JPS60262930A - Electrode wire made of copper alloy for wire discharge processing - Google Patents
Electrode wire made of copper alloy for wire discharge processingInfo
- Publication number
- JPS60262930A JPS60262930A JP11785184A JP11785184A JPS60262930A JP S60262930 A JPS60262930 A JP S60262930A JP 11785184 A JP11785184 A JP 11785184A JP 11785184 A JP11785184 A JP 11785184A JP S60262930 A JPS60262930 A JP S60262930A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- electrode wire
- copper
- metal
- copper alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本発明は、ワイヤ放電加工用電極線に関するものである
。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an electrode wire for wire electrical discharge machining.
背景技術
ワイヤ放電加工(以下、単に放電加工と称す)法とは、
被加工物とワイヤ放電加工用電極線(以下、電極線と称
す)との間に水等の加工液を媒体として放電を行わせ、
該電極線と被加工物とを相対的に移動させて被加工物を
所望の形状に切断加工するものであり、従来から実施さ
れている方法である。Background technology Wire electrical discharge machining (hereinafter simply referred to as electrical discharge machining) is
Electric discharge is caused between the workpiece and an electrode wire for wire electrical discharge machining (hereinafter referred to as electrode wire) using a machining fluid such as water as a medium,
This is a conventional method in which the electrode wire and the workpiece are moved relatively to cut the workpiece into a desired shape.
この放電加工法において、電極線としては通常直径が0
.03〜0.25−の長尺線を準備し、放電加工部分に
順次新しい線を供給して使用している。In this electric discharge machining method, the electrode wire usually has a diameter of 0.
.. A long wire of 0.03 to 0.25 is prepared and used by sequentially supplying new wire to the electrical discharge machining part.
従来、電極線としては、硬銅線、黄銅線、タングステン
線、ZnまたはAJ!被覆黄銅線、0.1〜4係U−2
0〜381Zn−Cu合金線が用いられているが硬銅線
、黄銅線は放電時に電極成分が被加工面に付着すること
により、加工速度及び寸法精度上の制限を受ける。Conventionally, electrode wires have been made of hard copper wire, brass wire, tungsten wire, Zn or AJ! Covered brass wire, 0.1 to 4 U-2
Although 0 to 381 Zn-Cu alloy wire is used, hard copper wire and brass wire are subject to limitations in machining speed and dimensional accuracy due to electrode components adhering to the surface to be machined during discharge.
タングステン線は放電加工速度が小さく、仕−Eがり表
面状態及び寸法精度は良いが、製造が困難でコストが高
い。Znまたはりで被覆された黄銅線は低融点金属で被
覆されているために、放電加工時電極線をダイスに通す
ため火炎等で先端を針状になるように切断の際、先端が
ボール状となりダイスに通すことが困難で作業性が悪く
、更に、被覆層が芯材に比べ引張強度が劣り、そのため
加工精度が劣るo O,1〜41 A、、e20〜38
%Zn Cu合金線は通常の黄銅線に比べ伸線加工性が
劣り、又放電加工条件によっては大量の銅分り転移、付
着が発生する。Although tungsten wire has a low electrical discharge machining speed and good surface finish and dimensional accuracy, it is difficult to manufacture and expensive. Brass wire coated with Zn or glue is coated with a low-melting point metal, so when the electrode wire is cut into a needle-like shape using flame etc. in order to pass it through a die during electrical discharge machining, the tip becomes ball-shaped. It is difficult to pass through a die, resulting in poor workability.Furthermore, the tensile strength of the coating layer is inferior to that of the core material, resulting in poor processing accuracyo O, 1~41 A,,e20~38
%Zn Cu alloy wire has poor wire drawability compared to ordinary brass wire, and depending on the electrical discharge machining conditions, a large amount of copper dislocation and adhesion may occur.
発明の構成
本発明は、上述の欠点を解消するために成されたもので
、電極線の製造及び伸線加工が極めて容易で、機械的強
度が大きく放電加工時の張力が高くとれ、加工精度が大
で、表面が粗面のため表面積が大きく水に対する濡れ性
が良く、それに伴う冷却効果により加工速度が大きく、
表面が低融点金属元素濃度が高いため被加工面への電極
成分の付着が少なく仕上がり状態が良く、しかも、融点
の低い部分が、極めて薄いため電極線の切断時、先端に
ポール形成が起らないためダイス通し作業性の良好なか
つ、安価な電極線を提供せんとするものである。なお、
前述の電極線の表面が粗面となるのは、表面層が例えば
Zn濃度が高い合金であり表面層の延性が低く伸線時、
表面荒れが起こるためである。即ち、本発明の電極線は
例えば素材となる銅合金線を伸線し、次に、低融点金属
又はその金属の合金の溶湯中を通過させ、該低融点金属
、又は合金が銅合金線上に部分的に付着する程度に石綿
等で拭きとった後更に、伸線した後焼鈍することにより
、付着した低融点金属又は合金を銅合金線内に拡散、消
失させることにより得られる。また、低融点金属層を形
成後、不活性ガス雰囲気中で加熱することによっても容
易に製造できる。Structure of the Invention The present invention has been made to eliminate the above-mentioned drawbacks, and it is extremely easy to manufacture and draw electrode wires, has high mechanical strength, can take high tension during electrical discharge machining, and has high processing accuracy. It has a large surface area and has a rough surface, so it has good wettability with water, and the associated cooling effect allows for high processing speed.
Because the surface has a high concentration of low-melting metal elements, there is less adhesion of electrode components to the workpiece surface, resulting in a good finish.Furthermore, the low-melting point part is extremely thin, so when cutting the electrode wire, pole formation does not occur at the tip. Therefore, it is an object of the present invention to provide an electrode wire that is easy to work with through a die and is inexpensive. In addition,
The reason why the surface of the electrode wire described above is rough is that the surface layer is made of an alloy with a high concentration of Zn, for example, and the surface layer has low ductility during wire drawing.
This is because surface roughness occurs. That is, for the electrode wire of the present invention, for example, a copper alloy wire as a raw material is drawn, and then passed through a molten metal of a low melting point metal or an alloy of the metal, so that the low melting point metal or alloy is coated on the copper alloy wire. After wiping with asbestos or the like to the extent that it partially adheres, the wire is further drawn and annealed to diffuse and eliminate the adhered low melting point metal or alloy into the copper alloy wire. It can also be easily manufactured by heating in an inert gas atmosphere after forming a low melting point metal layer.
本発明を実施する時に使用する低融点金属元素は、B1
、Sb、 Zn、 Cd、 Pu、 In、 Sn、
Pb、 Mg または4すのように、単体で融点が15
0〜700°であるものが好適である。K、Na、几す
のようなアルカリ金属は、融点は低いが、放電加工の媒
体である水と激しく反応するために使用できない。また
、常温で液体である水銀は、毒性が強く不適当である。The low melting point metal element used when carrying out the present invention is B1
, Sb, Zn, Cd, Pu, In, Sn,
Like Pb, Mg or 4S, the melting point is 15
Preferably, the angle is from 0 to 700°. Although alkali metals such as K, Na, and phosphorus have low melting points, they cannot be used because they react violently with water, which is the medium for electrical discharge machining. Additionally, mercury, which is liquid at room temperature, is highly toxic and inappropriate.
単体の融点が150〜700°Cである上記元素の中で
もCdは毒性の点でやや問題があり、Puは高価な上に
放射能を有するため不適当である。従って実用的に利用
される元素はBi、 Sb、 Zn、In、 Sn、P
b%Mg またはMに限定される。Among the above elements whose melting point is 150 to 700° C., Cd is somewhat problematic in terms of toxicity, and Pu is not suitable because it is expensive and has radioactivity. Therefore, the elements that are practically used are Bi, Sb, Zn, In, Sn, and P.
b%Mg or limited to M.
こうして得られた電極線は第1図、第2図に示すように
外表面はど低融点金属元素の濃度が高く、それに伴って
銅元素濃度が低く、中心層に近づくほどその傾向は逆転
する。As shown in Figures 1 and 2, the electrode wire thus obtained has a high concentration of low melting point metal elements on the outer surface, and a correspondingly low concentration of copper elements, and this tendency reverses as it approaches the center layer. .
ここで、最表面の銅元素濃度が0.1〜5係、全体の銅
元素濃度が61〜95壬が望ましい。表面層の銅元素濃
度が0.1〜5チと限定した理由は、0.1係以下では
低融点金属元素の濃度が高いため、ダイス通しの際の電
極線の切断時、先端にボールが形成され、ダイス通し作
業が困難となり、5幅以上では放電加工時、被加工面へ
の銅の付着量が増加し仕上がり表面状態が悪くなる。次
に、全体の銅元素濃度が61〜95係と限定した理由は
、61%以下では導電率が低く、放電加工性が悪く、9
5係以上では引張強度が小さく、放電加工時の張力を低
くせざるを得ないkめ加工精度が悪くなる。Here, it is preferable that the copper element concentration on the outermost surface is 0.1 to 5 mm, and the overall copper element concentration is 61 to 95 mm. The reason why the copper element concentration in the surface layer was limited to 0.1 to 5 is that the concentration of low melting point metal elements is high below 0.1 coefficient, so when cutting the electrode wire when passing it through the die, a ball may form at the tip. If the width exceeds 5, the amount of copper deposited on the surface to be machined increases during electrical discharge machining, resulting in poor finished surface condition. Next, the reason why the overall copper element concentration was limited to 61-95% is that below 61%, the conductivity is low and the electrical discharge machinability is poor.
If the coefficient is 5 or more, the tensile strength is small, and the tension during electrical discharge machining must be lowered, resulting in poor machining accuracy.
本発明の特徴を以下に要約して述べる。The features of the present invention will be summarized below.
従来例で述べたように、表面における低融点合金元素の
存在は確かに放電加工性、特に放電時に電極成分が被加
工物に付着する現象を抑制する効果が高い。しかしなが
ら表面が単一な低融点金属層で形成されている場合、低
融点金属は放電による消耗が大であり、効果の発揮には
相当度好ましくは10μ以上の厚みを必要とする。この
ことから、前記の引張強さの低下による加工精度の低下
や、火炎切断時のボール形成による作業性の劣化をもた
らす。本発明は、付着現象への影響の大きい外表面はど
低融点金属元素濃度を高めて付着防止効果を維持し、導
体内部はどCu濃度を高くすることによって放電による
消耗を抑制する。しかも、引張強さの低い低融点金属濃
度の高い層は極表面に限定されるため引張強さの低下は
ほとんどなく、もちろんボール形成の問題もない。最表
面のCu元素も0.1〜5憾であれば付着に対し全く悪
影響を与えない。引張強さが高いために加工時の張力を
大きくとることができ、さらに付着が減少する結果をも
たらす。As described in the conventional example, the presence of a low melting point alloy element on the surface is certainly highly effective in suppressing electrical discharge machinability, particularly the phenomenon in which electrode components adhere to the workpiece during electrical discharge. However, when the surface is formed of a single low-melting point metal layer, the low-melting point metal is considerably consumed by discharge, and a thickness of preferably 10 μm or more is required to exhibit the effect. This results in a decrease in processing accuracy due to the aforementioned decrease in tensile strength, and a deterioration in workability due to ball formation during flame cutting. The present invention maintains the adhesion prevention effect by increasing the concentration of a low melting point metal element on the outer surface, which has a large influence on the adhesion phenomenon, and suppresses consumption due to discharge by increasing the Cu concentration inside the conductor. Moreover, since the layer with a high concentration of low melting point metal having low tensile strength is limited to the extreme surface, there is almost no decrease in tensile strength and, of course, there is no problem of ball formation. If the Cu element on the outermost surface is 0.1 to 5, it will not have any adverse effect on adhesion. Due to its high tensile strength, high tension can be applied during processing, which further results in reduced adhesion.
以下、本発明電極線を実施例に基いて説明する。Hereinafter, the electrode wire of the present invention will be explained based on Examples.
実施例
実施例1゜
本発明II!12に示す1.0+n+nOの79%Cu
−30%Zn黄銅線をZnの溶湯(温度450°C)中
を5秒間通過させた後、石綿で絞り取り、しかる後、0
.5rImOに伸線した。Examples Example 1゜Invention II! 79% Cu of 1.0+n+nO shown in 12
- After passing a 30% Zn brass wire through molten Zn (temperature 450°C) for 5 seconds, it was squeezed out with asbestos, and then
.. The wire was drawn to 5rImO.
次に500°C124時間焼鈍した後、更に、伸線して
、0.2mm*の電極線を得た。この電極線を用いて、
25IIII11厚の5KD−15工具鋼を切断したと
ころ、従来の硬銅線を100とした時の加工速度比は1
801被加工面への銅の付着量比は20という好結果を
得た。更に、ダイス通しの際の電極線の切断時、先端に
ボールが形成されず、スムースにダイスに通すことがで
きた。Next, after annealing at 500°C for 124 hours, the wire was further drawn to obtain a 0.2 mm* electrode wire. Using this electrode wire,
When cutting 5KD-15 tool steel with a thickness of 25III11, the processing speed ratio was 1 when the conventional hard copper wire was set as 100.
A good result was obtained in which the ratio of the amount of copper deposited on the processed surface of 801 was 20. Furthermore, when cutting the electrode wire when passing it through the die, no ball was formed at the tip, and the electrode wire could be passed through the die smoothly.
実施例2゜
本発明ll&15に示す0.8iunOの65 % C
u−35%Zn 黄銅線に、電気めっきにより8μのS
nの電気めっきを施した。しかる後0.5 whoに伸
線した。次に、270℃、2時間拡散焼鈍した後、更に
、伸線して、0.2+nnl’の電極線を得た。この電
極線を用b1て25mm厚の、9KD−15工具鋼を切
断したところ、従来の硬銅線を100とした時の加工速
度比は160、被加工面への銅の付着量比は45と髪)
う結果を得た。又、ダイス通しの際の電極線の切断時、
先端にボールが形成されず、スムースにダイスに通すこ
とができた。なお、実施例1,2とも電極線の素材であ
る1、OJ5’、 0.80 の黄銅線は途中中間焼鈍
なしで、5mm0 の母材から得ることができた。Example 2゜65% C of 0.8 iunO shown in the present invention ll & 15
U-35%Zn Brass wire with 8μ S by electroplating
Electroplating of n was applied. Thereafter, the wire was drawn to 0.5 who. Next, after diffusion annealing at 270°C for 2 hours, the wire was further drawn to obtain an electrode wire of 0.2+nnl'. When this electrode wire was used to cut 9KD-15 tool steel with a thickness of 25 mm, the processing speed ratio was 160 when the conventional hard copper wire was set as 100, and the ratio of the amount of copper deposited on the workpiece surface was 45. and hair)
I got the results. Also, when cutting the electrode wire when passing through the die,
No ball was formed at the tip and it could be passed through the die smoothly. In addition, in both Examples 1 and 2, the brass wire of 1, OJ5', 0.80, which is the material of the electrode wire, could be obtained from a base material of 5 mm0 without intermediate annealing.
比較例1゜
比較例N0.2に示す1. Orrmoの65 %Cu
−33%Zn−24 AJ線を伸線、熱処理工程を数回
くり返し得られた0、2ion電極線を用いて25iI
II+厚の5KD−15工具鋼を切断したところ、従来
の硬銅線を100とした時の加工速度比は1601被加
工面への銅の付着量比は70で後者の特性があまり良く
ないことと、5IIIIIIOの母材から1.0鴫グに
伸線するに当って3回の中間焼鈍処理が必要であった。Comparative Example 1゜ 1. shown in Comparative Example No. 0.2. Orrmo's 65% Cu
-33% Zn-24 AJ wire was drawn and the heat treatment process was repeated several times to obtain a 25iI electrode wire.
When cutting II+ thick 5KD-15 tool steel, the machining speed ratio was 1601 when the conventional hard copper wire was 100, and the ratio of copper adhesion to the workpiece surface was 70, indicating that the latter characteristics were not very good. Three intermediate annealing treatments were required to draw a wire from a 5IIIIIIO base material to 1.0 g.
比較例2゜
比較例1N&L1に示す1. OvmXの70 %Cu
−301Zn黄銅線をZnの溶湯(430°C)中を5
秒間通過させた後、表面に付着したZnを締り取らず直
接伸線して0.2IIIIIIOの電極線を得た。この
電極線を用いて25、厚の5KD−15工具鋼を切断し
たところ、従来の硬銅線を100としたときの加工速度
比は160、被加工面への銅の付着量比は20という結
果であるが、ダイス通しの際の切断時、先端に0、3
MOのボールが形成し、ダイス通し作業がすこぶる困難
であった。これらの結果を第1表に示す。Comparative Example 2゜ Comparative Example 1 1 shown in N&L1. 70%Cu of OvmX
-301Zn brass wire is heated in molten Zn (430°C) for 5 minutes.
After passing the wire for a second, the wire was drawn directly without removing the Zn attached to the surface to obtain an electrode wire of 0.2IIIIIO. When cutting 5KD-15 tool steel with a thickness of 25 mm using this electrode wire, the processing speed ratio was 160 when the conventional hard copper wire was 100, and the ratio of the amount of copper deposited on the workpiece surface was 20. As a result, when cutting when passing through the die, there are 0 and 3 at the tip.
Balls of MO formed, making the die threading process extremely difficult. These results are shown in Table 1.
第1表かられかるように本発明の電極線#I&lL1〜
6は何れも最表面の銅元素濃度が0.5〜15%の範囲
で、ダイス通し作業性、放電加工特性(加工速度、被加
工面への銅の付着量)が良い。As shown in Table 1, the electrode wires of the present invention #I&lL1~
No. 6 has a copper element concentration on the outermost surface in the range of 0.5 to 15%, and has good die passing workability and electrical discharge machining characteristics (machining speed, amount of copper deposited on the surface to be machined).
比較例Nnlは放電加工特性は優れているが、ダイス通
し作業性が悪く、比較例陽2は伸線加工性が悪いため、
電極線の製造に至るまでに、数多くの中間焼鈍が必要な
ことと、放電加工時、被加工面に銅の付着量が多いとい
う欠点がある。Comparative Example Nnl has excellent electrical discharge machining properties, but has poor die threading workability, and Comparative Example No. 2 has poor wire drawability.
The disadvantages are that many intermediate annealing steps are required before the electrode wire is manufactured, and that a large amount of copper adheres to the surface to be machined during electrical discharge machining.
効 果
上述のように、本発明による電極線は、製造が容易で、
ダイス通し作業性が良く、かつ、放電加工特性が良く、
従って、放電加工をでおけるランニング費用を軽減しう
る顕著な効果を発揮するものである。Effects As mentioned above, the electrode wire according to the present invention is easy to manufacture and
It has good die threading workability and good electrical discharge machining characteristics.
Therefore, it exhibits a remarkable effect of reducing the running cost of electrical discharge machining.
第1図および第2図は、本発明のワイヤ放電加工電極線
の縦断面における直径方向の低融点金属元素ふ・よび銅
元素の濃度分布の例を示す図である。
横方向は位置を示し、縦方向は低融点金属または銅の濃
度を示すものである。
究1図
官2図FIGS. 1 and 2 are diagrams showing examples of concentration distributions of low melting point metal elements and copper elements in the diametrical direction in the longitudinal section of the wire electric discharge machining electrode wire of the present invention. The horizontal direction indicates the position, and the vertical direction indicates the concentration of the low melting point metal or copper. 1st grade officer 2nd grade
Claims (1)
くとも表面層において該金属線の外表面程高いことを特
徴とするワイヤ放電加工用銅合金電極線。 (2)低融点金属元素がBi、 Sb、 Zn 、 I
n%Sn。 Pb、 Mg又は4すであることを特徴とする特許請求
の範囲第(1)項記載のワイヤ放電加工用鋼合金電極線
。 (31Cu元素濃度が全体として61〜95係であるこ
とを特徴とする特許請求の範囲第(1)項又は第(2)
項のワイヤ放電加工用鋼合金電極線。 (4)最表面のCu元素濃度が0.1〜5係であること
を特徴とする特許請求の範囲第(1)項、第(2)項又
は第(3)項記載のワイヤ放電加工用銅合金電極線。Claims: (1) A copper alloy electrode wire for wire electrical discharge machining, characterized in that the concentration of a low melting point metal element contained in the metal wire is higher at least in the surface layer as the outer surface of the metal wire increases. (2) Low melting point metal element is Bi, Sb, Zn, I
n%Sn. The steel alloy electrode wire for wire electrical discharge machining according to claim (1), characterized in that the electrode wire is Pb, Mg or quartz. (Claim (1) or (2) characterized in that the 31Cu element concentration as a whole is in the range of 61 to 95)
Steel alloy electrode wire for wire electrical discharge machining. (4) Wire electrical discharge machining according to claim (1), (2) or (3), characterized in that the Cu element concentration on the outermost surface is 0.1 to 5. Copper alloy electrode wire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11785184A JPS60262930A (en) | 1984-06-07 | 1984-06-07 | Electrode wire made of copper alloy for wire discharge processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11785184A JPS60262930A (en) | 1984-06-07 | 1984-06-07 | Electrode wire made of copper alloy for wire discharge processing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60262930A true JPS60262930A (en) | 1985-12-26 |
JPH0435543B2 JPH0435543B2 (en) | 1992-06-11 |
Family
ID=14721851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11785184A Granted JPS60262930A (en) | 1984-06-07 | 1984-06-07 | Electrode wire made of copper alloy for wire discharge processing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60262930A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002018649A (en) * | 1997-07-30 | 2002-01-22 | Ki Chul Seong | Structure for porous electrode wire for electric discharge machining |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54124399A (en) * | 1978-03-03 | 1979-09-27 | Charmilles Sa Ateliers | Electrode for working by electric spark erosion |
JPS5662730A (en) * | 1979-10-11 | 1981-05-28 | Charmilles Sa Ateliers | Electrode wire |
JPS56126528A (en) * | 1980-01-28 | 1981-10-03 | Furukawa Kinzoku Kogyo Kk | Composite electrode wire for wire-cut spark machining |
JPS5741134A (en) * | 1980-08-19 | 1982-03-08 | Furukawa Electric Co Ltd:The | Electrode wire for wire cut discharge machining |
-
1984
- 1984-06-07 JP JP11785184A patent/JPS60262930A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54124399A (en) * | 1978-03-03 | 1979-09-27 | Charmilles Sa Ateliers | Electrode for working by electric spark erosion |
JPS5662730A (en) * | 1979-10-11 | 1981-05-28 | Charmilles Sa Ateliers | Electrode wire |
JPS56126528A (en) * | 1980-01-28 | 1981-10-03 | Furukawa Kinzoku Kogyo Kk | Composite electrode wire for wire-cut spark machining |
JPS5741134A (en) * | 1980-08-19 | 1982-03-08 | Furukawa Electric Co Ltd:The | Electrode wire for wire cut discharge machining |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002018649A (en) * | 1997-07-30 | 2002-01-22 | Ki Chul Seong | Structure for porous electrode wire for electric discharge machining |
Also Published As
Publication number | Publication date |
---|---|
JPH0435543B2 (en) | 1992-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3718529B2 (en) | Method for producing porous electrode wire for electric discharge machining | |
KR101873953B1 (en) | High-precision zinc-based alloy electrode wire and preparation method therefor | |
US6291790B1 (en) | Wire electrode for electro-discharge machining | |
JPS60262930A (en) | Electrode wire made of copper alloy for wire discharge processing | |
JP3405069B2 (en) | Electrode wire for electric discharge machining | |
JPS62218026A (en) | Electrode wire for wire cut spark discharge machining | |
JP2001269820A (en) | Method of manufacturing electrode wire for wire electric discharge machining | |
JP3087552B2 (en) | Electrode wire for electric discharge machining | |
JP2971459B1 (en) | Hot-dip Sn-Zn plated steel sheet for electrical components | |
JP2006159304A (en) | Electrode wire for wire electric discharge machining and its manufacturing method | |
JPH0679535A (en) | Composite electrode wire for wire cut electric discharge machining and its manufacturing method | |
JP2713350B2 (en) | Electrode wire for wire electric discharge machining | |
JPS6171925A (en) | Method of producing composite electrode wire for electrospark machining | |
JPS59110517A (en) | Electrode wire for wire-cut electric discharge machining and its manufacturing method | |
JPS62130128A (en) | Electrode wire for wire cut electric discharge machining | |
JP2516102B2 (en) | Small diameter composite metal coating | |
JPS59123751A (en) | Method for manufacturing wire-cut electrode wire for electrical discharge machining | |
JPS6176215A (en) | Manufacture of electric discharge machining combined electrode wire | |
JPS59110516A (en) | Wire-cut electrode wire for electrical discharge machining and its manufacturing method | |
JP2000198027A (en) | Electrode wire for electric discharge machining and manufacture of it | |
JPH07108488B2 (en) | Method for manufacturing electrode wire for wire electric discharge machining | |
JPH03111126A (en) | Electrode wire for electric discharge machining | |
JPS6386839A (en) | Electrode wire for wire-cut electric spark machining | |
JPH0366524A (en) | Electrode wire for electric discharge machining | |
JPS618228A (en) | Manufacturing method of composite electrode wire for wire electrical discharge machining |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |