[go: up one dir, main page]

JPS60258987A - Semiconductor laser device and manufacture thereof - Google Patents

Semiconductor laser device and manufacture thereof

Info

Publication number
JPS60258987A
JPS60258987A JP11447284A JP11447284A JPS60258987A JP S60258987 A JPS60258987 A JP S60258987A JP 11447284 A JP11447284 A JP 11447284A JP 11447284 A JP11447284 A JP 11447284A JP S60258987 A JPS60258987 A JP S60258987A
Authority
JP
Japan
Prior art keywords
layer
thin film
type
multilayer thin
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11447284A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Takashi Sugino
隆 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11447284A priority Critical patent/JPS60258987A/en
Publication of JPS60258987A publication Critical patent/JPS60258987A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/205Antiguided structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2206Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials
    • H01S5/221Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on III-V materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To possess the stripe structure with a built-in current stricture region, and to facilitate the manufacture by a method wherein a multilayer thin film including a double hereto structure is provided on a substrate, and a stripe structure for current stricture of mesa form surrounded by a material having a smaller forbidden band width than that of a material constructing active layers on both sides is formed on the multilayer thin film. CONSTITUTION:An n<+> GaAs buffer layer 19, an n type Ga1-xAlxAs clad layer 11, an undoped Ga1-yAlyAs active layer 12, a p type Ga1-zAlzAs clad layer 13, and a p type GaAs layer 16 are epitaxially grown on the substrate 10 by organic metal vapor phase epitaxial growth (MOCVD). Thereafter, etching is carried out with a photo resist left on the p type GaAs layer 16. After the surface is cleaned by removing the photo resist, crystals are grown into a high-resistant GaAs layer 15 or a Ga1-nuAlnuAs layer 15 with a smaller forbidden band width than that of the material constructing the active layer under the above-mentioned conditions, so that the ridge part may be filled sufficiently.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種電子機器、光学機器の光源として、近年
急速に用途が拡大し、需要の高まっている半導体レーザ
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser device, which has been rapidly used as a light source for various electronic devices and optical devices in recent years, and is in increasing demand.

(従来例の構成とその問題点) 電子機器、光学機器のコヒーレント光源として半導体レ
ーザに要求される重要な性能の1つに単一スポットでの
発振、すなわち単−横モード発振があげられる。これを
実現するためには、レーザ光が伝播する活性領域付近に
レーザ素子中を流れる電流を集中するように、その拡が
りを抑制し、かつ光を閉じ込める必要がある。このよう
な半導体レーデは、通常、ストライプ型半導体レーザと
呼ばれている。
(Constitution of Conventional Example and its Problems) One of the important performances required of a semiconductor laser as a coherent light source for electronic equipment and optical equipment is oscillation in a single spot, that is, single-transverse mode oscillation. In order to achieve this, it is necessary to suppress the spread and confine the light so that the current flowing through the laser element is concentrated near the active region where the laser light propagates. Such a semiconductor laser is usually called a stripe type semiconductor laser.

比較的簡単なストライプ化の方法に、電九狭さくだけを
用いるものがある。具体的には、ゾレーナ型半導体レー
デに、プロトン照射を施したもの、Zn拡散を施したも
の、酸化膜などの絶縁膜を形成したもの、結晶成長等に
より内部に電流狭さく領域をつく9つけたものが挙げら
れる。しかし々からこれらの方法にはそれぞれ重大な欠
点がある。
A relatively simple method of striping is one that uses only electric nine-stripes. Specifically, solena type semiconductor radars have been subjected to proton irradiation, Zn diffusion, insulating films such as oxide films, and crystal growth to create internal current constriction regions. Things can be mentioned. However, each of these methods has significant drawbacks.

プロトン照射を施すと、プロトン照射時に半導体レーザ
の各層の一部の結晶が損傷を受け、半導体レーザの特性
を損う事がある。Zn拡散型の場合、700〜850℃
というような高温でZn拡散を行なう事が多く、zn等
のドー・やントが結晶中を移動したりして、p/n接合
を設計通り形成するのが難しいという問題がある。酸化
膜などの絶縁膜による方法は、前記二つの方法と比べ作
製された半導体レーザ中での電流狭さくの効果が弱い。
When proton irradiation is applied, some crystals in each layer of the semiconductor laser are damaged during the proton irradiation, which may impair the characteristics of the semiconductor laser. For Zn diffusion type, 700-850℃
Zn diffusion is often carried out at such high temperatures that the dopant such as Zn moves through the crystal, making it difficult to form a p/n junction as designed. The method using an insulating film such as an oxide film has a weaker effect of narrowing the current in the fabricated semiconductor laser than the above two methods.

また、内部に結晶成長等により電流狭さく領域をつくり
つける方法は通常難しく、プロセスの途中で活性層など
の薄膜結晶を損傷したり、汚染したりする事が多く、工
業化には不向きである事が多い。
Additionally, it is usually difficult to create a current confinement region internally by crystal growth, etc., and it often damages or contaminates thin film crystals such as active layers during the process, making it unsuitable for industrialization. many.

(発明の目的) 本発明は、上記欠点に鑑み、電流狭さく領域をi 作り
つけたストライプ構造を有し、しかも製造しやすい半導
体レーザ装置およびその製造方法を提供するものである
(Object of the Invention) In view of the above-mentioned drawbacks, the present invention provides a semiconductor laser device having a striped structure in which a current constriction region is formed and is easy to manufacture, and a method for manufacturing the same.

(発明の構成) この目的を達成するために本発明の半導体レーザ装置は
、半導体基板上に二重へテロ構造を含む多層薄膜が設け
られ、前記多層薄膜上に両側面が活性層を構成する材料
の禁制帯幅以下の禁制帯幅を有する材料でとり四重れた
メサ形状の電流狭さく用ストライプ構造が形成される構
成となっている。また、上記構成を容易ならしめ、本発
明の半導体レーザ装置の工業化を可能とするために、製
造方法として、半導体基板上に、有機金属気相エピタキ
シャル成長法または分子線エピタキシャル成長法によシ
ニ重へテロ構造を含む多層薄膜を形成する工程と、前記
多層薄膜にストライプ状メサ部を形成する工程と、前記
メサ部の側面に活性層より禁制帯幅が小さい材料からな
る層を有機金属気相エピタキシャル成長法または分子線
エピタキシャル成長法により形成する工程とをそなえた
ことを特徴としている。これらの構成と方法により、内
部に比較的強い電流狭さく用ストライプと効果的な光の
閉じ込め領域を有し、しかも、単−横モード発振、低し
きい値動作の半導体レーザ装置が実現できる。
(Structure of the Invention) In order to achieve this object, a semiconductor laser device of the present invention includes a multilayer thin film including a double heterostructure provided on a semiconductor substrate, and active layers on both sides of the multilayer thin film. The structure is such that a four-fold mesa-shaped current constricting stripe structure is formed using a material having a forbidden band width that is less than the forbidden band width of the material. In addition, in order to simplify the above configuration and enable the industrialization of the semiconductor laser device of the present invention, as a manufacturing method, a thin double heterostructure is formed on a semiconductor substrate by a metal organic vapor phase epitaxial growth method or a molecular beam epitaxial growth method. a step of forming a multilayer thin film including a structure, a step of forming a striped mesa portion in the multilayer thin film, and a layer made of a material having a narrower band gap than the active layer on the side surface of the mesa portion by metal organic vapor phase epitaxial growth. Alternatively, it is characterized by having a step of forming by a molecular beam epitaxial growth method. With these configurations and methods, it is possible to realize a semiconductor laser device which has a relatively strong current confining stripe and an effective light confinement region inside, and which oscillates in a single transverse mode and operates at a low threshold.

(実施例の説明) 以下、本発明の一実施例について、図面を参照しながら
説明する。第1図は本発明の実施例における半導体レー
ザ装置の断面図を示す。
(Description of Embodiment) Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional view of a semiconductor laser device in an embodiment of the present invention.

ここでは半導体基板として、n型GaAs基板(キャリ
ア濃度〜1018cm−3程度)を用いる例について述
べる。基板10上に有機金属気相エピタキシャル成長法
(以下MOCVD法とする)により、第2図に示すよう
に、n 型GaAsバッファ層19(キャリア濃度〜1
0t−In 程度)を1μm、n型Ga 11M込sク
ラッド層11を1.5μm1アンド−f Ga17At
yA 8活性層12(0≦y<X;y<z)をo、iμ
mz p型Ga 11uzAsクラッP層13%−1,
58m1P型GaAs層16を0.5μm1エピタキシ
ヤル成長させた。この時のMOCVD法による結晶成長
条件の一例を示すと、成長速度2μm/時、成長温度7
70℃、全Gas流量5t/分、■族元素に対するV族
元素のモル比は40である。その後、第2図に示すよう
に、p(5) 型GaAs層16上にピッチ300μrr+1幅5μm
でフォトレジストを残し、第3図のようにエツチングす
る。第3図で、p型Ga1−、LAtzAsクラッド層
13の膜厚は0.3μmとなるようにする。これは、膜
厚制御性の良いMOCVD法による結晶成長では再現性
よく実現できる。なお、Ga、−yAtアAs活性層1
2を露出しない理由は、エツチングや、結晶成長の時に
損傷を避けるためである。フォトレジストを除去し、表
面洗浄した後、再びMOCVD法により、活性層を構成
する材料の禁制帯幅以下である高抵抗GaAs層15又
は、Ga 1−vAtvAs層15(o≦y<X<υ;
2〈υ)を前述の成長条件で、第3図のりツノ部分が十
分に埋まるように結晶成長を行なう。その後、フォトレ
ジスト21を塗布し、リッジ直上七個の部分でのレジス
ト膜の厚みの差を利用して、露光条件を最適化してリッ
ジ直上のみ、レジスト膜を除去し、その後エツチングに
よシ、リッジ部分を取シ除き、第1図のような素子を作
製した。そして、n型GaAs基板表面18及び結晶成
長面17にそれぞれ、オーミック電極を取υ付け、電流
を流(6) した。この時、ストライプ幅Wで電流がp型Ga1−2
A!−2As領域(]4)にのみ狭さくされる。これは
、電流狭さく領域14の抵抗率が高抵抗GaAs層15
又は、Ga 1−vA7vAs層15に比べ、約3桁低
いことによる。また、電流狭さく領域14には、高抵抗
GaAs層15により光が吸収されるため光の閉じ込め
効果もあり、30mAの低しきい値で、単−横モード発
振する半導体レーザ装置が得られた。
Here, an example will be described in which an n-type GaAs substrate (carrier concentration ~1018 cm-3) is used as the semiconductor substrate. As shown in FIG. 2, an n-type GaAs buffer layer 19 (carrier concentration ~1
(about 0t-In) is 1 μm, n-type Ga 11M included s cladding layer 11 is 1.5 μm 1&-f Ga17At
yA 8 active layer 12 (0≦y<X;y<z) as o, iμ
mz p-type Ga 11uzAs crack P layer 13%-1,
A 58m1 P-type GaAs layer 16 was epitaxially grown to a thickness of 0.5 μm. An example of crystal growth conditions using the MOCVD method at this time is a growth rate of 2 μm/hour, a growth temperature of 7.
The temperature was 70° C., the total gas flow rate was 5 t/min, and the molar ratio of group V elements to group II elements was 40. Thereafter, as shown in FIG. 2, a layer of 300 μrr pitch + 5 μm width
The photoresist is left behind and etched as shown in Figure 3. In FIG. 3, the thickness of the p-type Ga1-, LAtzAs cladding layer 13 is set to 0.3 μm. This can be achieved with good reproducibility by crystal growth using the MOCVD method, which has good film thickness controllability. Note that Ga, -yAt and As active layers 1
The reason why 2 is not exposed is to avoid damage during etching and crystal growth. After removing the photoresist and cleaning the surface, a high resistance GaAs layer 15 or a Ga 1-vAtvAs layer 15 (o≦y<X<υ ;
2〈υ) under the above-mentioned growth conditions, the crystal is grown so that the horn portion shown in Fig. 3 is sufficiently filled. After that, a photoresist 21 is applied, and using the difference in the thickness of the resist film in the seven areas directly above the ridge, the exposure conditions are optimized to remove the resist film only directly above the ridge, and then etching is performed. The ridge portion was removed to produce a device as shown in FIG. Then, ohmic electrodes were attached to the n-type GaAs substrate surface 18 and the crystal growth surface 17, respectively, and a current was applied (6). At this time, the current is p-type Ga1-2 with stripe width W
A! It is narrowed only to the −2As region (]4). This is because the resistivity of the current confinement region 14 is higher than that of the high resistance GaAs layer 15.
Alternatively, it is about three orders of magnitude lower than that of the Ga 1-vA7vAs layer 15. Furthermore, since light is absorbed by the high-resistance GaAs layer 15 in the current constriction region 14, there is also a light confinement effect, and a semiconductor laser device that oscillates in a single transverse mode with a low threshold of 30 mA was obtained.

また、本実施例では、GaAs系、GaAtAs系半導
体レーザについて述べたが、■nP系や他の多元混晶系
を含む化合物半導体を材料とする半導体レーザについて
も同様に本発明を適用することが可能である。さらに導
電性基板としてp型基板を用いても、半絶縁性基板を用
いてもよく、結晶成長を行なうのに、他の物質供給律速
の結晶成長方法、たとえば分子線エピタキシャル成長法
(通常MBE法と呼ばれる。)を用いてもよい。
Further, in this embodiment, GaAs-based and GaAtAs-based semiconductor lasers have been described, but the present invention can be similarly applied to semiconductor lasers made of compound semiconductors including nP-based and other multi-component mixed crystal systems. It is possible. Furthermore, a p-type substrate or a semi-insulating substrate may be used as the conductive substrate, and other material supply rate-limited crystal growth methods such as molecular beam epitaxial growth (usually MBE method) may be used for crystal growth. ) may also be used.

j (発明の効果) 本発明の半導体レーザ装置およびその製造方法は1.低
しきい値で単−横モード発振する半導体レーザ装置を工
業化しゃすい構造で提供するものであり、その実用的効
果は著しい。
j (Effects of the Invention) The semiconductor laser device and the manufacturing method thereof of the present invention are as follows:1. The present invention provides a semiconductor laser device that oscillates in a single transverse mode at a low threshold value and has a structure that is easy to industrialize, and its practical effects are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本実施例で述べた半導体レーザ装置を示す図
、第2図〜第4図は、その製造過程を示す図である。 10− n型GaAs基板、] I −n型Ga 1−
XAl−xAsクラッド層、12・・・Ga1−μyA
s活性層、13・・・p型Ga 1−2AI−2Asク
ラッド層、14・・・電流狭さく領域、15 ・・・高
抵抗GaAs層又はGa 1 vA4ks層、16・p
型GaAs層、17・・・結晶成長表面、18・・・基
板表面、19・・・n W GaAs バッファ層、2
0.21・・・フォトレジスト、w・・・電流狭さくス
トライプ幅、t・・・フォトレジストマスクの幅。 第1図 第2図  − 第3 図
FIG. 1 is a diagram showing the semiconductor laser device described in this embodiment, and FIGS. 2 to 4 are diagrams showing the manufacturing process thereof. 10- n-type GaAs substrate,] I - n-type Ga 1-
XAl-xAs cladding layer, 12...Ga1-μyA
s active layer, 13...p-type Ga1-2AI-2As cladding layer, 14...current confinement region, 15...high resistance GaAs layer or Ga1vA4ks layer, 16.p
Type GaAs layer, 17... Crystal growth surface, 18... Substrate surface, 19... n W GaAs buffer layer, 2
0.21... Photoresist, w... Current narrowing stripe width, t... Width of photoresist mask. Figure 1 Figure 2 - Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板状に二重へテロ構造を含む多層薄膜が
設けられ、前記多層薄膜上に両側面が活性層を構成する
材料の禁制帯幅以下の禁制帯幅を有する材料でとシ囲ま
れたメサ形状の電流狭さく用ストライプ構造が形成され
ていることを特徴とする半導体レーザ装置。
(1) A multilayer thin film including a double heterostructure is provided on a semiconductor substrate, and both sides of the multilayer thin film are surrounded by a material having a forbidden band width equal to or less than the forbidden band width of the material constituting the active layer. A semiconductor laser device characterized in that a mesa-shaped current confinement stripe structure is formed.
(2)半導体基板上に、有機金属気相エピタキシャル成
長法または分子1良エピタキシヤル成長法によシニ重へ
テロ構造を含む多層薄膜を形成する工程と、前記多層薄
膜にストライプ状メサ部を形成する工程と、前記メサ部
の側面に活性層よシ禁制帯幅が小さい材料からなる層を
有機金属気相エピタキシャル成長法まtは分子線エピタ
キシャル成長法によシ形成する工程とを有することを特
徴とする半導体レーザ装置の製造方法。
(2) Forming a multilayer thin film including a double heterostructure on a semiconductor substrate by a metal organic vapor phase epitaxial growth method or a molecular one-layer epitaxial growth method, and forming a striped mesa portion in the multilayer thin film. and a step of forming a layer made of a material whose forbidden band width is smaller than that of the active layer on the side surface of the mesa portion by metal organic vapor phase epitaxial growth method or molecular beam epitaxial growth method. A method for manufacturing a semiconductor laser device.
JP11447284A 1984-06-06 1984-06-06 Semiconductor laser device and manufacture thereof Pending JPS60258987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11447284A JPS60258987A (en) 1984-06-06 1984-06-06 Semiconductor laser device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11447284A JPS60258987A (en) 1984-06-06 1984-06-06 Semiconductor laser device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60258987A true JPS60258987A (en) 1985-12-20

Family

ID=14638585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11447284A Pending JPS60258987A (en) 1984-06-06 1984-06-06 Semiconductor laser device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60258987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258092A (en) * 1987-04-02 1988-10-25 ヒュンダイ エレクトロニクス インダストリーズ カムパニー リミテッド Reverse channel substrate planar semiconductor laser
US4910743A (en) * 1986-02-28 1990-03-20 Kabushiki Kaisha Toshiba Semiconductor laser with mesa stripe waveguide structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152180A (en) * 1981-03-16 1982-09-20 Nec Corp Manufacture of semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152180A (en) * 1981-03-16 1982-09-20 Nec Corp Manufacture of semiconductor laser device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4910743A (en) * 1986-02-28 1990-03-20 Kabushiki Kaisha Toshiba Semiconductor laser with mesa stripe waveguide structure
JPS63258092A (en) * 1987-04-02 1988-10-25 ヒュンダイ エレクトロニクス インダストリーズ カムパニー リミテッド Reverse channel substrate planar semiconductor laser

Similar Documents

Publication Publication Date Title
JPH0381317B2 (en)
CN111181005A (en) Buried structure high-linearity DFB laser chip for optical communication and preparation method thereof
US5227015A (en) Method of fabricating semiconductor laser
JP3053357B2 (en) Manufacturing method of planar buried laser diode
US5793788A (en) Semiconductor light emitting element with p-type non-alloy electrode including a platinum layer and method for fabricating the same
US5949808A (en) Semiconductor laser and method for producing the same
JPS6174382A (en) Semiconductor laser device and manufacture thereof
JPS60258987A (en) Semiconductor laser device and manufacture thereof
JP3421140B2 (en) Method of manufacturing semiconductor laser device and semiconductor laser device
JP2629678B2 (en) Semiconductor laser device and method of manufacturing the same
JPH01186688A (en) Semiconductor laser device
JPS6167285A (en) Semiconductor laser device
JPS5956783A (en) Semiconductor laser
JPS60258991A (en) Semiconductor laser device
JP3033664B2 (en) Method of manufacturing semiconductor laser device
JPS60258986A (en) Manufacture of semiconductor laser device
JPS60251687A (en) Manufacture of semiconductor laser device
JPS63287079A (en) Manufacture of semiconductor laser
JPS60258990A (en) Manufacture of semiconductor laser device
JPH0430758B2 (en)
JPH0462883A (en) Visible radiation semiconductor laser
JPH02114583A (en) Manufacture of semiconductor laser
JPS6191990A (en) Semiconductor laser and manufacture thereof
JPS63244785A (en) Semiconductor light emitting element and manufacture thereof
JPS60262417A (en) Manufacture of semiconductor crystal