[go: up one dir, main page]

JPS6026093A - Method for producing deashed coal - Google Patents

Method for producing deashed coal

Info

Publication number
JPS6026093A
JPS6026093A JP13501983A JP13501983A JPS6026093A JP S6026093 A JPS6026093 A JP S6026093A JP 13501983 A JP13501983 A JP 13501983A JP 13501983 A JP13501983 A JP 13501983A JP S6026093 A JPS6026093 A JP S6026093A
Authority
JP
Japan
Prior art keywords
coal
ash
slurry
seeds
deashed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13501983A
Other languages
Japanese (ja)
Inventor
Shigenori Onizuka
鬼塚 重則
Katsumasa Yano
矢野 勝正
Takanobu Watanabe
渡辺 高延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanadevia Corp
Original Assignee
Hitachi Zosen Corp
Hitachi Shipbuilding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Hitachi Shipbuilding and Engineering Co Ltd filed Critical Hitachi Zosen Corp
Priority to JP13501983A priority Critical patent/JPS6026093A/en
Publication of JPS6026093A publication Critical patent/JPS6026093A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To prepare deashed coal with a low ash content, by adding seeds to an aqueous slurry of crushed raw material coal and treating the resultant intermediate coal with a processing soln. contg. an acid and an acidic ammonium fluoride. CONSTITUTION:Dust coal obtained by crushing raw material coal to a particle diameter of 500mum or smaller is suspended in water and seeds consisting of an oil in an amt. of 10-30wt% of dust coal and lipophilic particulate solid having a particle diameter of 1-fewmm. which act as granulation nuclear, are added to the resultant aqueous slurry for agitation and granulation. The granules are separated, washed and dried to obtain intermediate coal deashed by 70-80%. The intermediate coal is dipped in a processing soln. contg. 1-12wt% hydrochloric acid, 1-10wt% citric acid and 1-10wt% ammonium fluoride, for dissolution of ash. Upon separation, washing and drying, refined coal with an ash content of below 1% is obtained.

Description

【発明の詳細な説明】 この発明は、脱灰炭すなわち灰分含有量の極めて少ない
石炭を製造するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing deashed coal, ie coal with a very low ash content.

石炭は古くから重要なエネルギー源として利用されてき
たが、石油と比べると、石炭が固体であるために輸送や
荷役などの費用が高くつくなどの理由から石油にその利
用上の地位を奪われている。ところが近年石油の供給児
通しの不安と価格高騰のために、エネルギーの多様化の
必要性が認識され、その−環として世界的にも石炭見方
しの気運が高まり、石炭の有効な利用法が検討されてい
る。
Coal has been used as an important energy source for a long time, but since coal is a solid, it is more expensive to transport and handle than oil, so it has lost its status to oil. ing. However, in recent years, due to concerns about oil supply and soaring prices, the need for energy diversification has been recognized, and as a result, there has been a growing trend around the world to look at coal, and effective ways to use coal are being explored. It is being considered.

その1つとして石炭をディーゼルエンジン、タービンエ
ンジンなどの燃料として使用することが挙げられる。と
ころが石炭をディーゼルエンジンなどの燃131として
使用するには、解決しなければならない問題点がある。
One example of this is the use of coal as a fuel for diesel engines, turbine engines, etc. However, in order to use coal as fuel 131 for diesel engines, there are problems that must be solved.

通常石炭には数%から数十%の割合で灰分が含まれてい
る。
Coal usually contains ash at a rate of several percent to several tens of percent.

灰分の組成は、40〜60重間%のシリカ(Sfe2)
、25〜35重量%のアルミナ(△1203)、5〜2
5重M%の酸化鉄(Fe203)、1〜15重量%の酸
化カルシウム(CaO)、0.5〜4重量%の酸化マグ
ネシウム(M(10)、1〜4重量%の酸化ナトリウム
(Na20)、酸化カリウム(K2O)および酸化イオ
ウ(SO3)などからなる。ただし上記組成は石炭を燃
焼して生成した灰分の分析値である。このような灰分を
含んだ石炭を上記エンジンの燃料どして使用すると、石
炭中の灰分がディーゼルエンジンではバルブ、ピストン
リングなどに、タービンエンジンではタービンブレード
に摩耗を生じされる。したがってこの摩耗量をエンジン
・ライフサイクルの許容限度内に抑えるには、石炭から
灰分を除去してその含有間を0.5%程度まで低下さぼ
る必要があるとされている。
The ash composition is 40 to 60% by weight of silica (Sfe2)
, 25-35% by weight alumina (△1203), 5-2
5% by weight of iron oxide (Fe203), 1-15% by weight of calcium oxide (CaO), 0.5-4% by weight of magnesium oxide (M(10), 1-4% by weight of sodium oxide (Na20) , potassium oxide (K2O), and sulfur oxide (SO3).However, the above composition is an analysis value of ash produced by burning coal.Coal containing such ash is used as fuel for the above engine. When used, the ash in the coal causes wear on the valves, piston rings, etc. in diesel engines, and on the turbine blades in turbine engines.Therefore, in order to keep this amount of wear within acceptable limits for the engine life cycle, it is necessary to remove the ash from coal. It is said that it is necessary to remove ash and reduce its content to about 0.5%.

どころで従来の石炭脱灰方法は、物理的方法と化学的方
法に分(プられる。
However, conventional coal deashing methods are divided into physical methods and chemical methods.

物理的方法どしては、浮遊選鉱法、重液選鉱法、…力選
鉱法、オイル・アグロミレーション法などが知られてい
る。これらの方法による脱灰率はいずれも低く、50%
程度である。ただし、オイル・アグロミレーション法の
特殊な例(特開昭55+−141504号および特開昭
53− 5−14.1505号公報に開示されている)では、7
0〜80%のlf2灰率を達成づることができる。
Known physical methods include flotation, heavy liquid beneficiation, force beneficiation, and oil agglomeration. The demineralization rate by these methods is low, 50%.
That's about it. However, in a special example of the oil agglomeration method (disclosed in JP-A-55+-141504 and JP-A-53-5-14.1505), 7
lf2 ash percentages of 0-80% can be achieved.

化学的方法どしては、特公昭17−466@、特公昭3
6−23711号および特開昭55−133487号公
報に開示されたものが知られている。これらを整理分類
すると、つぎのとおりである。
Regarding chemical methods, Tokuko Sho 17-466@, Tokko Sho 3
Those disclosed in No. 6-23711 and Japanese Unexamined Patent Publication No. 55-133487 are known. The classification of these is as follows.

(1) 酸による処理 (2) 高温高圧条件下におけるアルカリによる処理 (3) 酸素、空気、二酸化窒素などにより酸化処理し
たのち、酸またはアルカリ により処理 (4) 弗酸または弗化水素ガスによる処理上記各方法
(1)〜(4)は、いずれも石炭5− −4 = 中の灰分を薬剤で溶解抽出することにより、灰分を分解
除去しようどするもので、その脱灰率がよくて70〜8
0%程度である。さらに各方法(1)〜(4)はそれぞ
れつきのような欠点を有している。方法(1)(2>は
灰分組成のうち金属成分の溶解を行なうもので、組成の
大部分を占めるシリカなども除去することができない。
(1) Treatment with acid (2) Treatment with alkali under high temperature and high pressure conditions (3) Oxidation treatment with oxygen, air, nitrogen dioxide, etc., then treatment with acid or alkali (4) Treatment with hydrofluoric acid or hydrogen fluoride gas Each of the above methods (1) to (4) attempts to decompose and remove the ash content by dissolving and extracting the ash content in the coal 5--4 = with chemicals, and the deashing rate is 70% at best. ~8
It is about 0%. Furthermore, each method (1) to (4) has certain drawbacks. Methods (1) and (2>) dissolve metal components in the ash composition, and cannot remove silica, which accounts for most of the composition.

方法(3)は脱硫を目的として硫化鉄の除去を行なうも
ので、他の成分を除去することができない。方法(4)
はシリカを除去しようとするものであるが、弗酸および
弗化水素は毒性、腐食性が強いから、その取り扱いが困
難である。
Method (3) removes iron sulfide for the purpose of desulfurization, and cannot remove other components. Method (4)
attempts to remove silica, but since hydrofluoric acid and hydrogen fluoride are highly toxic and corrosive, it is difficult to handle them.

上述したように、従来の脱灰方法である物理的および化
学的方法による脱灰率はよくて70〜80%である。し
たがってこの程度の脱灰率6− を以てしては、灰分含有量0.5%はおろか、灰分含有
量1%の石炭を得ることが不可能である。
As mentioned above, the demineralization efficiency of conventional demineralization methods, physical and chemical methods, is at best 70-80%. Therefore, with such a deashing rate of 6-, it is impossible to obtain coal with an ash content of 1%, let alone an ash content of 0.5%.

この発明の目的は、上記事情に鑑みて従来の脱灰方法の
欠点を解消し、灰分含有量の極めて少ない脱灰炭の製造
方法を提供することにある。
In view of the above circumstances, an object of the present invention is to eliminate the drawbacks of conventional deashing methods and to provide a method for producing deashed coal having an extremely low ash content.

この発明による脱灰炭の製造方法は、灰分を含む原炭か
ら中間脚を1qる物理的方法と、得られた中間脚から精
成を得る化学的方法との組合せからなり、物理的方法が
、原炭を粉砕して微粉炭とし、微粉炭を水に懸濁して微
粉炭スラリーをつくる工程と、微粉炭スラリーに油およ
び造粒核どなる親油性粒状固形物よりなるシードを混合
し、スラリーを攪拌して造粒する工程と、造粒物をスラ
リー中より分離し、これを洗浄乾燥する工程と、造粒物
を石炭分とシードとに分離することにより、中間脚を得
る工程とからなり、化学的方法が、中間脚を酸および酸
性弗化アンモンを含む処理液に浸漬して、中間炭中の残
留灰分を溶解させる工程と、処理液から石炭分を分離し
て洗浄乾燥することにより、精成を得る工程とからなる
ことを要旨どする。
The method for producing deashed coal according to the present invention consists of a combination of a physical method for producing 1 q of intermediate legs from raw coal containing ash and a chemical method for obtaining refined coal from the obtained intermediate legs. , the process of pulverizing raw coal to make pulverized coal, suspending the pulverized coal in water to create pulverized coal slurry, and mixing the pulverized coal slurry with oil and seeds consisting of lipophilic granular solids such as granulation nuclei to create a slurry. A process of stirring and granulating the granules, a process of separating the granules from the slurry, washing and drying them, and a process of obtaining intermediate legs by separating the granules into coal and seeds. The chemical method involves immersing the intermediate leg in a treatment liquid containing acid and acidic ammonium fluoride to dissolve residual ash in the intermediate coal, and separating the coal from the treatment liquid and washing and drying it. The summary is that the process consists of a process of obtaining a refined product.

この発明によれば、脱灰機構を全く異にする物理的方法
と化学的方法とによって脱灰処理しているので、石炭か
ら灰分を充分に除去することができ、灰分含有量の極め
て少ない脱灰炭を製造することができる。したがって、
この発明によって製造された脱灰炭は、これをたとえば
ディーゼルエンジン、タービンエンジンの燃料として使
用しても、これらのエンジンの摩耗量を許容限定内に抑
えることができるどともに、その輸送、荷役費用を低減
させることができる。
According to this invention, since the deashing process is carried out using a physical method and a chemical method that have completely different deashing mechanisms, it is possible to sufficiently remove ash from the coal, and the coal has an extremely low ash content. Ash charcoal can be produced. therefore,
Even when the demineralized coal produced according to the present invention is used as a fuel for diesel engines and turbine engines, for example, it is possible to suppress the amount of wear in these engines within permissible limits, and also to reduce transportation and cargo handling costs. can be reduced.

7− 以下、この発明について詳しく説明する。7- This invention will be explained in detail below.

脱灰炭の製造方法は、灰分を含む原炭から灰分の大部分
を除去して中間脚を得る物理的方法と、得られた中間脚
からさらに残留灰分を除去して精成を得る化学的方法と
の組合せからなる。
There are two methods for producing deashed coal: a physical method to remove most of the ash from raw coal containing ash to obtain an intermediate leg, and a chemical method to obtain refined coal by further removing residual ash from the obtained intermediate leg. It consists of a combination of methods.

物理的方法は、つぎの4つの工程を含んでいる。この物
理的方法については、上記特開昭55−141504号
および特開昭55−141505号公報に詳しく記載さ
れているので、以下簡単な説明にとどめる。
The physical method includes the following four steps. This physical method is described in detail in the above-mentioned JP-A-55-141504 and JP-A-55-141505, so a brief explanation will be given below.

まず灰分を含む天然の石炭すなわち原炭を平均35メツ
シユ(粒径500μm)以下、好ましくは平均100メ
ツシユ(粒径149μm)以下の微粉炭に粉砕する。つ
いでこの微粉炭を水に懸濁して微粉炭スラリーをつくる
First, natural coal containing ash, that is, raw coal, is pulverized into pulverized coal having an average size of 35 meshes (particle size: 500 μm) or less, preferably an average size of 100 meshes (particle size: 149 μm) or less. This pulverized coal is then suspended in water to create a pulverized coal slurry.

つぎに微粉炭スラリーに油および造粒核とな9− 8− る親油性粒状固形物よりなるシードを混合攪拌して造粒
する。油としては灯油、経由、重油、蒸留残査油および
植物油などが用いられる。油の使用量は、微粉炭に対し
て10〜30重量%である。シードとしては、粒径1+
nm〜数mmの硬質ポリ塩化ビニルなどの合成樹脂製粒
状物または粗粒炭を使用する。シードの混合割合は好ま
しくは微粉炭に対して1:1である。
Next, the pulverized coal slurry is mixed and stirred with oil and seeds made of lipophilic granular solids serving as granulation nuclei to be granulated. As the oil, kerosene, heavy oil, distillation residue oil, vegetable oil, etc. are used. The amount of oil used is 10 to 30% by weight based on the pulverized coal. As seeds, particle size 1+
Particles made of synthetic resin such as hard polyvinyl chloride or coarse charcoal with a size of nm to several mm are used. The mixing ratio of seeds to pulverized coal is preferably 1:1.

つぎにスラリー中の油層に凝集した微粉炭の造粒物をス
ラリーから分離して洗浄乾燥する。
Next, the pulverized coal granules that have aggregated in the oil layer in the slurry are separated from the slurry, washed and dried.

そして造粒物を分解して、石炭物とシードとに分離する
ことにより、中間脚を得る。
Then, the intermediate legs are obtained by decomposing the granules and separating them into coal and seeds.

以上の物理的方法により、原炭は、これに含まれていた
灰分の70〜80%が脱灰される。
By the above physical method, 70 to 80% of the ash contained in the raw coal is deashed.

こうして精製された中間脚の灰分含有率は原炭の灰分含
有率によって左右されるが、数%程度10− である。
The ash content of the intermediate leg refined in this way depends on the ash content of the raw coal, but is approximately several percent 10-.

化学的方法は、つぎの2つの工程を含んでいる。The chemical method includes the following two steps.

まず中間用を水溶1(1処理液に浸漬して、中間炭中の
残留灰分を溶解させる。処理液は、1〜12重量%好ま
しくは3〜12重量%の塩酸または1〜10重量%好ま
しくは2〜10.0重量%のクエン酸と、1〜10重徂
%組部しくは2〜10重量%の酸性弗化アンモン(Nl
−1411F2 )とを含んでいる。上記各薬剤の濃度
範囲は、薬剤の効果が充分発揮できなくなる値を下限ど
し、薬剤の効果が飽和値に達し、それ以上の薬剤の増加
が薬剤費をいたずらに高くするだ4−1の値を上限とし
ている。処理液中に界面活性剤とくに脱脂剤を添加する
ことにより、石炭の水ぬれ性が良好となって、灰分の溶
解が促進される。
First, the intermediate coal is immersed in an aqueous solution 1 (1 treatment solution) to dissolve the residual ash in the intermediate coal. is 2 to 10.0% by weight of citric acid and 1 to 10% by weight or 2 to 10% by weight of acidic ammonium fluoride (Nl).
-1411F2). The lower limit of the concentration range of each of the above drugs is the value at which the drug's effect is no longer fully exhibited, and the effect of the drug reaches a saturation value, and any further increase in the drug will unnecessarily increase the drug cost.4-1. The value is the upper limit. By adding a surfactant, particularly a degreasing agent, to the treatment liquid, the water wettability of the coal becomes good and the dissolution of ash is promoted.

つぎに処理液から石炭分を分離し、洗浄乾燥することに
より、精成を得る。処理液からの石炭分の分離は、たと
えば濾過による。
Next, coal is separated from the treated liquid, washed and dried to obtain a purified product. Separation of coal from the treatment liquid is performed, for example, by filtration.

この化学的方法による脱灰率は70〜80%程度である
The demineralization rate by this chemical method is about 70 to 80%.

上述の物理的方法についで化学的方法によって脱灰処理
を実施することにJ:す、両方法単独の脱灰率がともに
70〜80%であるとすると、両方法を相合せることに
より単純計算で91〜96%の脱灰率を達成することが
できる。この脱法、率を以てすれば、原炭の灰分含有率
にJ:って左右されるが、灰分含有率が1%以下の精成
を得ることが可能になる。
If deashing treatment is carried out by a chemical method following the above-mentioned physical method, assuming that the deashing rate of both methods alone is 70 to 80%, simple calculations can be made by combining both methods. A demineralization rate of 91 to 96% can be achieved. By using this method and rate, it becomes possible to obtain purified coal with an ash content of 1% or less, although it depends on the ash content of the raw coal.

ここで注目すべきことは脱灰機構の異なる物理的および
化学的方法の相合せに対して、合方−11− 法をそれぞれ単独で繰り返し実施しても上述のような高
い脱灰率が得られないということである。これは後述す
る実施例からもあきらかなように、2回目以降の脱灰率
が低下することによる。そのメカニズムは定かではない
が、物理的方法では微粉炭に粉砕されIC石炭粒子中に
散在する微細な灰分を除去することができないこと、化
学的方法では、灰分組成のうちには上)本の薬剤に溶解
し難い組成の灰分が存在するために、これを除去するこ
とができないことなどが考えられる。
What should be noted here is that, in contrast to the combination of physical and chemical methods with different demineralization mechanisms, high demineralization rates as described above can be obtained even when each method is repeatedly performed independently. This means that it cannot be done. This is because, as is clear from the examples described later, the demineralization rate decreases from the second time onwards. The mechanism is not clear, but physical methods cannot remove the fine ash that is crushed into pulverized coal and scattered in the IC coal particles, and chemical methods can reduce the ash composition (above). It is conceivable that ash cannot be removed because it contains ash that is difficult to dissolve in the chemical.

さらに注目すべきことは、物理的および化学的方法の処
理過程を逆にすると、上述のような高い脱灰率が15J
られないということである。すなわち前段を化学的方法
によって処理すると、灰分の大部分を除去することがで
きるが、石炭13− 12− 粒子中に散在する微細な灰分粒子の一部が残留するため
に、これを後段処理する物理的方法によって除去するこ
とはできないのである。また物理的方法によって後段処
理することにより、薬剤に溶解しないで残留した組成の
灰分が石炭分に巻き込まれて造粒することがある。した
がって前段を物理的方法によって処理することにより、
灰分の大部分を除去するとともに、薬剤に溶解し難い組
成の灰分の割合を小さくし、これを化学的方法によって
後段処理して効率よく除去することにより、上述した高
い脱灰率の達成が可能となる。
What is even more remarkable is that if the process of physical and chemical methods is reversed, the high demineralization rate as mentioned above can be achieved by 15J
This means that it cannot be done. In other words, most of the ash can be removed if the first stage is treated chemically, but some of the fine ash particles scattered in the coal particles remain, so these are treated in the second stage. It cannot be removed by physical methods. Further, by post-processing using a physical method, ash of a composition that remains undissolved in the chemical may be entangled with the coal content and granulated. Therefore, by processing the first stage by physical methods,
The high deashing rate mentioned above can be achieved by removing most of the ash, reducing the proportion of ash that is difficult to dissolve in chemicals, and efficiently removing this through post-processing using chemical methods. becomes.

つぎに、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例1 まず物理的方法による前段処理として、灰分含有量7.
90重量%のブレアゾール炭(オー14− ストラリア酸)を原炭どして、これを粉砕して、200
メツシコの微粉炭とし、これを水に懸濁して微粉炭スラ
リーをつ(る。つぎに微粉炭スラリーにシードを混合し
た。シードは直径約3mm、高さ約1.5mmの硬質ポ
リ塩化ビニル製短円柱状のもので、比■が石炭の比重と
近似した1、4である。スラリー中の微粉炭およびシー
ド配合量はどもに5重量%である。ついでスラリーに微
粉炭に対して20.8重量%の灯油を添加した。ついで
このスラリーを直径85φの容器中で3枚の金網製羽根
を用いて1900ppmの回転数で7分間攪拌して造粒
した。ついでスラリー中まり造粒物を分離して水で洗浄
し、かつ洗浄後の造粒物を乾燥した。そして造粒物に振
動を与えて分解し、石炭分とシードとに分離することに
より、中間脚を青だ。この中間脚の灰分含有量を測定す
ると、1.74重量%であった。これは原炭からの脱灰
率78.1%である。
Example 1 First, as a preliminary treatment using a physical method, the ash content was 7.
90% by weight Breasol charcoal (au-14-strariaic acid) is made into raw coal, which is crushed to give 200% by weight.
Metsushiko's pulverized coal was suspended in water to create a pulverized coal slurry.Next, seeds were mixed into the pulverized coal slurry.The seeds were made of hard polyvinyl chloride and had a diameter of approximately 3 mm and a height of approximately 1.5 mm. It has a short cylindrical shape, and the ratio (2) is 1.4, which is similar to the specific gravity of coal.The amount of pulverized coal and seeds in the slurry is 5% by weight.Then, the slurry contains 20% by weight of pulverized coal. 8% by weight of kerosene was added.Then, this slurry was granulated by stirring in a container with a diameter of 85φ at a rotational speed of 1900 ppm for 7 minutes using three wire mesh blades.Then, the slurry was granulated. The granules were separated and washed with water, and the washed granules were dried.The granules were then decomposed by vibration and separated into coal and seeds, resulting in a blue intermediate leg. The ash content of the legs was measured to be 1.74% by weight, which is a deashing rate of 78.1% from the raw coal.

つぎに、化学的方法による後段処理どして、20gの中
間脚を、5重量%の塩酸および5gの酸性弗化アンモン
を含む処理液200ccに浸漬し、これを80℃に保っ
て3時間放置して中間炭中の残留灰分を溶解させた。そ
の後に処理液を濾過して石炭分を分離し、これを洗浄乾
燥することにより、精成を1qた。精成の灰分含有量を
測定すると、0.69重醋%であった。これは、中間脚
からの脱灰率60.1%、原炭からの脱灰率91.3%
である。また上記処理液に石炭重量比1%の脱脂剤を添
加したところ、灰分含有10.51@邑%の精成が得ら
れた。
Next, as a post-processing process using a chemical method, 20g of the intermediate leg was immersed in 200cc of a treatment solution containing 5% by weight of hydrochloric acid and 5g of acidic ammonium fluoride, and this was kept at 80°C and left for 3 hours. The residual ash in the intermediate coal was dissolved. Thereafter, the treated liquid was filtered to separate the coal content, which was washed and dried to obtain 1 q of purified coal. The ash content of the purified product was determined to be 0.69% by weight. This is a demineralization rate of 60.1% from the middle leg and 91.3% from raw coal.
It is. Further, when a degreasing agent was added to the above treatment liquid in an amount of 1% by weight of coal, a refined product with an ash content of 10.51% was obtained.

これは、中間脚からの脱灰率70.5%、原炭15− からの脱灰率93.5%である。This means that the demineralization rate from the middle leg is 70.5%, and the raw coal is 15- The demineralization rate is 93.5%.

なお比較のために前段および後段ともに化学的方法によ
る脱灰処理を実施した。処理条件は上述化学的方法の場
合と同一であって、脱脂剤は添加していない場合である
。これによれば、原炭からの脱灰率が69.2%で、灰
分含有量2.43重量%の中間脚と、中間脚からの脱灰
率が32.5%、原炭からの脱灰率が79.2%で、灰
分含有量1.14重邑%の精成が得られた。以上の結果
を第1表にまとめた。
For comparison, both the first and second stages were decalcified using a chemical method. The processing conditions are the same as in the chemical method described above, with no degreasing agent added. According to this, the deashing rate from raw coal is 69.2%, and the deashing rate from the intermediate leg is 32.5%, and the deashing rate from the intermediate leg is 32.5%, and the ash content is 2.43% by weight. A purified product with an ash percentage of 79.2% and an ash content of 1.14% was obtained. The above results are summarized in Table 1.

(以下余白) 17− 16− 表1 ″′=ア□ ロリ 物理 物理 化学 注1) ()内数字:中間炭からの脱灰率2) 化学的
方法* : 112脂剤添加18− 実施例2 灰分含有量12.1重量%の大同炭(中国産)を原炭ど
して使用し、実施例1とほぼ同様の処理条件ににり脱灰
処理した。ただし実施例2の処理条件において、灯油の
添加量を微粉炭に対して25.0重■%とじたこと、お
よびスラリーの攪拌時間を20分間としたことが実施例
1の処理条件と異なる。物理的方法により前段処理して
得られた中間用の灰分含有量は3.18重量%であった
。これは原炭からの脱灰率が73.7%である。ついで
この中間用を化学的方法により後段処理して1りられた
精成の灰分含有量は0.73重量%であった。これは、
中間用からの脱灰率が77.0%で、原炭からの脱灰率
が94.0%である。
(Leaving space below) 17- 16- Table 1 ″' = A□ Lori Physical Physical Chemistry Note 1) (Number in parentheses: Deashing rate from intermediate coal 2) Chemical method*: 112 Addition of fat agent 18- Example 2 Datong coal (produced in China) with an ash content of 12.1% by weight was used as raw coal and deashed under almost the same treatment conditions as in Example 1. However, under the treatment conditions in Example 2, The treatment conditions differ from those in Example 1 in that the amount of kerosene added was 25.0% by weight based on the pulverized coal, and the slurry stirring time was 20 minutes. The ash content of the intermediate coal obtained was 3.18% by weight, which means that the deashing rate from the raw coal was 73.7%.The intermediate coal was then processed in a later stage using a chemical method. The ash content of the purified product was 0.73% by weight.
The deashing rate from intermediate coal is 77.0%, and the deashing rate from raw coal is 94.0%.

また実施例1と同様に比較のために前段およ19− び後段ともに化学的方法にJζる脱灰処理を実施した。Also, as in Example 1, for comparison, the previous stage and 19- Demineralization treatment using chemical methods was carried out in both the pre- and post-processing stages.

これによれば、原炭からの脱灰率が80゜2%で、灰分
含有filt2.40重量%の中間用と、中間用からの
脱灰率が62.1%、原炭からの脱灰率が92.5%で
、灰分含有量0.91重量%の精成とが得られた。以上
の結果を第2表にまとめた。
According to this, the deashing rate from raw coal is 80°2%, and the deashing rate from the intermediate type is 62.1%, and the deashing rate from the intermediate type is 62.1%, and the deashing rate from raw coal is 62.1%. A purity of 92.5% and an ash content of 0.91% by weight were obtained. The above results are summarized in Table 2.

(以下余白) 20− 21−(Margin below) 20- 21-

Claims (1)

【特許請求の範囲】[Claims] 灰分を含む原炭から中間脚を得る物理的方法と、得られ
た中間脚から精炭を得る化学的方法との組合せからなり
、物理的方法が、原炭を粉砕して微粉炭とし、微粉炭を
水に懸濁して微粉炭スラリーをつくる工程と、微粉炭ス
ラリーに油および造粒核となる親油性粒状固形物よりな
るシードを混合し、スラリーを攪拌して造粒する工程と
、造粒物をスラリー中より分離し、これを洗浄乾燥する
工程と、造粒物を石炭分とシードとに分離することによ
り、中間脚を得る工程とからなり、化学的方法が、中間
脚を酸および酸性弗化アンモンを含む処理液に浸漬して
、中間炭中の残留灰分を溶解させる工程と、処理液から
石炭分を分離して洗浄乾燥することにより、精炭をjq
る工程とからなる脱灰炭の製造方法。
It consists of a combination of a physical method for obtaining intermediate legs from raw coal containing ash and a chemical method for obtaining clean coal from the obtained intermediate legs. A process of suspending charcoal in water to create a pulverized coal slurry, a process of mixing the pulverized coal slurry with oil and seeds consisting of lipophilic granular solids that serve as granulation nuclei, and stirring the slurry to granulate it; It consists of a process of separating the granules from the slurry, washing and drying them, and a process of obtaining intermediate legs by separating the granules into coal and seeds. The clean coal is immersed in a treatment liquid containing acidic ammonium fluoride to dissolve residual ash in the intermediate coal, and the coal is separated from the treatment liquid and washed and dried.
A method for producing deashed coal, which comprises the steps of:
JP13501983A 1983-07-22 1983-07-22 Method for producing deashed coal Pending JPS6026093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13501983A JPS6026093A (en) 1983-07-22 1983-07-22 Method for producing deashed coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13501983A JPS6026093A (en) 1983-07-22 1983-07-22 Method for producing deashed coal

Publications (1)

Publication Number Publication Date
JPS6026093A true JPS6026093A (en) 1985-02-08

Family

ID=15142027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13501983A Pending JPS6026093A (en) 1983-07-22 1983-07-22 Method for producing deashed coal

Country Status (1)

Country Link
JP (1) JPS6026093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2573501A (en) * 2018-03-29 2019-11-13 Tectonic Facades Ltd Building member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765777A (en) * 1980-10-08 1982-04-21 Hitachi Zosen Corp Production of oil-containing deashed coal
JPS57151698A (en) * 1981-03-13 1982-09-18 Hitachi Zosen Corp Chemical deashing of coal
JPS57162791A (en) * 1981-03-30 1982-10-06 Hitachi Zosen Corp Chemical deashing method of coal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765777A (en) * 1980-10-08 1982-04-21 Hitachi Zosen Corp Production of oil-containing deashed coal
JPS57151698A (en) * 1981-03-13 1982-09-18 Hitachi Zosen Corp Chemical deashing of coal
JPS57162791A (en) * 1981-03-30 1982-10-06 Hitachi Zosen Corp Chemical deashing method of coal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2573501A (en) * 2018-03-29 2019-11-13 Tectonic Facades Ltd Building member
GB2573501B (en) * 2018-03-29 2020-09-16 Tectonic Facades Ltd Building member

Similar Documents

Publication Publication Date Title
DE60219747T2 (en) Method for eliminating traces of mercury in gases
CN110314923A (en) A kind of method of reinforced aluminum ash desalination denitrogenation
US4424062A (en) Process and apparatus for chemically removing ash from coal
CN107557570A (en) Method for comprehensively recovering valuable metals from cyanidation tailings
EP2383227A1 (en) Preparation and repeated regeneration of material containing amorphous iron oxyhydroxide, desulfurization agents containing the material and preparation and repeated regeneration thereof
CN116966470B (en) Beryllium hyperstable mineralization reagent and method for hyperstable mineralization of dangerous beryllium elements in lithium slag
CN116196884A (en) Manganese activated red mud catalytic oxidation adsorption material and preparation method and application thereof
JPS6026093A (en) Method for producing deashed coal
CA1165151A (en) Homogeneous bonding of dispersed phase alloy
CN106893232B (en) A kind of PVC pipe manufacturing method comprising ornaments glass production waste residue isolate
CN111235402A (en) Method for recovering gold from gold smelting slag
JP5250814B2 (en) Production method of organic fertilizer from fishery processing residue
CN105621658B (en) A kind of Application way of sulfur transfer additive and FCC catalyst production fine powder and waste water
CN105585170B (en) A kind of circulation utilization method of sulfur transfer additive and FCC catalyst mixture manufacturing waste water
CN114317060A (en) Chemical purification method for preparing ultra-high-purity coal by selecting clean coal
Dolmatov et al. Deep purification of detonation nanodiamond material
US4137050A (en) Coal desulfurization
CN118080887B (en) Treatment process of high-temperature alloy waste powder for 3D printing
CN113698123B (en) Method for producing concrete auxiliary agent by recycling electrolytic manganese slag
CN105621659B (en) A kind of circulation utilization method of sulfur transfer additive production fine powder and waste water
CN1020179C (en) Method for separating copper-tin mixed scraps
US4162898A (en) Process for removing sulfur from coal
CN115259338A (en) Chloride modified lead slag and SiO (silicon dioxide) synergistic effect2Method for removing arsenic
Drzymala et al. Effect of oxidation and thioglycolic acid on separation of coal and pyrite by selective oil agglomeration
CN111004687A (en) Vegetable and fruit cleaning agent based on shells and preparation and use methods thereof