[go: up one dir, main page]

JPS60258013A - Sample conveying apparatus - Google Patents

Sample conveying apparatus

Info

Publication number
JPS60258013A
JPS60258013A JP59114900A JP11490084A JPS60258013A JP S60258013 A JPS60258013 A JP S60258013A JP 59114900 A JP59114900 A JP 59114900A JP 11490084 A JP11490084 A JP 11490084A JP S60258013 A JPS60258013 A JP S60258013A
Authority
JP
Japan
Prior art keywords
sample
transport
conveyance path
traveling wave
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59114900A
Other languages
Japanese (ja)
Inventor
Toru Tojo
東条 徹
Kazuyoshi Sugihara
和佳 杉原
Mitsuo Tabata
光雄 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59114900A priority Critical patent/JPS60258013A/en
Publication of JPS60258013A publication Critical patent/JPS60258013A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/10Applications of devices for generating or transmitting jigging movements
    • B65G27/16Applications of devices for generating or transmitting jigging movements of vibrators, i.e. devices for producing movements of high frequency and small amplitude
    • B65G27/24Electromagnetic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Control Of Conveyors (AREA)
  • Jigging Conveyors (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To convey a sample in a vacuum with high reliability in a small-sized conveying apparatus for a manufacturing process by providing a vibrator in a conveying path to form a progressive wave on a conveying surface, and conveying the sample in the opposite direction to the progressive wave. CONSTITUTION:When alternating voltage is applied to piezo-electric elements 7, the piezo-electric elements are expanded and contracted according to the degree of voltage so that a creep wave 8 according to the phase of applied voltage is formed on the surface of a conveying path 1. Thus, a sample 4 on the conveying path 1 is conveyed in the opposite direction to the advancing direction. In this arrangement, if the phase of applied alternating voltage is suitably selected, the conveying direction can be freely selected to be normal or reverse. Furthermore, the sample can be conveyed in a vacuum without a rubber or the like reliably.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、各種製造工程において使用される試料の搬送
装置に係わり、特に進行波(ぜん動波)を利用した試料
搬送装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a sample transport device used in various manufacturing processes, and particularly to a sample transport device using traveling waves (peristaltic waves).

(発明の技術的背景とその問題点) 従来、各種の製造工程、特に半導体製造■稈においては
、半導体ウェハヤマスク基板等の試料を搬送するため各
種の搬送装置が用いられている。
(Technical Background of the Invention and Problems Thereof) Conventionally, in various manufacturing processes, particularly in semiconductor manufacturing, various transport devices have been used to transport samples such as semiconductor wafers and mask substrates.

このような搬送装置では、種々の搬送方式が採用されて
いるが、その代表的なものを次の■〜■に示す。
Various types of conveyance methods are employed in such conveyance devices, and typical ones are shown in the following (1) to (2).

■ ゴムベルトをローラに巻付け、該ローラを回転させ
てベルト上の試料を搬送する方式。
■ A method in which a rubber belt is wrapped around a roller and the roller is rotated to transport the sample on the belt.

■ 電気膜を使用して試料を搬送する方式(J。■ Method of transporting the sample using an electric membrane (J.

A、 paiVanas、J、 K、 Hassan、
A New AlrF+1III Technique
 for Low ContactHandllnoo
f 5ilicon Wafers、April 19
80゜5olid 5tate Technolopy
、148 ) 。
A, paiVanas, J, K, Hassan,
A New AlrF+1III Technique
for Low ContactHandllnoo
f 5ilicon Wafers, April 19
80゜5solid 5tate Technology
, 148).

■ 1本のアーム或いは駆動棒によって試料を決められ
た距離だけ搬送する方式。
■ A method in which the sample is transported a predetermined distance using a single arm or drive rod.

しかしながら、この種の方式にあっては次のような問題
があった。即ち、前記■の方式ではゴムを用いているこ
とから、真空中での使用が制限される。また、長期間の
使用によってゴムが摩耗したり切れたりすることがある
。さらに、使用中にゴムがローラから外れることがあり
、信頼性に乏しい等の欠点がある。■の方式では、駆動
部分が少なく信頼性が高いという利点はあるものの、真
空中での使用が不可能である。また、■の方式では搬送
距離が長くなるど、アームや駆動棒の長さも長くなり、
装置が大形化するという欠点がある。
However, this type of system has the following problems. That is, since the method (2) uses rubber, its use in a vacuum is restricted. Additionally, the rubber may wear out or break due to long-term use. Furthermore, the rubber may come off the roller during use, resulting in poor reliability. Although the method (2) has the advantage of having fewer moving parts and high reliability, it cannot be used in a vacuum. In addition, with method (■), the conveyance distance becomes longer, and the length of the arm and drive rod also becomes longer.
The disadvantage is that the device becomes larger.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、大気中は勿論のこと、真空中でも使用
することができ、小型で且つ信頼性の高い試料搬送装置
を提供することにある。
An object of the present invention is to provide a small and highly reliable sample transport device that can be used not only in the atmosphere but also in a vacuum.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、試料搬送路の表面(搬送面)にぜん動
(進行波)を形成し、この進行波により試料を搬送する
ことにある。
The gist of the present invention is to form a peristaltic motion (traveling wave) on the surface (transporting surface) of the sample transport path, and to transport the sample by this traveling wave.

即ち本発明は、搬送路の搬送面上に載置した試料を該搬
送路に沿って搬送する試料搬送装置において、前記搬送
路を弾性材料で構成すると共に、この搬送路の一部若し
くは全体に該搬送路の搬送面に進行波を形成せしめる振
動子を取着してなり、上記試料を上記進行波の進行方向
と逆方向に搬送するようにしたものである。
That is, the present invention provides a sample transport device that transports a sample placed on a transport surface of a transport path along the transport path, in which the transport path is made of an elastic material, and a portion or the entirety of the transport path is made of an elastic material. A vibrator for forming a traveling wave is attached to the transport surface of the transport path, and the sample is transported in a direction opposite to the traveling direction of the traveling wave.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、試料の駆動が接触面のぜん動波、即ち
進行波によって行われるため、搬送路を弾性変形可能な
材料、例えばFe、Cu、AI等の金属で形成すればよ
く、大気中・真空中に拘らず使用することができる。ま
た、駆動機構としてモータ、歯車、ローラ或いはアーム
等の従来使用8ゎ工いえ、。□い。□ヵ、ヶい。1、□
 )−の摩耗、組立て誤差及び経時変化による信頼性低
下を防止することができる。さらに、これらの部品を使
用しないため構造が簡単になり、搬送路とぜん動波を形
成するための小型撮動子が必要なだけでよく、装置の小
型化をはかり得る。従来の振動型搬送機と異なり、試料
が進行波の波の上に乗って動くだけなので、振動によっ
て試料が摩耗したり、搬送面が摩耗することがない。ま
た、進行波の振動数を超音波領域にすることによって、
全く騒音のない駆動方式とすることができる。さらに、
直進、回転、反転成いはこれらの組合わせを自由に行う
ことができる等の利点があり、その有用性は絶大である
According to the present invention, since the sample is driven by a peristaltic wave, that is, a traveling wave, on the contact surface, the transport path may be formed of an elastically deformable material, for example, a metal such as Fe, Cu, or AI.・Can be used regardless of whether it is in a vacuum. In addition, as a drive mechanism, motors, gears, rollers, arms, etc. are conventionally used. □Yes. □It's so big. 1, □
) - can be prevented from deteriorating in reliability due to wear, assembly errors, and changes over time. Furthermore, since these parts are not used, the structure is simplified, and only a conveyance path and a small imager for forming peristaltic waves are required, allowing the device to be miniaturized. Unlike conventional vibrating conveyors, the sample only moves on top of the traveling waves, so the sample does not wear out due to vibration, and the conveying surface does not wear out. In addition, by setting the frequency of the traveling wave to the ultrasonic range,
A completely noiseless drive system can be achieved. moreover,
Straight forward movement, rotation, and inversion formation have the advantage that these combinations can be freely performed, and their usefulness is enormous.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の第1の実施例に係わる試料搬送装置の
概略構成を示す斜視図である。図中1゜2は直線状の直
進搬送路、3はリング上の回転搬送路であり、これらの
搬送路1.2.3はFe。
FIG. 1 is a perspective view showing a schematic configuration of a sample transport device according to a first embodiment of the present invention. In the figure, reference numeral 1.2 is a linear conveyance path, and 3 is a rotary conveyance path on a ring, and these conveyance paths 1, 2, and 3 are Fe.

Cu、AI等の弾性材料から構成されている。そして、
搬送路1.2.3上に半導体ウェハ等の試料4が載置さ
れ、該試料4が搬送路表面(搬送面)5− 上を走行するものとなっている。
It is made of an elastic material such as Cu or AI. and,
A sample 4 such as a semiconductor wafer is placed on the transport path 1.2.3, and the sample 4 runs on the transport path surface (transport surface) 5-.

搬送路L 2.3の下面には、その搬送方向に沿って複
数の振動子がそれぞれ配置されている。
A plurality of vibrators are arranged on the lower surface of the transport path L 2.3 along the transport direction.

例えば、搬送路1の下面には、第2図に示す如くチタン
酸鉛系の圧電材料5を電極6a、6bで挟んでなる圧電
素子7が搬送方向に沿って一定間隔で取着されている。
For example, as shown in FIG. 2, piezoelectric elements 7 made of lead titanate-based piezoelectric material 5 sandwiched between electrodes 6a and 6b are attached to the lower surface of the conveyance path 1 at regular intervals along the conveyance direction. .

これらの圧電素子7は電圧印加によってその長さ方向(
搬送方向と同方向)が伸縮するものであり、各電極6a
、6b間には隣接する圧電素子7と120度位相がずれ
て電圧が印加されるものとなっている。
These piezoelectric elements 7 are moved in the longitudinal direction (
(in the same direction as the transport direction), each electrode 6a
, 6b, a voltage is applied with a phase shift of 120 degrees from that of the adjacent piezoelectric element 7.

このような構成において、各圧電素子7に交流電圧を印
加すると、それぞれの圧電素子7はその電圧の大きさに
より伸縮する。いま、第3図(a)に示す如く圧電素子
7 (71,〜、76)に3相 □交流電圧を印加する
と、圧電素子71の印加電圧が零(Vsinω;ω−〇
)のとき圧電素子71゜74の伸縮mは零、圧電素子7
2.75の印加電圧は(V sinω’ ; ω’ =
ω+120°)で該素子72.75は伸長し、圧電素子
7B 、7sの印加6− 電圧は(V sinω″; ω” =ω+270°)で
該素子7s 、7sは縮長する。これにより、搬送路1
の表面にぜん動波(進行波)8が形成される。ここで、
上記圧電素子7の伸縮形態は印加電圧の位相により変化
する。即ち、上記位相が120度遅れると圧電素子7s
 、74が縮長し、圧電素子73.7sが伸長すること
になり、この場合第3図(b)に示す如き進行波が形成
される。さらに、位相が270度遅れると、圧電素子7
1.74が伸長し、圧電素子72.76が縮長すること
になり、この場合第3図(C)に示す如き進行波が形成
される。つまり、圧電素子7の伸縮により前記搬送路1
の表面(搬送面)上に進行波8が生じ、この進行波8が
紙面右方向に進行することになる。
In such a configuration, when an alternating current voltage is applied to each piezoelectric element 7, each piezoelectric element 7 expands and contracts depending on the magnitude of the voltage. Now, when a three-phase □ AC voltage is applied to the piezoelectric element 7 (71, to 76) as shown in FIG. 71° 74 expansion/contraction m is zero, piezoelectric element 7
The applied voltage of 2.75 is (V sinω';ω' =
When the voltage applied to the piezoelectric elements 7B and 7s is (V sin ω'';ω'' = ω+270°), the elements 72 and 75 are expanded. As a result, the conveyance path 1
A peristaltic wave (traveling wave) 8 is formed on the surface of. here,
The expansion/contraction form of the piezoelectric element 7 changes depending on the phase of the applied voltage. That is, if the phase is delayed by 120 degrees, the piezoelectric element 7s
, 74 are contracted and the piezoelectric element 73.7s is expanded, and in this case, a traveling wave as shown in FIG. 3(b) is formed. Furthermore, when the phase is delayed by 270 degrees, the piezoelectric element 7
1.74 will expand and the piezoelectric elements 72.76 will contract, and in this case a traveling wave as shown in FIG. 3(C) is formed. In other words, due to the expansion and contraction of the piezoelectric element 7, the conveyance path 1
A traveling wave 8 is generated on the surface (conveying surface) of the paper, and this traveling wave 8 travels to the right in the paper.

そして、進行波8の進行により搬送路1上の試料4は該
進行方向と逆方向に搬送されることになる。
As the traveling wave 8 advances, the sample 4 on the transport path 1 is transported in a direction opposite to the traveling direction.

かくして本装置によれば、搬送路1上の搬送面に進行波
を形成することができ、該搬送面上に載置した試料4を
搬送路1の搬送方向に沿って搬送することができる。ま
た、圧電素子7に印加する交流電圧の位相を逆にすれば
、上記搬送方向を逆方向にすることも可能である。この
ため、直進搬送路1.2及び回転搬送路3上で試料4を
自由に搬送することができる。そしてこの場合、ゴム等
を用いる必要もなく、大気中は勿論のこと真空中であっ
ても何等不都合なく使用することができる。
Thus, according to the present apparatus, a traveling wave can be formed on the transport surface on the transport path 1, and the sample 4 placed on the transport surface can be transported along the transport direction of the transport path 1. Furthermore, by reversing the phase of the alternating current voltage applied to the piezoelectric element 7, it is also possible to reverse the transport direction. Therefore, the sample 4 can be freely transported on the straight transport path 1.2 and the rotary transport path 3. In this case, there is no need to use rubber or the like, and it can be used not only in the atmosphere but also in a vacuum without any inconvenience.

また、弾性材料からなる搬送路1,2.3及び圧電素子
7からなる極めて簡易な構成で突環できる等の利点があ
る。また、試料4の搬送速度は圧電素子7の振動振幅、
即ち印加電圧の大きさを変えることによって自由に可変
することができる。さらに印加電圧の周波数を選択し、
搬送面上に形成される進行波の周波数を超音波領域にす
れば、騒音の発生を防止することができる。
Further, there is an advantage that a protruding ring can be formed with an extremely simple structure consisting of the conveying paths 1, 2.3 made of an elastic material and the piezoelectric element 7. In addition, the transport speed of the sample 4 is determined by the vibration amplitude of the piezoelectric element 7,
That is, it can be freely varied by changing the magnitude of the applied voltage. Furthermore, select the frequency of the applied voltage,
If the frequency of the traveling wave formed on the conveyance surface is in the ultrasonic range, noise generation can be prevented.

なお、上記の例では複数の圧電素子を搬送路の下面に一
定間隔で取着するようにしたが、搬送路の下面に1枚の
圧電材料を取着し、その電極のみを搬送方向に沿って分
割するようにしてもよい。
Note that in the above example, multiple piezoelectric elements are attached to the lower surface of the conveyance path at regular intervals, but it is also possible to attach one piece of piezoelectric material to the lower surface of the conveyance path and only connect the electrodes along the conveyance direction. It may also be divided into two parts.

・17 また、圧電素子の分極方向を隣接するもの同志で逆にし
、隣接する圧電素子に90度位相の異なる電圧を印加す
るようにして、進行波を形成することも可能である。さ
らに、圧電素子の配置は搬送路の全体に限るものではな
く、搬送路の一部であってもよい。また、前記直進搬送
路1,2の場合、端面における反射が進行波を打ち消す
ように働くため、反射波を低減させる処理が必要となる
。これには、搬送路の端面に減衰器を取付ければよい。
・17 It is also possible to form a traveling wave by reversing the polarization directions of adjacent piezoelectric elements and applying voltages with a phase difference of 90 degrees to adjacent piezoelectric elements. Furthermore, the arrangement of the piezoelectric element is not limited to the entire conveyance path, but may be placed in a part of the conveyance path. Further, in the case of the straight conveyance paths 1 and 2, since reflection at the end faces cancels out the traveling waves, a process is required to reduce the reflected waves. This can be achieved by attaching an attenuator to the end face of the conveyance path.

或いはランダムな反射を作り出すように端面を粗面に仕
上げるか、先端を尖らして両者を同時に行うようすれば
よい。
Alternatively, the end surface may be roughened to create random reflections, or the tip may be sharpened to achieve both at the same time.

第4図は本発明の第2の実施例の概略構成を示す平面図
である。この実施例は、半導体ウェハの搬送と回転とを
行うものである。4つの直進搬送路11.12.13.
14が十字に交差しており、その交差部には円板体から
なる回転搬送路15が配置されている。また、直進搬送
路11.〜。
FIG. 4 is a plan view showing a schematic configuration of a second embodiment of the present invention. In this embodiment, a semiconductor wafer is transported and rotated. Four straight transport paths 11.12.13.
14 intersect in a criss-cross pattern, and a rotary conveyance path 15 made of a disc body is arranged at the intersection. In addition, the straight conveyance path 11. ~.

14と回転搬送路15との間には3角形状の搬送路16
.17,18.19がそれぞれ配置されている。ここで
、直進搬送路11.〜,14は前記実施例のものと同様
であり、その説明は省略する。
A triangular conveyance path 16 is provided between the rotary conveyance path 14 and the rotary conveyance path 15.
.. 17, 18, and 19 are arranged, respectively. Here, the straight conveyance path 11. .

−〇− 搬送路16.〜,19は搬送路11.〜,14と搬送路
15との間で進行波が途切れることにより試料4が停止
するのを防止する補助的なものであり、その搬送方向は
紙面上下方向及び紙面左右方向となっている。回転搬送
路15の下面には第5図(a)(b)に示す如く、その
円周方向に沿って複数の圧電素子21が取着されると共
に、その中心点を通る十字状に複数の圧電素子22が取
着されている。ここで圧電素子21は、円周方向に沿っ
た進行波を形成するためのもので、圧電素子22は紙面
上下方向及び紙面左右方向の進行波を形成するためのも
のである。なお、第5図(a)は平面図、第5図(b)
は同図(a)の矢?1lA−A断面を示している。
−〇− Conveyance path 16. . . . , 19 is the conveyance path 11. This is an auxiliary device that prevents the sample 4 from stopping due to discontinuation of the traveling wave between the transport path 15 and the transport path 15, and its transport direction is vertical and horizontal in the paper. As shown in FIGS. 5(a) and 5(b), a plurality of piezoelectric elements 21 are attached to the lower surface of the rotary conveyance path 15 along the circumferential direction, and a plurality of piezoelectric elements 21 are attached in a cross shape passing through the center point. A piezoelectric element 22 is attached. Here, the piezoelectric element 21 is for forming a traveling wave along the circumferential direction, and the piezoelectric element 22 is for forming a traveling wave in the vertical direction and the horizontal direction on the page. Note that FIG. 5(a) is a plan view, and FIG. 5(b)
Is this the arrow in figure (a)? 11A-A cross section is shown.

ト このような構成においては、まず直進搬送路11上に載
置された試料4を先の実施例と同様にして紙面右方向に
搬送し、搬送路16.17により回転搬送路15上に移
す。回転搬送路15上に搬送された試料4は該搬送路1
5の圧電素子22による進行波によりさらに右方向に搬
送され、こ10− れにより試料4が搬送路15の中心にセットされる。そ
の後、回転搬送路15の圧電素子21による進行波によ
り試料4を回転する。この回転により試料4はそのオリ
エンテーション・フラット面を所望の方向にセットされ
る。このオリエンテーション・フラット面のセットはウ
ェハマークの読み取りに極めて重要なものである。次い
で、回転搬送路15の圧電素子22により試料4を、例
えば紙面下方向に搬送し、さらに搬送路17.18の作
用により直進搬送路12上に移す。そして、搬送路12
により試料4は紙面下方向に搬送されることになる。
In such a configuration, the sample 4 placed on the straight conveyance path 11 is first conveyed to the right in the paper in the same manner as in the previous embodiment, and then transferred onto the rotary conveyance path 15 by the conveyance paths 16 and 17. . The sample 4 transported onto the rotary transport path 15
The sample 4 is further conveyed to the right by the traveling wave generated by the piezoelectric element 22 of No. 5, and as a result, the sample 4 is set at the center of the conveyance path 15. Thereafter, the sample 4 is rotated by a traveling wave generated by the piezoelectric element 21 of the rotary conveyance path 15. This rotation sets the orientation flat surface of the sample 4 in a desired direction. This set of orientation flat surfaces is extremely important for reading wafer marks. Next, the sample 4 is transported, for example, downward in the plane of the paper by the piezoelectric element 22 of the rotary transport path 15, and further transferred onto the linear transport path 12 by the action of the transport paths 17 and 18. Then, the conveyance path 12
As a result, the sample 4 is conveyed downward in the plane of the paper.

従って本実施例によれば、先の実施例と同様に試$44
を搬送することができ、さらに試料4を回転せしめるこ
とができる。このため、半導体ウェハのオリエンテーシ
ョン・フラット面のセット等にも有効である。
Therefore, according to this embodiment, the trial cost of $44 is the same as in the previous embodiment.
can be transported, and the sample 4 can also be rotated. Therefore, it is effective for orientation of semiconductor wafers, setting of flat surfaces, etc.

第6図は第3の実施例を説明するためのもので、本発明
を適用した電子ビーム露光装置の概略構成図を示してい
る。図中31は試料室、32は電子光学鏡筒である。試
料室31内には試料台32が収容され、該試料台33上
には第1の搬送機構41が設けられている。試料室31
にはゲートバルブ34を介して予備室35が接続されて
いる。
FIG. 6 is for explaining the third embodiment, and shows a schematic configuration diagram of an electron beam exposure apparatus to which the present invention is applied. In the figure, 31 is a sample chamber, and 32 is an electron optical column. A sample stage 32 is accommodated in the sample chamber 31, and a first transport mechanism 41 is provided on the sample stage 33. Sample chamber 31
A preliminary chamber 35 is connected to the auxiliary chamber 35 via a gate valve 34.

予備室35内には移動台36が収容されており、この移
動台36上には第2の搬送機構41が設けられている。
A moving table 36 is housed in the preliminary chamber 35, and a second transport mechanism 41 is provided on the moving table 36.

また、図中37は予備室35を大気中と遮断するゲート
バルブ、38は移動台を示し、移動台38上に第3の搬
送機構43が設けられている。
Further, in the figure, numeral 37 indicates a gate valve that isolates the preliminary chamber 35 from the atmosphere, numeral 38 indicates a moving table, and a third transport mechanism 43 is provided on the moving table 38.

ここで、試料台33上及び移動台36.38上に形成さ
れた搬送機構41.〜.43は、先の実施例で説明した
搬送路及び圧電素子からなるものと同様である。
Here, the transport mechanism 41. formed on the sample stage 33 and the moving stage 36.38. ~. Reference numeral 43 is similar to the conveyance path and piezoelectric element described in the previous embodiment.

このような構成では、ウェハキャリア(図示せず)から
受け渡されたウェハはまず大気側搬送機構43上を走行
する。次いで、予備室35内に入h a r: e /
7″−ht<Ay737trZ凱■”361C、l。
In such a configuration, a wafer transferred from a wafer carrier (not shown) first travels on the atmosphere side transport mechanism 43. Next, enter the preliminary room 35. h a r: e /
7″-ht<Ay737trZkai■”361C, l.

より搬送機構42をゲートバルブ37の厚さ分だけ動か
し、搬送機構42.43を接触させる。搬送機構42に
よりウェハは予備室35内に入り、ゲートバルブ37は
閉じる。予備室35内を真空にした後、ゲー]・バルブ
34を開き、移動台36により搬送機構42を動かし搬
送機構41に接触させる。次いで、搬送機構41により
ウェハを試料台33の中央に搬送し、ゲートバルブ34
を閉じる。そして、この位置でウェハは電子ビーム露光
に供されることになる。
Then, the conveying mechanism 42 is moved by the thickness of the gate valve 37, and the conveying mechanisms 42 and 43 are brought into contact with each other. The wafer enters the preliminary chamber 35 by the transport mechanism 42, and the gate valve 37 is closed. After the preliminary chamber 35 is evacuated, the gate valve 34 is opened, and the transfer mechanism 42 is moved by the moving table 36 to bring it into contact with the transfer mechanism 41. Next, the wafer is transported to the center of the sample stage 33 by the transport mechanism 41, and the gate valve 34 is
Close. At this position, the wafer will be subjected to electron beam exposure.

かくして本実施例によれば、電子ビーム露光装置のウェ
ハ搬送を行うことができる。そしてこの場合、従来の搬
送アームや駆動環を用いるものに比較し、その構成が簡
単であり、全体構成の小型化をはかり得る等の利点があ
る。
Thus, according to this embodiment, the wafer can be transferred by the electron beam exposure apparatus. In this case, the structure is simple and the overall structure can be made smaller than the conventional structure using a transfer arm or a drive ring.

なお、本発明は上述した各実施例に限定されるものでは
ない。例えば、前記搬送路を形成する部材はFe、Cu
、A Iに何等限定されるものではなく、所望の弾性度
を有する弾性部材であればよい。また、前記圧電素子の
形状、配設位置及び個数等の条件は仕様に応じて適宜変
更可能である。
Note that the present invention is not limited to the embodiments described above. For example, the member forming the conveyance path is made of Fe, Cu.
, AI, and any elastic member having a desired degree of elasticity may be used. Moreover, conditions such as the shape, arrangement position, and number of the piezoelectric elements can be changed as appropriate according to specifications.

さらに、圧電素子の伸縮方向は必ずしも長さ方向13− (搬送方向)に限るものではなく、厚み方向(搬送方向
と直交する方向)に伸縮するものであっても前記進行波
を形成することが可能である。また、圧電素子の代りに
は、搬送路に歪みを加え搬送面上に進行波を形成せしめ
る振動子であれば用いることが可能である。その他、本
発明の要旨を逸脱しない範囲で、種々変形して実施する
ことができる。
Furthermore, the direction of expansion and contraction of the piezoelectric element is not necessarily limited to the length direction 13- (conveyance direction), and even if the piezoelectric element expands and contracts in the thickness direction (direction perpendicular to the conveyance direction), the traveling wave can be formed. It is possible. Further, instead of the piezoelectric element, any vibrator that applies distortion to the conveyance path and forms a traveling wave on the conveyance surface can be used. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に係わる試料搬送装置の
概略構成を示す斜視図、第2図は上記装置の要部構成を
拡大して示す断面図、第3図は上記装置の作用を説明す
るための模式図、第4図は本発明の第2の実施例の概略
構成を示す平面図、第5図は上記装置の要部構成を拡大
して示す図、第6図は本発明の第3の実施例を説明する
ためのもので電子ビーム露光装置を示す概略構成図であ
る。 1.2.11.〜.14・・・直進搬送路、 3゜15
回転搬送路、4・・・試料、5・・・圧電材料、6a。 14− 6b・・・電極、7.71.〜.7s 、21.22・
・・圧電素子、8・・・進行波(ぜん動波)、31・・
・試料室、32・・・電子光学鏡筒、33・・・試料台
、34゜37・・・ゲートバルブ、35・・・予備室、
36.38・・・移動台、41,42.43・・・搬送
機構。 出願人代理人 弁理士 鈴江武彦 15−
FIG. 1 is a perspective view showing a schematic configuration of a sample transport device according to a first embodiment of the present invention, FIG. 2 is a sectional view showing an enlarged configuration of main parts of the device, and FIG. FIG. 4 is a schematic diagram for explaining the operation, FIG. 4 is a plan view showing the schematic configuration of the second embodiment of the present invention, FIG. FIG. 3 is a schematic configuration diagram showing an electron beam exposure apparatus for explaining a third embodiment of the present invention. 1.2.11. ~. 14...straight conveyance path, 3゜15
Rotating conveyance path, 4...sample, 5...piezoelectric material, 6a. 14-6b...electrode, 7.71. ~. 7s, 21.22・
... Piezoelectric element, 8... Traveling wave (peristaltic wave), 31...
・Sample chamber, 32... Electron optical lens barrel, 33... Sample stage, 34° 37... Gate valve, 35... Preliminary chamber,
36.38...Moving table, 41,42.43...Transportation mechanism. Applicant's agent Patent attorney Takehiko Suzue 15-

Claims (5)

【特許請求の範囲】[Claims] (1)弾性材料からなりその搬送面に試料が載置される
搬送路と、この搬送路の一部若しくは全体に取着され該
搬送路の搬送面に進行波を形成せしめる振動子とを具備
してなり、上記進行波により該進行波の進行方向と逆方
向に前記試料を搬送することを特徴とする試料搬送装置
(1) Equipped with a conveyance path made of an elastic material on which the sample is placed, and a vibrator attached to a part or the entirety of this conveyance path to form a traveling wave on the conveyance surface of the conveyance path. A sample transport device, characterized in that the sample is transported by the traveling wave in a direction opposite to the traveling direction of the traveling wave.
(2)前記搬送路は、直進型、ヘアピン型、回転型或い
はこれらを組合わせて形成されたものであることを特徴
とする特許請求の範囲第1項記載の試料搬送装置。
(2) The sample transport device according to claim 1, wherein the transport path is of a straight type, a hairpin type, a rotation type, or a combination thereof.
(3)前記振動子として、圧電素子を用いたことを特徴
とする特許請求の範囲第1項記載の試料搬送装置。
(3) The sample transport device according to claim 1, wherein a piezoelectric element is used as the vibrator.
(4)前記進行波の周波数を、超音波領域に設定してな
ることを特徴とする特許請求の範囲第1項記載の試料搬
送装置。
(4) The sample transport device according to claim 1, wherein the frequency of the traveling wave is set in an ultrasonic range.
(5)前記試料の搬送速度の制御を、前記振動子の振動
振幅を変化させることによって行うことを特徴とする特
許請求の範囲第1項記載の試料搬送装置。
(5) The sample transport device according to claim 1, wherein the transport speed of the sample is controlled by changing the vibration amplitude of the vibrator.
JP59114900A 1984-06-05 1984-06-05 Sample conveying apparatus Pending JPS60258013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59114900A JPS60258013A (en) 1984-06-05 1984-06-05 Sample conveying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59114900A JPS60258013A (en) 1984-06-05 1984-06-05 Sample conveying apparatus

Publications (1)

Publication Number Publication Date
JPS60258013A true JPS60258013A (en) 1985-12-19

Family

ID=14649445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59114900A Pending JPS60258013A (en) 1984-06-05 1984-06-05 Sample conveying apparatus

Country Status (1)

Country Link
JP (1) JPS60258013A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291673A (en) * 1988-05-17 1989-11-24 Toshiba Corp Piezoelectric actuator
DE4133307A1 (en) * 1990-10-09 1992-04-16 Zexel Corp ELECTROMAGNETIC ACTUATING DEVICE FOR MOVING AN OBJECT
JPH0979213A (en) * 1995-09-13 1997-03-25 Toshiba Corp Actuator
DE10261659A1 (en) * 2002-12-20 2004-07-15 Fachhochschule Jena System for movement of objects independently of one another in one plane has support surface for objects, and drive to create oscillating movement of support surface with direction components in X, Y and/or Phi coordinates
WO2018051853A1 (en) * 2016-09-14 2018-03-22 株式会社新生工業 Conveyance device and game machine
JP2018095459A (en) * 2016-12-16 2018-06-21 シンフォニアテクノロジー株式会社 Workpiece transport device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291673A (en) * 1988-05-17 1989-11-24 Toshiba Corp Piezoelectric actuator
DE4133307A1 (en) * 1990-10-09 1992-04-16 Zexel Corp ELECTROMAGNETIC ACTUATING DEVICE FOR MOVING AN OBJECT
US5148068A (en) * 1990-10-09 1992-09-15 Zexel Corporation Electromagnetic actuator for moving an object
JPH0979213A (en) * 1995-09-13 1997-03-25 Toshiba Corp Actuator
DE10261659A1 (en) * 2002-12-20 2004-07-15 Fachhochschule Jena System for movement of objects independently of one another in one plane has support surface for objects, and drive to create oscillating movement of support surface with direction components in X, Y and/or Phi coordinates
DE10261659B4 (en) * 2002-12-20 2005-07-28 Fachhochschule Jena Arrangement for moving objects independently in a plane
WO2018051853A1 (en) * 2016-09-14 2018-03-22 株式会社新生工業 Conveyance device and game machine
JP2018095459A (en) * 2016-12-16 2018-06-21 シンフォニアテクノロジー株式会社 Workpiece transport device

Similar Documents

Publication Publication Date Title
US4422002A (en) Piezo-electric travelling support
US5089740A (en) Displacement generating apparatus
JPH0373735A (en) Recording medium transport device and frame with piezoelectric element used in this device
JPS60258013A (en) Sample conveying apparatus
JPS6155012A (en) Method and apparatus for transfer by vibrating wave
JPH05219764A (en) Rotary or linear motor, in which armature is driven by ultrasonic vibration
JPS6142284A (en) Displacement increasing device
US4523300A (en) Chevron detector expander for magnetic bubble domain system
US20170005596A1 (en) Piezoelectric actuator, motor, robot, and method of driving piezoelectric actuator
JPH0642602A (en) Parallel link robot with coaxial driving unit
JP4084221B2 (en) Conveying apparatus and vacuum processing apparatus equipped with the same
Akiya et al. High-voltage buried-channel MOS fabricated by oxygen implantation into silicon
JPH01139412A (en) Conveyor
JP2018019540A (en) Piezoelectric actuators, piezoelectric motors, robots, and electronic component transfer devices
JPS5866380A (en) Electrostriction substrate
JP2670558B2 (en) LCD substrate vacuum processing device
JP7564434B2 (en) Workpiece transport device
JP2925821B2 (en) Fluid transport device and fluid transport method
JPH09201735A (en) Transfer device
JPH08279544A (en) Transfer device
JP3948085B2 (en) Electrostatic levitation transfer device
JPH04168287A (en) Flat plate handling device and etching system utilizing this device
JPH01177941A (en) Positioning device for press plate of thin disk-shaped workpiece
JPS6221667A (en) Paper sheet conveying device
JPH03222680A (en) Carrier