11... First circulation pump. 12... Cation exchange membrane, 13... Anion exchange membrane. 14... Alkaline tank, 15... Second circulation pump,
16... Cathode 17... Phosphoric acid tank +' 1B... Dilute phosphoric acid, 19... Third circulation pump 20... Anode, 2
1... High concentration phosphoric acid N... Intermediate chamber, A... Cathode chamber, K... Anode chamber -14=

Claims (2)

【特許請求の範囲】[Claims] (1)リン酸まだは硝酸を含む水溶液を濃縮して高濃度
のリン酸または硝酸を得るにあたり当該水溶液にアルカ
リを加えて中和することにより、リン酸まだは硝酸をリ
ン酸塩まだは硝酸塩となし、当該中和液を逆浸透膜装置
で処理して前記塩を濃縮し1次いで当該濃縮液をイオン
交換膜を用いる電解槽で電解することにより高濃度のリ
ン酸または・ 硝酸を回収することを特徴とするリン酸
丑だは硝酸の濃縮方法
(1) When concentrating an aqueous solution containing phosphoric acid or nitric acid to obtain highly concentrated phosphoric acid or nitric acid, add an alkali to the aqueous solution to neutralize it, converting the phosphoric acid or nitric acid into phosphoric acid or nitric acid. Then, the neutralized solution is treated with a reverse osmosis membrane device to concentrate the salt, and then the concentrated solution is electrolyzed in an electrolytic cell using an ion exchange membrane to recover highly concentrated phosphoric acid or nitric acid. A method for concentrating phosphoric acid, nitric acid, and nitric acid, which is characterized by
(2)電解により生ずるアルカリを回収し、リン酸また
は硝酸を含む水溶液の中和に用いる特許請求の範囲第1
項記載のリン酸または硝酸の濃縮方法
(2) Claim 1 for recovering alkali generated by electrolysis and neutralizing an aqueous solution containing phosphoric acid or nitric acid.
Method for concentrating phosphoric acid or nitric acid described in section
JP12063984A 1984-06-14 1984-06-14 Method for concentrating phosphoric acid or nitric acid Pending JPS60264314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12063984A JPS60264314A (en) 1984-06-14 1984-06-14 Method for concentrating phosphoric acid or nitric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12063984A JPS60264314A (en) 1984-06-14 1984-06-14 Method for concentrating phosphoric acid or nitric acid

Publications (1)

Publication Number Publication Date
JPS60264314A true JPS60264314A (en) 1985-12-27

Family

ID=14791196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12063984A Pending JPS60264314A (en) 1984-06-14 1984-06-14 Method for concentrating phosphoric acid or nitric acid

Country Status (1)

Country Link
JP (1) JPS60264314A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131982A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Processing method for pickling waste liquid and processing equipment for pickling waste liquid
WO2008038740A1 (en) * 2006-09-28 2008-04-03 Kurita Water Industries Ltd. Process and equipment for the recovery of phosphoric acid from phosphoric acid-containing water
KR101186845B1 (en) 2010-04-09 2012-09-28 한국원자력연구원 A hybrid process reactor for a simultaneous removal of ammonia and organics and Method of wastewater treatment.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131982A (en) * 2004-11-09 2006-05-25 Jfe Steel Kk Processing method for pickling waste liquid and processing equipment for pickling waste liquid
WO2008038740A1 (en) * 2006-09-28 2008-04-03 Kurita Water Industries Ltd. Process and equipment for the recovery of phosphoric acid from phosphoric acid-containing water
KR101186845B1 (en) 2010-04-09 2012-09-28 한국원자력연구원 A hybrid process reactor for a simultaneous removal of ammonia and organics and Method of wastewater treatment.

Similar Documents

Publication Publication Date Title
AU2013284339B2 (en) Process and apparatus for generating or recovering hydrochloric acid from metal salt solutions
US6056878A (en) Method and apparatus for reducing scaling in electrodeionization systems and for improving efficiency thereof
JPS60106583A (en) Method of treating aqueous flow containing precipitable material and acid and/or base
JP2008223115A (en) Salt water treatment method
CN106186550A (en) Sewage recycling Zero emission device and method
EP0317210B1 (en) Process for recovering nitric acid and hydrofluoric acid from waste pickle liquors
JP3137831B2 (en) Membrane processing equipment
CN112499863A (en) Method for resource comprehensive utilization of high-concentration wastewater and waste salt
JPH10272494A (en) Treatment of organic waste water containing salts of high concentration
JPH081168A (en) Method for treating wastewater containing neutral salts of monovalent ions
JP5277559B2 (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
KR20170099616A (en) Electrodialysis coupled with electrochemical nitrogen removal Process for contaminated groundwater treatment, and Apparatus therefor
DK146200B (en) PROCEDURES FOR ENERGY-SAVING WASTEWORKING DERIVED FROM THE REGENERATION OF THE ION EXCHANGE AND ADSORPTION RESINTS used in the treatment of sugarcane
JP5413192B2 (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
JPS60264314A (en) Method for concentrating phosphoric acid or nitric acid
JP2001191080A (en) Electrodeionization apparatus and electrodeionization treatment method using the same
JP3081079B2 (en) Decarbonation equipment and pure water production equipment incorporating the equipment
JPH09887A (en) Regeneration method of acid waste liquid
KR20010017298A (en) A method for treating electrogalvanizing wastewaters
JP2011224445A (en) Apparatus for treating wastewater containing ammonium salt
CN112811687A (en) Treatment method and treatment system for salt-containing wastewater
JPH0824586A (en) Method for electrodialysis-treating nitric acid and hydrofluoric acid washing waste liquid and device therefor
CN206089336U (en) Zero discharging equipment of sewage recycling
US11794147B2 (en) Wastewater treatment method and wastewater treatment apparatus
SU1723047A1 (en) Method of cleaning sewage from dissolved impurities