JPS60262151A - Intermediate layer for 3-layer resist material and method for using it - Google Patents
Intermediate layer for 3-layer resist material and method for using itInfo
- Publication number
- JPS60262151A JPS60262151A JP59119386A JP11938684A JPS60262151A JP S60262151 A JPS60262151 A JP S60262151A JP 59119386 A JP59119386 A JP 59119386A JP 11938684 A JP11938684 A JP 11938684A JP S60262151 A JPS60262151 A JP S60262151A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- resist
- intermediate layer
- resist layer
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims description 24
- 238000000034 method Methods 0.000 title claims description 19
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 229920000620 organic polymer Polymers 0.000 claims abstract description 8
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 6
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract description 6
- 230000005855 radiation Effects 0.000 claims abstract description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 4
- 238000005530 etching Methods 0.000 claims description 30
- 239000007789 gas Substances 0.000 claims description 9
- 239000002861 polymer material Substances 0.000 claims description 7
- 229910052731 fluorine Inorganic materials 0.000 claims description 4
- 239000011737 fluorine Substances 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract 2
- 239000004215 Carbon black (E152) Substances 0.000 abstract 1
- 229930195733 hydrocarbon Natural products 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 65
- 239000010408 film Substances 0.000 description 9
- 238000001020 plasma etching Methods 0.000 description 9
- 238000010894 electron beam technology Methods 0.000 description 6
- 230000007261 regionalization Effects 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 210000004709 eyebrow Anatomy 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- -1 polysiloxane Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Electron Beam Exposure (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Silicon Polymers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は半導体集積回路をはじめとする各種の固体素子
の製造に際して、基板上に高精度、かつ微細なレジスト
パターンを形成するりソグラフィ技術に関するもので、
特に、多層レジスト用材料及びそのパターン形成におけ
る利用方法に関する。[Detailed Description of the Invention] Industrial Application Field The present invention relates to lithography technology for forming highly accurate and fine resist patterns on substrates in the manufacture of various solid-state devices including semiconductor integrated circuits. ,
In particular, it relates to materials for multilayer resists and methods of using the same in pattern formation.
従来の技術
半導体集積回路等の製造においては、年々高集積化が進
められており、それに伴い高精度・微細加工が要求され
てきている。また、リソグラフィ法についても、近紫外
光を用いた縮小投影露光法、電子線直接描画法、或いは
X線露光法と、多様な展開を呈している。2. Description of the Related Art In the manufacture of semiconductor integrated circuits, etc., the degree of integration is increasing year by year, and with this, high precision and microfabrication are required. Furthermore, lithography methods have been developed in a variety of ways, including a reduction projection exposure method using near-ultraviolet light, an electron beam direct writing method, and an X-ray exposure method.
しかしながら、素子製造過程において生ずる基板段差は
基板上に塗布したレジスト層の膜厚を変動させ、これは
露光方法の如何によらずレジストパターンの寸法精度を
低下させるという問題をおこしていた。また、パターン
寸法が微細化するに従って、光露光の場合には基板から
の反射光による定在波効果が、更に電子線露光の場合に
は反射電子による近接効果が、形成パターン精度の主要
な劣化要因となりつつあり、これに対する対策が急務と
なっている。However, the substrate level difference that occurs during the device manufacturing process causes the thickness of the resist layer coated on the substrate to vary, which causes a problem in that the dimensional accuracy of the resist pattern decreases regardless of the exposure method. In addition, as pattern dimensions become finer, standing wave effects due to light reflected from the substrate in the case of light exposure, and proximity effects due to reflected electrons in the case of electron beam exposure, are major deteriorations in the accuracy of formed patterns. This is becoming a major factor, and countermeasures against this problem are urgently needed.
これらの問題の解決策として三層の膜を積層した、所謂
三層レジストがある。第1図は、この三層レジストの構
造を示す断面図である。第1図から明らかな如く、三層
レジストは加工すべき基板1、有機高分子材料からなる
下層レジスト層2、中間層として用いる薄膜材料3およ
び放射線感応高分子材料から成る上層レジスト層によっ
て構成され、該上層レジスト層としては、例えばAZ−
1350などの紫外線レジスト、PMMAなどの電子線
レジスト又はX線レジスト等が適用される。この三層レ
ジストでは、厚く形成された下層レジスト層2が基板段
差を実効的に平坦化し、さらには露光すべき上層レジス
ト層4を基板から隔てているため上記の′問題はすべて
解決できる。As a solution to these problems, there is a so-called three-layer resist in which three layers of films are laminated. FIG. 1 is a sectional view showing the structure of this three-layer resist. As is clear from FIG. 1, the three-layer resist is composed of a substrate 1 to be processed, a lower resist layer 2 made of an organic polymer material, a thin film material 3 used as an intermediate layer, and an upper resist layer made of a radiation-sensitive polymer material. , as the upper resist layer, for example, AZ-
An ultraviolet resist such as 1350, an electron beam resist such as PMMA, an X-ray resist, etc. are applied. In this three-layer resist, the thick lower resist layer 2 effectively flattens the substrate step and also separates the upper resist layer 4 to be exposed from the substrate, so that all of the above problems can be solved.
三層レジストのパターン形成は、先ず公知の露光法によ
り上層レジスト層4上に所定のパターンを形成した後中
間層3及び下層レジスト層2を順次エツチングすること
により実施される。この後、3層レジストパターンをマ
スクとして基板をエツチングし中間層3、下層レジスト
層2を除去して工程を終了する。Pattern formation of the three-layer resist is carried out by first forming a predetermined pattern on the upper resist layer 4 by a known exposure method, and then sequentially etching the intermediate layer 3 and the lower resist layer 2. Thereafter, the substrate is etched using the three-layer resist pattern as a mask, and the intermediate layer 3 and lower resist layer 2 are removed to complete the process.
エツチング手段としては、主に寸法変換差の少ない反応
性イオンエツチング法(RIE)が用いられ、特に下層
レジスト層のエツチングは通常酸素ガスを用いた反応性
イオンエツチング法(02RIE)が用いられている。As an etching method, reactive ion etching (RIE) with little difference in dimensional conversion is mainly used, and in particular, reactive ion etching (02RIE) using oxygen gas is usually used for etching the lower resist layer. .
また、中間層がこの下層レジスト層をエツチングする際
にマスクとして機能するため、中間層としては02RI
E耐性の高い材料、例えばSl、3102、AI等の無
機材料が適用されている。In addition, since the intermediate layer functions as a mask when etching this lower resist layer, 02RI is used as the intermediate layer.
Materials with high E resistance, such as inorganic materials such as Sl, 3102, and AI, are used.
この中間層の形成法としては、一般にCVD法、スパッ
タ法、蒸着法のいずれかが用いられる。しかしながら最
近では、通常の有機高分子と同様に基板上にスピン塗布
法により膜形成することができ、且つ無機材料同様の化
学的特性を有するオルガノポリシロキサン(通称シリコ
ーン樹脂)が上記薄膜材料として用いられるようになっ
てきた。As a method for forming this intermediate layer, generally any one of a CVD method, a sputtering method, and a vapor deposition method is used. However, recently, organopolysiloxane (commonly known as silicone resin), which can be formed into a film on a substrate by spin coating like ordinary organic polymers and has chemical properties similar to inorganic materials, has been used as the thin film material. It has become possible to do so.
これはスピン塗布法によれば、蒸着法、CVD法、スパ
ック法に比べ形成時間が極端に短く、且つ簡単な操作で
該薄膜を形成できるためである。This is because, according to the spin coating method, the formation time is extremely short compared to the vapor deposition method, the CVD method, and the spuck method, and the thin film can be formed with a simple operation.
しかしながら、従来のオルガノポリシロキサンでは、パ
ターン形成のためのエツチングがスムーズに進行せず、
そのため微細なパターンが形成できず、さらにはスルー
プットが低いという欠点を有していた。However, with conventional organopolysiloxanes, etching for pattern formation does not proceed smoothly.
Therefore, it has the disadvantage that fine patterns cannot be formed and that the throughput is low.
発明が解決しようとする問題点
上に述べたように、素子製造過程において生ずる基板段
差に基き、基板上に塗布したレジスト層の膜厚が変動す
る、レジストパターンの寸法精度が低下する等の改善さ
るべき問題が残されていた。Problems to be Solved by the Invention As mentioned above, it is possible to improve the problems such as variations in the film thickness of the resist layer coated on the substrate and a decrease in the dimensional accuracy of the resist pattern due to the substrate level difference that occurs during the device manufacturing process. There were still issues to be solved.
この問題の1解決策として、三層の膜を積層した所謂三
層レジストが知られ、利用されてきた。ここで、特に中
間層を最近スピン塗布法で形成するために、オルガノポ
リシロキサンが使用されてきたが、既に述べたようにこ
れについても依然として改良すべきいくつかの問題点が
残されている。As one solution to this problem, a so-called three-layer resist in which three layers of films are laminated is known and used. Here, organopolysiloxanes have recently been used to form interlayers by spin coating, but as already mentioned, there are still some problems that need to be improved.
そこで本発明は、上記欠点を解決するため、エツチング
速度の大きなオルガノポリシロキサンからなる三層レジ
スト用中間層材料を提供することを目的する。また、該
三層レジスト用中間層材料の利用方法を提供することも
、本発明の目的の一つである。SUMMARY OF THE INVENTION In order to solve the above-mentioned drawbacks, it is an object of the present invention to provide an intermediate layer material for a three-layer resist made of organopolysiloxane having a high etching rate. Another object of the present invention is to provide a method for utilizing the intermediate layer material for a three-layer resist.
問題点を解決するための手段
このような情況の下で、本発明者等は前記従来のオルガ
ノポリシロキサンの有する諸欠点を解消し得る新たな三
層レジスト用中間層材料を開発すべく種々検討、研究し
た結果、以下に詳記する一般式N)のオルガノポリシロ
キサンが前記目的達成のために極めて有効であることを
見出し、本発明を完成した。Means for Solving the Problems Under these circumstances, the present inventors conducted various studies in order to develop a new intermediate layer material for three-layer resists that can eliminate the various drawbacks of the conventional organopolysiloxanes. As a result of research, it was found that the organopolysiloxane of general formula N) described in detail below is extremely effective for achieving the above object, and the present invention was completed.
即ぢ、本発明の三層レジスト用中間層材料として有用な
オルガノポリシロキサンは以下の一般式%式%():
)
(R3i○3/2)p・(SiC2)、 (I)式但し
、該一般式(I)において、Rは同−又は異っていても
よく、炭化水素基、水素、水酸基、アルコキシ基からな
る群から選ばれる一種であり、m + n +p +
q = 1、m>Q、nS PS q≧0である、
で表わされるオルガノポリシロキサン材料であり、(p
+q>/ Cm+n)≧0,8であることにより特徴付
けられる。Therefore, the organopolysiloxane useful as the intermediate layer material for the three-layer resist of the present invention has the following general formula % formula % (): ) (R3i○3/2)p. In the general formula (I), R may be the same or different, and is one selected from the group consisting of a hydrocarbon group, hydrogen, a hydroxyl group, and an alkoxy group, and m + n + p +
It is an organopolysiloxane material represented by q=1, m>Q, nS PS q≧0, and (p
It is characterized by +q>/Cm+n)≧0,8.
一方、本発明の前記三層レジスト用中間層材料の利用方
法は、基板上に、有機高分子材料からなる下層レジスト
層と、中間層と、放射線で架橋もしくは分解する高分子
材料からなる上層レジスト層とを順次形成し、該上層レ
ジスト層を露光・現像することにより所望のパターンを
該上層レジスト層に形成し、少なくともフッ素を含有す
るガスプラズマにより前記中間層をエツチングし、次い
で下層レジスト層をエツチングすることにより三層レジ
ストパターンを形成するに際し、前記中間層材料として
上記一般式(I)のオルカリポリシクロヘキサンを使用
することを特徴とする。On the other hand, the method for utilizing the intermediate layer material for a three-layer resist of the present invention is to provide a substrate with a lower resist layer made of an organic polymer material, an intermediate layer, and an upper resist layer made of a polymer material crosslinked or decomposed by radiation. A desired pattern is formed in the upper resist layer by exposing and developing the upper resist layer, etching the intermediate layer with gas plasma containing at least fluorine, and then removing the lower resist layer. When forming a three-layer resist pattern by etching, the present invention is characterized in that alkaline polycyclohexane of the general formula (I) is used as the intermediate layer material.
尚、前記一般式(I)の置換基Rにおいて、炭化水素基
は例えばメチル、エチル、ビニル等の飽和又は不飽和の
低級炭化水素基であることが好ましく、またアルコキシ
基としては例えばメトキシ、エトキン等の低級アルコキ
シ基が好ましい。In addition, in the substituent R of the general formula (I), the hydrocarbon group is preferably a saturated or unsaturated lower hydrocarbon group such as methyl, ethyl, vinyl, etc., and the alkoxy group is, for example, methoxy, ethquin, etc. Lower alkoxy groups such as are preferred.
昨週
本発明のオルガノポリシロキサンは、前記一般式(1)
から明らかな如く、主鎖に81−C結合、側鎖に有機基
を有する材料で、通常のC−C結合を骨格とする有機系
ポリマーとは違った性質、例えば高い0□RIE耐性を
持つ材料である。化学的性質はどちらかと言えば510
2に近く、そのためパターン形成のためのエツチングと
してフッ素含有ガスによるRIE、一般的にはCF、R
11が用いられている。Last week, the organopolysiloxane of the present invention has the general formula (1)
As is clear from the above, it is a material with an 81-C bond in the main chain and an organic group in the side chain, and has properties that are different from ordinary organic polymers with a backbone of C-C bonds, such as high 0□RIE resistance. It is the material. Chemical properties are rather 510
2, and therefore RIE with fluorine-containing gas is used as etching for pattern formation, generally CF, R
11 is used.
表1に各種オルガノポリシロキサンのCF、RIEによ
るエツチング速度を示す。ここで、m1n、p、qは(
T)式で示した各構成単位の割合゛であり、またエツチ
ング条件は、CF、流量50secm、ガス圧力0.0
1Torr、高周波電力100Wである。Table 1 shows the etching rates of various organopolysiloxanes by CF and RIE. Here, m1n, p, q are (
The etching conditions are CF, flow rate 50 sec, gas pressure 0.0.
1 Torr and high frequency power of 100W.
1 0、Q3 0.0B 0.86 0.03 B、1
8402 0.03 0.09 0.88 D、00
7.3 7403 0.39 0.01 0.0.8
0.52 1.5 4704 0.24 0,05
0.41 0.30 2.4 4305 0.17 0
.33 0,21 0.29 1.0 3236 0.
13 0.52 0.20 0.15 0.54 〜8
77 0.13 0.70 0.02 0.15 0.
53 〜908 0.20 0.50 0.04 0.
26 0.42 〜47前記の表1から、p及びqが多
い時、すなわち(p+q)/ (m+”n)の値が大き
いときエツチング速度が速いことがわかる。また、この
ようなオルガノポリシロキサンのエツチングは前述の様
に上層レジスト層のパターンをマスクとして行われる。1 0, Q3 0.0B 0.86 0.03 B, 1
8402 0.03 0.09 0.88 D, 00
7.3 7403 0.39 0.01 0.0.8
0.52 1.5 4704 0.24 0.05
0.41 0.30 2.4 4305 0.17 0
.. 33 0,21 0.29 1.0 3236 0.
13 0.52 0.20 0.15 0.54 ~8
77 0.13 0.70 0.02 0.15 0.
53 ~908 0.20 0.50 0.04 0.
26 0.42 - 47 From Table 1 above, it can be seen that when p and q are large, that is, when the value of (p+q)/(m+"n) is large, the etching rate is high. The etching is performed using the pattern of the upper resist layer as a mask as described above.
従って、オルガノポリシロキサンのエツチング速度は上
層レジスト層のエツチング速度と同等もしくはそれ以上
であることが必要となる。通常、最もエツチング耐性が
高いと考えられている紫外線レジス) A Z−135
C1の、同条件下でのエツチング速度を測定すると、2
30A /minであり、従ってオルガノポリシロキサ
ンのエツチング速度も少なくとも230人/1nin以
上であることが必要となる。Therefore, the etching rate of the organopolysiloxane needs to be equal to or higher than the etching rate of the upper resist layer. UV resist (usually considered to have the highest etching resistance) AZ-135
When the etching rate of C1 was measured under the same conditions, it was 2
30 A/min, and therefore the etching rate of the organopolysiloxane must also be at least 230 people/min.
第2図に(p+q)/ (m+n)とエツチング速度の
関係を示したが、第2図の結果から、前記必要条件を満
足する(p+q)/ (m+n)をめると、(p+q)
/ (m+n)≧0.8 となり、パターン形成のため
には少なくともこの条件を満足するオルガノポリシロキ
サンを使わなければならないことがわかる。Figure 2 shows the relationship between (p+q)/(m+n) and etching speed. From the results in Figure 2, if we consider (p+q)/(m+n) that satisfies the above requirements, (p+q)
/ (m+n)≧0.8, and it can be seen that an organopolysiloxane satisfying at least this condition must be used for pattern formation.
i 以上の様に・p−qの値が大きい程”ツチ′グl
速度も速くなることがわかる。これは以下のよう→
な理由による。i As above, the larger the value of p−q, the more
You can see that the speed is also faster. This is due to the following reasons.
即ち、結合エネルギーはS i−C(69,3Kcal
/mol )の方が81−〇(88,2Kcal /
mo] )より小さく、切断されやすい。従って、反応
種であるF原子は先ず以下の遷移状態を経由し、Cを解
離する。That is, the binding energy is S i-C (69,3Kcal
/mol) is 81-〇(88,2Kcal/
mo] ) smaller and easier to cut. Therefore, the F atom, which is a reactive species, first passes through the following transition state and dissociates C.
F+−○δ−−3iδ十−C→〔F SI C〕→1
06− ○
1
一〇−3i −F + C
この場合、Slに隣接している酸素の数が多くなる程3
164分極の度合が大きくなるため請求核的なFの接近
が容易となる。その結果反応が生じることから、分極の
度合は反応速度に仕付すると考えられる。従って、反応
速度はR31Oa/2>R2S i O>R3S io
、7□ となる。一方、5102の場合、Cは含まれて
いないものの分極の度合は最も大きいことから、RS
i 03/2 と同様にエツチング速度は速いものと考
えられる。F+−○δ−−3iδ10−C→[F SIC]→1 06− ○ 1 10−3i −F + C In this case, the larger the number of oxygens adjacent to Sl, the more 3
Since the degree of 164 polarization increases, it becomes easier for F to approach like a charge nucleus. Since a reaction occurs as a result, the degree of polarization is thought to influence the reaction rate. Therefore, the reaction rate is R31Oa/2>R2S i O>R3S io
, 7□. On the other hand, in the case of 5102, although it does not contain C, the degree of polarization is the highest, so RS
It is thought that the etching rate is high, similar to i 03/2.
以上の考察から、S I 02 、R3] 03/2が
多い程エツチング速度は速くなるものと考えられる。From the above considerations, it is considered that the more S I 02 , R3] 03/2, the faster the etching rate.
実施例
以下、実施例により本発明を更に一層具体的に説明する
が、本発明の範囲はこれら実施例によって何隻制限され
ない。EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the scope of the present invention is not limited by these Examples.
実施例1
0.5μm厚のアルミニウム薄膜を堆積した基板上に、
下層レジストとしてシプレー社製ホトレジス)’ A
Z−1350を膜厚が1.5 μmとなるようにスピン
塗布し、窒素雰囲気下150℃にて、30分加熱処理し
た。続いて、(p+q)/ (m+n) −8,1であ
るオルガノポリシロキサンを膜厚が0.2 μmとなる
ようにスピン塗布し、窒素雰囲気下150 ℃にて、3
0分加熱処理した。次に、上層レジストとしてΔZ−1
350を膜厚が1μmとなるようにスピン塗布し、紫外
線露光、現像処理を行い、1μm幅のレジストパターン
を形成した。このレジストパターンをマスクとして、高
周波電力1001’l、 CF4流量50sccm、ガ
ス圧力0.0ITorrなる条件下でR’IEを行うこ
とにより、オルガノポリシロキサンをエツチングした。Example 1 On a substrate on which a 0.5 μm thick aluminum thin film was deposited,
As the lower layer resist, a photoresist manufactured by Shipley Co., Ltd.)' A
Z-1350 was spin-coated to a film thickness of 1.5 μm, and heat-treated at 150° C. for 30 minutes in a nitrogen atmosphere. Subsequently, organopolysiloxane (p+q)/(m+n)-8,1 was spin-coated to a film thickness of 0.2 μm, and the film was coated at 150°C under a nitrogen atmosphere for 30 minutes.
Heat treatment was performed for 0 minutes. Next, as the upper layer resist, ΔZ-1
350 was spin-coated to a thickness of 1 μm, exposed to ultraviolet light, and developed to form a resist pattern with a width of 1 μm. Using this resist pattern as a mask, the organopolysiloxane was etched by performing R'IE under conditions of high frequency power of 1001'l, CF4 flow rate of 50 sccm, and gas pressure of 0.0 ITorr.
続いて、CF、を02に切換えて下層レジスト層をエツ
チングすることにより、1μm幅の3層レジストパター
ンを形成した。Subsequently, the lower resist layer was etched by changing the CF to 02 to form a three-layer resist pattern with a width of 1 μm.
実施例2
0.5μm厚のアルミニウム薄膜を堆積した基板上にΔ
Z−1350を、膜厚が1.5 μmとなるようにスピ
ン塗布し、これを150℃にて、30分加熱処理した後
、(p+q)/ (m十n) −8,1のオルガノポリ
シロキサンを膜厚が0.2μmとなるようにスピン塗布
し、150℃にて30分加熱処理した。次に、」二層レ
ジストとして電子線ネガ型レジストであるCMSを0,
4μmの膜厚にスピン塗布し、電子線露光、現像処理を
行うことにより、0.5μm幅のレジストパターンを形
成した。続いて、レジストパターンをマスクとして高周
波電力1001!1%CF、流量50secm、ガス圧
力0.01Torrなる条件下でRIEを行い、オルガ
ノポリシロキサンをエツチングし、次いでCF、をQ2
に切換えて下層レジスト層をエツチングすることにより
、0.5 μm幅の3層レジストパターンを形成した。Example 2 Δ
After spin-coating Z-1350 to a film thickness of 1.5 μm and heat-treating it at 150°C for 30 minutes, an organopolymer of (p+q)/(m-n)-8,1 was formed. Siloxane was spin-coated to a film thickness of 0.2 μm, and heat-treated at 150° C. for 30 minutes. Next, CMS, which is an electron beam negative resist, was used as a two-layer resist.
A resist pattern with a width of 0.5 μm was formed by spin coating to a thickness of 4 μm, electron beam exposure, and development. Next, using the resist pattern as a mask, RIE was performed under conditions of high frequency power of 1001!1% CF, flow rate of 50 sec, and gas pressure of 0.01 Torr to etch the organopolysiloxane, and then CF and Q2
By switching to etching and etching the lower resist layer, a three-layer resist pattern with a width of 0.5 μm was formed.
尚、上述した実施例においては下層レジスト層形成材料
としてAZ−1350を使用したが、基板表面に密着性
良く塗布でき、かつ02RIE法により容易にエツチン
グし得る材料であればすべて本発明において使用できる
。従って、市販のレジスト材料の他、塗布可能な有機高
分子材料は基本的にはすべて本発明に適用出来る。上層
レジストについても、公知の紫外線レジスト、X線レジ
スト、、f’ 電子線レジストはすべて適用可能である
。Although AZ-1350 was used as the material for forming the lower resist layer in the above embodiments, any material can be used in the present invention as long as it can be coated with good adhesion to the substrate surface and can be easily etched by the 02RIE method. . Therefore, in addition to commercially available resist materials, basically all coatable organic polymer materials can be applied to the present invention. As for the upper layer resist, all known ultraviolet resists, X-ray resists, f' electron beam resists are applicable.
また、オルガノポリシロキサンのエツチング用ガスとし
ては、実施例で述べたC F 4をはじめとして、フッ
素を含むガスのすべてが本発明において適用できる。尚
、加工形状やエツチング速度を制御するために酸素、水
素、ヘリウム等のガスを混合することも効果的である。Further, as the gas for etching organopolysiloxane, all gases containing fluorine can be used in the present invention, including the C F 4 described in the Examples. It is also effective to mix gases such as oxygen, hydrogen, helium, etc. in order to control the processed shape and etching rate.
更に、上層レジストの露光特性向上のために、オルガノ
ポリシロキサン中に他の物質を含ませることも可能であ
り、例えば定在波効果を抑制する目的で、露光波長領域
の光を吸収する、所謂光吸収材を含ませることは特に有
効である。Furthermore, in order to improve the exposure characteristics of the upper resist layer, it is also possible to include other substances in the organopolysiloxane. It is particularly effective to include a light absorbing material.
発明の効果
か(して、本発明によれば一般式(1)で示されるよう
な三層レジスト用中間層材料としてのオルカリポリシロ
キサンが提供され、このものは従来公知のオルガノポリ
シロキサンについてみられたパターン形成のためのエツ
チングがスムーズに進行しないとか、微細なパターンが
形成し得ない等の欠点を示さず、極めて良好なエツチン
グを可能とするものである。According to the present invention, an alkaline polysiloxane as an intermediate layer material for a three-layer resist as shown by the general formula (1) is provided, which is superior to conventionally known organopolysiloxanes. Etching for forming a pattern does not proceed smoothly or a fine pattern cannot be formed, and extremely good etching is possible.
従って、本発明のオルガノポリシロキサンを多層レジス
ト用中間層材料として使用した場合にはスループットの
大巾な向上を図ることができるばかりでなく、多層レジ
ストを用いた微細・高精度のパターン形成が確実に保証
されることになる。Therefore, when the organopolysiloxane of the present invention is used as an intermediate layer material for a multilayer resist, not only can the throughput be greatly improved, but also fine and highly accurate pattern formation using the multilayer resist can be ensured. will be guaranteed.
第1図は、3層レジストの構成を示す断面図であり、
第2図は(p+q)/ (m+n)とエツチング速度と
の関係を示す図である。
(主な参照番号)
] 基板 2 下層レジスト層
3 中間層 4 上層レジスト層
特許出願人 日本電信電話公社
代 理 人 弁理士 新居 正彦
第1図
1−一一墓卑反
2−一一π厘しぴ又ト肩
3−一一中間眉
4−一一上眉しプス1眉FIG. 1 is a sectional view showing the structure of a three-layer resist, and FIG. 2 is a diagram showing the relationship between (p+q)/(m+n) and etching rate. (Main reference numbers)] Substrate 2 Lower resist layer 3 Intermediate layer 4 Upper resist layer Patent applicant Nippon Telegraph and Telephone Public Corporation Representative Masahiko Arai Pimata shoulders 3 - 11 middle eyebrows 4 - 11 upper eyebrows and 1 eyebrow
Claims (2)
水素基、水素、水酸基、アルコキシ基からなる群から選
ばれる一種であり、 m+n+p+q=l、m>Q、n1p1q≧0である、 で表され、(p十q)/ (m+n)≧0.8であるオ
ルガノポリシロキサン材料からなることを特徴とする三
層レジスト用中間層材料。(1) The following general formula: % formula %)) However, in the formula, R may be the same or different and is a type selected from the group consisting of a hydrocarbon group, hydrogen, hydroxyl group, and alkoxy group, m+n+p+q=l, An intermediate layer material for a three-layer resist, characterized in that it is made of an organopolysiloxane material represented by m>Q, n1p1q≧0, and (p1q)/(m+n)≧0.8.
層と、中間層と、放射線で架橋若しくは分解する高分子
材料からなる上層レジスト層を順次形成し、該上層レジ
スト層を露光・現像することにより所望のパターンを該
上層レジスト層に形成し、少なくともフッ素を含有する
ガスプラズマにより前記中間層をエツチングし、次いで
下層レジスト層をエツチングすることにより三層レジス
トパターンを形成するに際し、前記中間層用材料として
、下記一般式: %式%) ) 但し、該一般式において、Rは同一もしくは異なってい
てもよく、炭化水素基、水素、水酸基、アルコキシ基か
らなる群から選ばれる一種であり、m+n+p+Q=1
.、m>Q、TIS+)%q≧0である、 で表され、(p+q)/ (m+n)≧0.8であるオ
ルガノポリシロキサン材料を使用することを特徴とする
上記オルガノポリシロキサン材料の利用方法。(2) A lower resist layer made of an organic polymer material, an intermediate layer, and an upper resist layer made of a polymer material that can be crosslinked or decomposed by radiation are sequentially formed on the substrate, and the upper resist layer is exposed and developed. When forming a three-layer resist pattern by forming a desired pattern on the upper resist layer, etching the intermediate layer with a gas plasma containing at least fluorine, and then etching the lower resist layer, the intermediate layer As a material for use, the following general formula: % formula %)) However, in the general formula, R may be the same or different and is a type selected from the group consisting of a hydrocarbon group, hydrogen, hydroxyl group, alkoxy group, m+n+p+Q=1
.. , m>Q, TIS+)%q≧0, and use of the above organopolysiloxane material characterized by using an organopolysiloxane material in which (p+q)/(m+n)≧0.8. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59119386A JPS60262151A (en) | 1984-06-11 | 1984-06-11 | Intermediate layer for 3-layer resist material and method for using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59119386A JPS60262151A (en) | 1984-06-11 | 1984-06-11 | Intermediate layer for 3-layer resist material and method for using it |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60262151A true JPS60262151A (en) | 1985-12-25 |
Family
ID=14760211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59119386A Pending JPS60262151A (en) | 1984-06-11 | 1984-06-11 | Intermediate layer for 3-layer resist material and method for using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60262151A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01111324A (en) * | 1987-10-26 | 1989-04-28 | Matsushita Electric Ind Co Ltd | Method for forming fine pattern |
WO1989004507A1 (en) * | 1987-11-09 | 1989-05-18 | Toray Silicone Co., Ltd. | Pattern forming material and method for forming pattern |
JPH0236234A (en) * | 1988-07-27 | 1990-02-06 | Shin Etsu Chem Co Ltd | Silicone resin and its manufacturing method |
US5453157A (en) * | 1994-05-16 | 1995-09-26 | Texas Instruments Incorporated | Low temperature anisotropic ashing of resist for semiconductor fabrication |
US6743885B2 (en) | 2001-07-31 | 2004-06-01 | Sumitomo Chemical Company, Limited | Resin composition for intermediate layer of three-layer resist |
JP2008003624A (en) * | 1999-04-12 | 2008-01-10 | Jsr Corp | Composition for resist underlayer film |
JP2008170984A (en) * | 1999-04-12 | 2008-07-24 | Jsr Corp | Composition for resist underlayer film |
WO2016159180A1 (en) * | 2015-03-31 | 2016-10-06 | デクセリアルズ株式会社 | Method for manufacturing master, master, and optical body |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60254034A (en) * | 1984-05-30 | 1985-12-14 | Fujitsu Ltd | Formation of pattern |
-
1984
- 1984-06-11 JP JP59119386A patent/JPS60262151A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60254034A (en) * | 1984-05-30 | 1985-12-14 | Fujitsu Ltd | Formation of pattern |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01111324A (en) * | 1987-10-26 | 1989-04-28 | Matsushita Electric Ind Co Ltd | Method for forming fine pattern |
WO1989004507A1 (en) * | 1987-11-09 | 1989-05-18 | Toray Silicone Co., Ltd. | Pattern forming material and method for forming pattern |
JPH0236234A (en) * | 1988-07-27 | 1990-02-06 | Shin Etsu Chem Co Ltd | Silicone resin and its manufacturing method |
US5453157A (en) * | 1994-05-16 | 1995-09-26 | Texas Instruments Incorporated | Low temperature anisotropic ashing of resist for semiconductor fabrication |
JP2008003624A (en) * | 1999-04-12 | 2008-01-10 | Jsr Corp | Composition for resist underlayer film |
JP2008170984A (en) * | 1999-04-12 | 2008-07-24 | Jsr Corp | Composition for resist underlayer film |
US6743885B2 (en) | 2001-07-31 | 2004-06-01 | Sumitomo Chemical Company, Limited | Resin composition for intermediate layer of three-layer resist |
WO2016159180A1 (en) * | 2015-03-31 | 2016-10-06 | デクセリアルズ株式会社 | Method for manufacturing master, master, and optical body |
JP2016190416A (en) * | 2015-03-31 | 2016-11-10 | デクセリアルズ株式会社 | Method for manufacturing original plate, original plate, and optical body |
US10974419B2 (en) | 2015-03-31 | 2021-04-13 | Dexerials Corporation | Master manufacturing method, master, and optical body |
US11524426B2 (en) | 2015-03-31 | 2022-12-13 | Dexerials Corporation | Master manufacturing method, master, and optical body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4738916A (en) | Intermediate layer material of three-layer resist system | |
CN100403167C (en) | Pattern forming method and method of manufacturing semiconductor device | |
JP4336310B2 (en) | Silicon-containing antireflection layer as hard mask layer and method for forming the same | |
US7482280B2 (en) | Method for forming a lithography pattern | |
US7078351B2 (en) | Photoresist intensive patterning and processing | |
EP2396703B1 (en) | A hardmask process for forming a reverse tone image using polysilazane | |
JP2719465B2 (en) | Semiconductor manufacturing method | |
EP0230615A2 (en) | Silicon-containing polyimides as oxygen etch stop and dual dielectric coatings | |
KR20210018548A (en) | Patterning method to improve EUV resist and hard mask selectivity | |
KR20230007391A (en) | Spin coating composition containing a carbon material, a metal organic compound and a solvent, and a method for preparing a metal oxide film on a substrate | |
JP2009016788A (en) | Method for forming fine pattern of semiconductor element | |
KR100293975B1 (en) | Dry etching process and a fabrication process of a semiconductor device using such a dry etching process | |
JP2007258683A (en) | Hardmask composition for resist underlayer film including organosilane polymer and method of manufacturing semiconductor integrated circuit device using the same | |
US7175966B2 (en) | Water and aqueous base soluble antireflective coating/hardmask materials | |
US6589715B2 (en) | Process for depositing and developing a plasma polymerized organosilicon photoresist film | |
US6989219B2 (en) | Hardmask/barrier layer for dry etching chrome films and improving post develop resist profiles on photomasks | |
JPS60262151A (en) | Intermediate layer for 3-layer resist material and method for using it | |
US20030064323A1 (en) | Method for forming a pattern and method of manufacturing semiconductor device | |
JPH11186243A (en) | Method of etching silicon oxide silicon layer | |
JP2674589B2 (en) | Method of forming resist pattern | |
JPH0797215B2 (en) | Intermediate layer material for three-layer resist and pattern forming method | |
KR20090003724A (en) | Manufacturing method of semiconductor device | |
US7300880B2 (en) | Methods for forming fine photoresist patterns | |
KR20070047624A (en) | Method of forming thin film pattern | |
Kruger et al. | Trilayer resist |