[go: up one dir, main page]

JPS6026396B2 - Method for manufacturing dimethylmonochlorosilane - Google Patents

Method for manufacturing dimethylmonochlorosilane

Info

Publication number
JPS6026396B2
JPS6026396B2 JP56062764A JP6276481A JPS6026396B2 JP S6026396 B2 JPS6026396 B2 JP S6026396B2 JP 56062764 A JP56062764 A JP 56062764A JP 6276481 A JP6276481 A JP 6276481A JP S6026396 B2 JPS6026396 B2 JP S6026396B2
Authority
JP
Japan
Prior art keywords
reaction
dimethylmonochlorosilane
dimethyldichlorosilane
dimethylsilane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56062764A
Other languages
Japanese (ja)
Other versions
JPS57176991A (en
Inventor
光雄 梅村
利美 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP56062764A priority Critical patent/JPS6026396B2/en
Publication of JPS57176991A publication Critical patent/JPS57176991A/en
Publication of JPS6026396B2 publication Critical patent/JPS6026396B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はジメチルモノクロロシラン製造方法の改良に係
わるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing dimethylmonochlorosilane.

ジメチルモノクロロシランは各種のオルガノボリシロキ
サンに反応性を付与するためのシラン原料として有機け
し、素工業において重要なシラン化合物であるが、これ
は従来、ジメチルジクロロシランの製造を王宮的とする
金属けし、素とメチルクロラィドの直接反応による創生
物として僅かに取得されるか、あるいはグリニア反応で
製造されているため、きわめて高価なものとなっていた
Dimethylmonochlorosilane is an important silane compound in organic poppy and elementary industries as a silane raw material for imparting reactivity to various organoborisiloxanes. However, it is extremely expensive because it is obtained in small quantities as a product created by the direct reaction of methyl chloride with methyl chloride, or it is produced by the Grignard reaction.

本発明はこのジメチルモ/クロロシランを工業的に安価
に、効率よく製造する方法に関するもので、これはジメ
チルシランとジメチルモノクロロシランとを、塩化アル
ミニウム触媒の存在下に36〜70ooで、常圧下に気
液相反応させて、ジメチルモノクロロシランを連続的に
製造することを特徴とするものである。これを説明する
と、本発明者らはジメチルモ/クロロシランの工業的製
法について種々検討の結果、ジメチルシランとジメチル
ジクロロシランとを塩化アルミニウムを鮫嬢として気液
反応させれば目的とするジメチルモノクロロシランが高
い収率で得られることを確認し本発明を完成させた。
The present invention relates to a method for producing this dimethylmo/chlorosilane industrially at low cost and efficiently, which involves mixing dimethylsilane and dimethylmonochlorosilane at 36 to 70 oo in the presence of an aluminum chloride catalyst under atmospheric pressure. This method is characterized by continuously producing dimethylmonochlorosilane through a liquid phase reaction. To explain this, the present inventors have conducted various studies on industrial methods for producing dimethylmonochlorosilane, and have found that if dimethylsilane and dimethyldichlorosilane are subjected to a gas-liquid reaction using aluminum chloride as a shark, the desired dimethylmonochlorosilane can be produced. The present invention was completed by confirming that it could be obtained in high yield.

すなわち、本発明の方法におけるジメチルシランとジメ
チルジクロロシランとの反応は不均化法といわれるもの
であるが、この場合、理論的には始発材料としてのジメ
チルシランから目的とするジメチルモノクロロシランは
2倍モル量製造されるはずであり、本発明の方法によれ
ばこの理論値の約磁%という高い収率でジメチルモノク
ロロシランを取得することができる。このジメチルシラ
ンとジメチルジクロロシランとの反応は、ジメチルシラ
ンが沸点−2ぴ○の常温では気体の化合物であり、ジメ
チルジクロロシランの沸点が約7び○であることから、
この反応温度を適宜に調節すれば、こねには気体一気体
反応、液体−液体反応、気体−液体反応が考えられるが
、本発明者らはこれを気体−液体反応とするときに最も
効率よくジメチルモノクロロシランを製造することがで
きることを確認した。
That is, the reaction between dimethylsilane and dimethyldichlorosilane in the method of the present invention is called a disproportionation method, but in this case, theoretically, the target dimethylmonochlorosilane can be converted from dimethylsilane as a starting material to 2. According to the method of the present invention, dimethylmonochlorosilane can be obtained in a high yield of about 10% of the theoretical value. This reaction between dimethylsilane and dimethyldichlorosilane is possible because dimethylsilane is a gaseous compound at room temperature with a boiling point of -2 mm, and the boiling point of dimethyldichlorosilane is approximately 7 mm.
If this reaction temperature is adjusted appropriately, kneading can be performed through a gas-gas reaction, a liquid-liquid reaction, or a gas-liquid reaction, but the inventors found that the most efficient method is to use a gas-liquid reaction. It was confirmed that dimethylmonochlorosilane could be produced.

このため、本発明の方法における反応温度はジメチルシ
ランの沸点以上、ジメチルジクロロシ「ランの沸点以下
とされるが、ジメチルモノクロロシランの沸点である3
が○以下では生成したジメチルモノクロロシランが液相
としてジメチルジクロロシラン中に混入溶解してしまっ
て留出速度がおくれ、ジメチルシランとジメチルジクロ
。シランの反応速度が遅くなるので、これは360〜7
ぴ○、′好ましくは55℃〜7び○とすることがよい。
この反応は触媒を含むジメーチルジークロロシラン中に
ジメチルシランを通気することによって行なわれるが、
この触媒としては塩化アルミニウムを使用する場合に最
も高い効率の与えられることが確認された。
For this reason, the reaction temperature in the method of the present invention is set to be higher than the boiling point of dimethylsilane and lower than the boiling point of dimethyldichlorosilane, but it is the boiling point of dimethylmonochlorosilane.
However, if it is less than ○, the dimethylmonochlorosilane produced will mix and dissolve in dimethyldichlorosilane as a liquid phase, slowing down the distillation rate, and dimethylsilane and dimethyldichloro. Since the reaction rate of silane is slow, this is 360-7
The temperature is preferably 55°C to 7°C.
This reaction is carried out by bubbling dimethylsilane into dimethyldichlorosilane containing the catalyst,
It was confirmed that the highest efficiency was obtained when aluminum chloride was used as the catalyst.

この触媒としての塩化アルミニウムは液相として存在す
る反応液量の0.1%以上とすることが好ましく、0.
1%以下では反応系中の不純物によって触媒効果が比較
的早期に矢なわれることになり、またそれが10%以上
ではジメチルジクロロシランが泥状スラリーとなってか
くはん、通気が困難になるので、この触媒濃度は反応液
量の0.1〜10%程度とすることが好ましい。本発明
の方法で始発材料として使用されるジメチルシランは特
に純粋である必要はなく、これはたとえばトリメチルシ
ラン、モノメチルシランが任意の割合で混合されたもの
であっても、それらがジメチルモノクロロシランの生成
反応には何らの影響を与えないし、これらはジメチルジ
クロロシランと反応して有機けし、黍工業において有用
とされるメチルフロロシラン、モノメチルモノクロロシ
ラン、モノメチルジクロロシランに転化するので、特に
事前にこれらを除去する必要はない。なお、反応系に液
相として存在するジメチルジクロロシランに対するこの
ジメチルシランの通気量はその反応率から60夕/1/
時以下とすることが好ましいが、装置効率上からは20
夕/−1/時以上とすることがよい。この反応率、単位
体積当り収量と通気量の関係を第1図に示した。なお、
本発明の方法を実施するための装置の一例を第2図につ
いて説明すると、第2図における1は反応槽であり、こ
れにはジメチルジクロロシラン液槽2から禾反応ガス吸
収糟3、バルブ4を経てジメチルジクロロシランが所定
量仕込まれ、糟上部の触媒タンク5からジメチルジクロ
ロシランによってスリラー状となった塩化アルミニアム
が添加される。
The amount of aluminum chloride as a catalyst is preferably 0.1% or more of the amount of the reaction liquid present as a liquid phase, and 0.1% or more of the amount of the reaction liquid present as a liquid phase.
If it is less than 1%, the catalytic effect will be destroyed relatively quickly by impurities in the reaction system, and if it is more than 10%, dimethyldichlorosilane will turn into a muddy slurry, making stirring and aeration difficult. The catalyst concentration is preferably about 0.1 to 10% of the amount of reaction liquid. The dimethylsilane used as the starting material in the method of the present invention does not need to be particularly pure; for example, it may be a mixture of trimethylsilane or monomethylsilane in any proportion; They do not have any effect on the production reaction, and they react with dimethyldichlorosilane and are converted into methylfluorosilane, monomethylmonochlorosilane, and monomethyldichlorosilane, which are useful in the organic poppy and millet industries, so they should be prepared in advance. There is no need to remove it. Note that the amount of aeration of this dimethylsilane relative to the dimethyldichlorosilane present as a liquid phase in the reaction system is 60/1/20 minutes from the reaction rate.
Although it is preferable to set it to less than 20 hours, from the viewpoint of equipment efficiency,
It is preferable to set the time to 1/-1/pm or more. The relationship between the reaction rate, yield per unit volume, and aeration amount is shown in FIG. In addition,
An example of an apparatus for carrying out the method of the present invention will be explained with reference to FIG. 2. In FIG. After that, a predetermined amount of dimethyldichlorosilane is charged, and aluminum chloride which has been turned into a thriller form by dimethyldichlorosilane is added from the catalyst tank 5 at the top of the reactor.

このジメチルジクロロシランと塩化アルミニウムとはか
くはん機6によってかくはんされ、反応糟は温水導入ロ
7から導入される温水によって所定の温度に加溢される
。反応槽内の温度が一定になったときに、ジメチルシラ
ン槽8から減圧弁9、フローメーター10を経てジメチ
ルシランガスを反応糟下部から通気して糟内で気−液反
応を行なわせる。反応糟中の反応液の液面は未反応ガス
吸収槽3から連続的に追加されるジメチルジクロロシラ
ンによって一定に保たれる。反応後のガスは水冷コンデ
ンサー11で冷却され、生成したジメチルモノクロロシ
ランは糟12に貯えられる。なお、未反応ガスはジメチ
ルジクロロシランを収容している未反応ガス吸収糟3に
送られて、ここに貯えられているジメチルジクロロシラ
ンに補築されるが、残余のガスは冷却器13で冷却され
、貯槽14に貯えられる。つぎに本発明方法の実施例お
よび比較例をあげる。
The dimethyldichlorosilane and aluminum chloride are stirred by a stirrer 6, and the reaction vessel is flooded to a predetermined temperature with hot water introduced from a hot water introduction hole 7. When the temperature inside the reaction tank becomes constant, dimethylsilane gas is vented from the lower part of the reaction tank from the dimethylsilane tank 8 through the pressure reducing valve 9 and the flow meter 10 to cause a gas-liquid reaction to occur inside the tank. The liquid level of the reaction liquid in the reaction vessel is kept constant by dimethyldichlorosilane that is continuously added from the unreacted gas absorption tank 3. The gas after the reaction is cooled in a water-cooled condenser 11, and the produced dimethylmonochlorosilane is stored in a tank 12. Note that the unreacted gas is sent to the unreacted gas absorption chamber 3 containing dimethyldichlorosilane and supplemented with the dimethyldichlorosilane stored there, but the remaining gas is cooled in the cooler 13. and stored in the storage tank 14. Next, examples and comparative examples of the method of the present invention will be given.

実施例 1 図示した製造袋贋を使用し、反応糟中にジメチルジクロ
ロシラン2,750夕と塩化アルミニウム137.5夕
を仕込んでかくはん後、これを6ぴ0に加溢し、ジメチ
ルシラン85%、トリメチルシラン15%からなる原料
シランガスを180夕/時の流量で送り、反応糟にジメ
チルジクロロシランを追加して反応器中の液面を一定に
保ちながら8時間反応させた。
Example 1 Using the production bag shown in the figure, 2,750 g of dimethyldichlorosilane and 137.5 g of aluminum chloride were charged into a reaction vessel, stirred, and then overflowed to 60% dimethylsilane to make 85% dimethylsilane. A raw material silane gas consisting of 15% trimethylsilane was fed at a flow rate of 180 m/hr, dimethyldichlorosilane was added to the reaction vessel, and the reaction was carried out for 8 hours while keeping the liquid level in the reactor constant.

この間における滋出量は8,290夕で、そのうちのジ
メチルモノクロロシラン量は367%でジメチルモノク
ロロシランの収量は反応#書中に残留していたものを含
めて3,315夕であり、その収率は80%であった。
During this period, the amount of effusion was 8,290 m2, of which the amount of dimethylmonochlorosilane was 367%, and the yield of dimethylmonochlorosilane was 3,315 m2, including what remained in the reaction book. The rate was 80%.

実施例 3実施例1における塩化アルミニウム量を82
.5夕とし、反応温度を65℃としたほかは実施例1と
同様に処理したところ、ジメチルモノクロロシランを2
7.8%含む蟹出物12,457夕が得られ、ジメチル
モノクロロシランの収量は反応糟中の残留分を含めて3
,737夕となり、その収量も搬%となった。
Example 3 The amount of aluminum chloride in Example 1 was reduced to 82
.. The treatment was carried out in the same manner as in Example 1 except that the reaction temperature was 65°C.
12,457 pieces of crab matter containing 7.8% were obtained, and the yield of dimethylmonochlorosilane including the residue in the reaction vessel was 3.
, 737 evenings, and the yield was also %.

比較例 1 実施例1における塩化アルミニウムの代わりに触媒とし
て金属鋼粉末137.5夕を使用したほかは、実施例1
と同様に処理したところ、ジメチルモノクロロシランの
収童は斑夕、その収率は1.5%であった。
Comparative Example 1 Example 1 except that 137.5 mm of metal steel powder was used as a catalyst instead of aluminum chloride in Example 1.
When treated in the same manner as above, the yield of dimethylmonochlorosilane was 1.5%.

比較例 2 実施例1における反応温度を30℃としたほかは実施例
iと同様に処理したところ、ジメチルモ/クロロシラン
を21.7%含む450夕の留出物が得られたが、ジメ
チルモノクロロシランの収量は反応槽残留分と併せても
510のこすぎず、その収率は13%であった。
Comparative Example 2 The same procedure as in Example I was carried out except that the reaction temperature in Example 1 was changed to 30°C, and a 450% distillate containing 21.7% dimethylmonochlorosilane was obtained, but dimethylmonochlorosilane Even when combined with the residue in the reaction tank, the yield was just 510, and the yield was 13%.

比較例 3 かくはん機を有する内容積11のジャケット付オートク
レ−ブーに液化したジメチルシラン200夕、ジメチル
ジクロロシラン400夕および塩化アルミニウム20夕
を仕込み、60午Cでかくはん下に8時間反応させた。
Comparative Example 3 A jacketed autoclave with an internal volume of 11 and equipped with a stirrer was charged with 200 g of liquefied dimethylsilane, 400 g of dimethyldichlorosilane and 20 g of aluminum chloride, and reacted at 60 pm for 8 hours with stirring.

反応終了後、オートクレープ全体を冷却し、内容物を取
り出してしらべたところ、ジメチルモノクロロシランの
収量は152夕、反応率は24.1%であり、これには
トリメチルモノクロロシラン、モノメチルシラン、モノ
メチルトリクロロシランなどの副生物が大量に含まれて
いた。比較例 4内容積11のジャケット付カラムに粒
状塩化アルミニウム200夕を充填し、ジャケット中に
80qoの温水を循環させた。
After the reaction was completed, the entire autoclave was cooled, and the contents were taken out and examined. The yield of dimethylmonochlorosilane was 152 mm, and the reaction rate was 24.1%. This included trimethylmonochlorosilane, monomethylsilane, monomethyl It contained large amounts of by-products such as trichlorosilane. Comparative Example 4 A jacketed column with an internal volume of 11 was filled with 200 quarts of granular aluminum chloride, and 80 qo of hot water was circulated through the jacket.

このカラムにガス状ジメチルシランを18夕/時の流量
で送入すると共に、85午0に保った蒸発器に滴下する
ことによってガス化したジメチルジクロロシランを保温
導管によってこのカラム中に聡夕/時の流量で送入し、
8時間反応させた。反応終了後のガス体はすべて深袷補
集し、ついでこれをしらべたところ、反応物中にジメチ
ルモノクロロシランが27.0%存在していたが、この
ほかの成分は未反応のジメチルシラン、ジメチルジクロ
ロシランのほか、副生したモノメチルモノクロロシラン
、モノメチルジクロロシラン、モノメチルトリクロロシ
ラン、トリメチルモノクロロシランなどが多量に含まれ
ていた。
Gaseous dimethylsilane was fed into this column at a flow rate of 18 pm/hour, and dimethyldichlorosilane, which was gasified by dropping it into an evaporator kept at 85 pm, was introduced into this column via a heat-retaining conduit. Feed at a flow rate of
The reaction was allowed to proceed for 8 hours. After the reaction was completed, all the gas was collected in a deep container, and when it was examined, it was found that 27.0% dimethylmonochlorosilane was present in the reaction product, but other components were unreacted dimethylsilane, In addition to dimethyldichlorosilane, large amounts of by-products such as monomethylmonochlorosilane, monomethyldichlorosilane, monomethyltrichlorosilane, and trimethylmonochlorosilane were contained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反応率、単位体積当り収量とジメチル・シラン
の通気量との関係を示したものであり、また第2図は本
発明の方法を実施するための装置の概略工程図を例示し
たものである。 1・・・・・・反応糟、2・・・・・・ジメチルジク0
0シラン液槽、3・・・・・・未反応ガス吸収槽、5・
・・・・・触媒タンク、6・・・・・・かくはん機、7
・・・・・・温水導入口、8・・・…ジメチルシラン槽
、11……水袷コンデンサー、12……槽、13……冷
却器、14……貯糟。 第2図 図 船
Figure 1 shows the relationship between the reaction rate, yield per unit volume, and aeration amount of dimethyl silane, and Figure 2 illustrates a schematic process diagram of an apparatus for carrying out the method of the present invention. It is something. 1...Reaction vessel, 2...Dimethyldichloride 0
0 Silane liquid tank, 3... Unreacted gas absorption tank, 5.
... Catalyst tank, 6 ... Stirrer, 7
. . . Hot water inlet, 8 . . . Dimethylsilane tank, 11 . Figure 2: Ship

Claims (1)

【特許請求の範囲】[Claims] 1 ジメチルシランとジメチルジクロロシランとを、塩
化アルミニウム触媒の存在下に36〜70℃で常圧下、
気液相反応させることを特徴とするジメチルモノクロロ
シランの製造方法。
1. Dimethylsilane and dimethyldichlorosilane were heated at 36 to 70°C under normal pressure in the presence of an aluminum chloride catalyst.
A method for producing dimethylmonochlorosilane, characterized by carrying out a gas-liquid phase reaction.
JP56062764A 1981-04-25 1981-04-25 Method for manufacturing dimethylmonochlorosilane Expired JPS6026396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56062764A JPS6026396B2 (en) 1981-04-25 1981-04-25 Method for manufacturing dimethylmonochlorosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56062764A JPS6026396B2 (en) 1981-04-25 1981-04-25 Method for manufacturing dimethylmonochlorosilane

Publications (2)

Publication Number Publication Date
JPS57176991A JPS57176991A (en) 1982-10-30
JPS6026396B2 true JPS6026396B2 (en) 1985-06-24

Family

ID=13209774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56062764A Expired JPS6026396B2 (en) 1981-04-25 1981-04-25 Method for manufacturing dimethylmonochlorosilane

Country Status (1)

Country Link
JP (1) JPS6026396B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2864973B2 (en) * 1993-11-05 1999-03-08 信越化学工業株式会社 Co-production method of dimethylchlorosilane and triorganochlorosilane

Also Published As

Publication number Publication date
JPS57176991A (en) 1982-10-30

Similar Documents

Publication Publication Date Title
US5045244A (en) Preparation of metal halide-amine complexes
US4610858A (en) Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
JPS5988492A (en) Continuous manufacture of monomer or oligomer alkoxysilane
JPS62918B2 (en)
US4644076A (en) Continuous process for the synthesis of hexamethyldisilazane
CA1238472A (en) Process for preparing chlorosilanes from silicon and hydrogen chloride using an oxygen promoter
EP0083374A1 (en) Novel process for producing silicon hydride
JPS6026396B2 (en) Method for manufacturing dimethylmonochlorosilane
US3305571A (en) Method for the initiation of a reaction between isopropyl alcohol and aluminum
JPH06199741A (en) Method for continuous preparation of alkyl nitrite
JP2010235341A (en) Nitrogen-containing silane compound powder and method for producing the same
US8834825B2 (en) Processes for producing silane in a bubble column
RU2656327C1 (en) Method of basic aluminum chloride producing
US6305622B1 (en) Process for producing trihydrocarbyl aluminums
JP4131025B2 (en) Method for producing ketazine and hydrated hydrazine
JPS5941924B2 (en) Purification method of thionyl chloride
CN101175745B (en) Method for producing 4,4'-bicyclohexanedione monoketal
US3983221A (en) Production of basic aluminium nitrate solution
JP2952726B2 (en) Method for producing aqueous manganese bromide solution
EP0213215B1 (en) Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
US3707574A (en) Method for the continuous production of 1,1-dichlorethane
JP2536027B2 (en) Method for producing disilane
US2963346A (en) Method of preparing manganese carbonyl
JPH01313318A (en) Method for manufacturing trichlorosilane
JP4178837B2 (en) Method for producing dialkylaminoalkyl (meth) acrylate quaternary salt