JPS60257806A - Gas separating composite membrane - Google Patents
Gas separating composite membraneInfo
- Publication number
- JPS60257806A JPS60257806A JP59114512A JP11451284A JPS60257806A JP S60257806 A JPS60257806 A JP S60257806A JP 59114512 A JP59114512 A JP 59114512A JP 11451284 A JP11451284 A JP 11451284A JP S60257806 A JPS60257806 A JP S60257806A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- composite membrane
- gas separation
- thin film
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 75
- 239000002131 composite material Substances 0.000 title claims abstract description 50
- 238000000926 separation method Methods 0.000 claims abstract description 66
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 18
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910000077 silane Inorganic materials 0.000 claims abstract description 16
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229920000642 polymer Polymers 0.000 claims abstract description 8
- 239000010409 thin film Substances 0.000 claims description 36
- -1 poly(4-methylpentene-1) Polymers 0.000 abstract description 23
- 230000035699 permeability Effects 0.000 abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 9
- 229920000306 polymethylpentene Polymers 0.000 abstract description 6
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 abstract description 4
- 239000003054 catalyst Substances 0.000 abstract description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 abstract description 3
- YZVRVDPMGYFCGL-UHFFFAOYSA-N triacetyloxysilyl acetate Chemical compound CC(=O)O[Si](OC(C)=O)(OC(C)=O)OC(C)=O YZVRVDPMGYFCGL-UHFFFAOYSA-N 0.000 abstract description 3
- 239000003125 aqueous solvent Substances 0.000 abstract 1
- 230000032798 delamination Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 72
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 21
- 239000001301 oxygen Substances 0.000 description 21
- 229910052760 oxygen Inorganic materials 0.000 description 21
- 150000004756 silanes Chemical class 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 238000004132 cross linking Methods 0.000 description 10
- 239000004205 dimethyl polysiloxane Substances 0.000 description 10
- 239000010408 film Substances 0.000 description 10
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 229920002492 poly(sulfone) Polymers 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 6
- 239000004721 Polyphenylene oxide Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920006380 polyphenylene oxide Polymers 0.000 description 5
- 125000005372 silanol group Chemical group 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- NBJODVYWAQLZOC-UHFFFAOYSA-L [dibutyl(octanoyloxy)stannyl] octanoate Chemical compound CCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCC NBJODVYWAQLZOC-UHFFFAOYSA-L 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000003302 alkenyloxy group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 125000005474 octanoate group Chemical group 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- UQMGAWUIVYDWBP-UHFFFAOYSA-N silyl acetate Chemical class CC(=O)O[SiH3] UQMGAWUIVYDWBP-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1216—Three or more layers
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は気体分離用複合膜に関する。更にくわしくは膜
分離法により空気から酸素富化空気を得るために有効な
気体分離用複合膜に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a composite membrane for gas separation. More specifically, the present invention relates to a composite membrane for gas separation that is effective for obtaining oxygen-enriched air from air by a membrane separation method.
(従来の技術)
近年、脱法による気体分離、特に膜分離による酸素富化
空気を得る方法が注目されている。この膜分離に実用上
使用され得る膜は、気体分離性能が高く、かつ気体透過
性能も高いという条件を満。(Prior Art) In recent years, gas separation by decontamination, particularly a method for obtaining oxygen-enriched air by membrane separation, has attracted attention. Membranes that can be practically used for this membrane separation meet the requirements of having high gas separation performance and high gas permeation performance.
たさなければならない。その為、膜の形態は気体分離性
能の高い膜素材を薄膜とし、多孔質支持体上に複合化し
た複合膜とする必要がある。しかしながら、直接該11
111を多孔質支持体に複合化すると接着性が悪い為、
複合膜の取り扱いの際、薄膜が剥離するという欠点があ
る。この問題を解消する為に、米国特許第387498
6号に記載されているごとく、気体分離性能の高いポリ
フェニレンオキサイド(PPO)の薄膜と多孔質支持体
との間に、接着性が高く薄膜形成性の高いポリカーボネ
ート/ポリジメチルシロキサン(PC−PDMS)共重
合体薄膜を介在せしめた複合膜が提唱されている。must be achieved. Therefore, the form of the membrane needs to be a composite membrane in which a thin membrane material with high gas separation performance is combined on a porous support. However, directly
When compositing 111 with a porous support, the adhesion is poor, so
A disadvantage is that the thin film peels off during handling of the composite membrane. In order to solve this problem, US Patent No. 387498
As described in No. 6, polycarbonate/polydimethylsiloxane (PC-PDMS), which has high adhesiveness and high thin film-forming properties, is used between a thin film of polyphenylene oxide (PPO), which has high gas separation performance, and a porous support. A composite membrane with a copolymer thin film interposed therein has been proposed.
しかしながら、PC−PDMS共重合体は、薄膜形成性
を高める役割をもつポリカーボネート共 1重合体酸分
の為に、気体透過性が小さく、接着性を向上せしめる為
に介在した該薄膜が、複合膜の透過性能を低下させると
いう欠点があった。However, the PC-PDMS copolymer has low gas permeability due to the acid content of the polycarbonate monopolymer, which plays a role in improving thin film formation. This had the disadvantage of lowering the permeability of the material.
また、PC−PDMS共重合体のかわりに架橋したポリ
ジメチルシロキサンを使用する事が考えられる。しかし
、接着性が高く気体透過性の高い素材にもかかわらず従
来知られている三官能以下の架橋剤で架橋したものは、
薄膜とする事ができず、複合膜の気体透過性が低いとい
う欠点があった。It is also possible to use crosslinked polydimethylsiloxane instead of the PC-PDMS copolymer. However, despite the materials having high adhesiveness and high gas permeability, materials cross-linked with conventionally known trifunctional or less cross-linking agents,
The drawback was that it could not be made into a thin film and the gas permeability of the composite membrane was low.
(発明が解決しようとする問題点)
本発明の目的は、上記欠点を解消せしめ、薄膜層が多孔
質支持膜から剥離せず、気体分離性能と気体透過性能が
ともに優れている気体分離用複合膜を提供せんとするも
のである。(Problems to be Solved by the Invention) The object of the present invention is to solve the above-mentioned drawbacks, and to provide a composite material for gas separation that does not peel off the thin film layer from the porous support membrane and has excellent gas separation performance and gas permeation performance. The purpose is to provide a membrane.
(問題点を解決するための手段)
本発明は、上記目的を達成するため次の構成、すなわち
、多孔質支持体Aと、高気体分離性を有する重合体から
なる極薄膜Bとの間に、四官能以上のシランおよびシロ
キサン架橋剤で架橋したポリオルガノシロキサンからな
るI!iu膜Cが介在されてなる気体分離用複合膜であ
る。(Means for Solving the Problems) In order to achieve the above object, the present invention has the following configuration, that is, between a porous support A and an ultra-thin membrane B made of a polymer having high gas separation properties. , I! consisting of a polyorganosiloxane crosslinked with a tetrafunctional or higher functional silane and a siloxane crosslinking agent. This is a composite membrane for gas separation in which an iu membrane C is interposed.
本発明にお(プる、多孔質支持体へとは、N膜を支持す
るものであればよく、和紙、不織布、合成紙、濾紙、布
、金網、濾過膜、限外濾過膜等があげられるが、その中
でも表面の平滑性および凡の小さい方が補強上好ましい
ので限外濾過膜が好適である。限外濾過膜を具体的に例
示すると、ポリスルホン多孔質支持膜、ポリエーテルス
ルホン多孔質支持膜、ポリプロピレン多孔質支持膜、ポ
リテトラフルオロエチレン多孔質支持膜など挙げること
ができる。これら多孔質支持体Aの形状は、シート状、
管状、繊維状などがあるが特に限定されない。In the present invention, the porous support may be any material that supports the N membrane, such as Japanese paper, nonwoven fabric, synthetic paper, filter paper, cloth, wire mesh, filtration membrane, ultrafiltration membrane, etc. However, among these, ultrafiltration membranes are preferable because surface smoothness and small diameter are preferable for reinforcement.Specific examples of ultrafiltration membranes include polysulfone porous support membranes, polyethersulfone porous support membranes, etc. Support membranes, polypropylene porous support membranes, polytetrafluoroethylene porous support membranes, etc. can be mentioned.The shapes of these porous supports A are sheet-like,
It may be tubular or fibrous, but is not particularly limited.
次に、本発明における高気体分離性を有する重合体から
なる極薄膜Bとは、気体分離性が高く、かつ気体透過性
の比較的すぐれた重合体であれば何でも良いが、薄膜形
成性、気体分離性、気体透過性のバランスの点で以下の
重合体が好ましい。Next, the ultra-thin film B made of a polymer having high gas separation properties in the present invention may be any polymer as long as it has high gas separation properties and relatively good gas permeability. The following polymers are preferred in terms of the balance between gas separation properties and gas permeability.
ポリ(4−メチルペンテン−1)、ポリエチレン/プロ
ピレン共重合体、ポリビニルトリメデル(但し、mは1
,2.3の整数。R1は−C1−l5−G2 +−15
,−C3Ht、−C4H9,7CsH,1のアルキル基
から成る群より選ばれる。)で表ねされるポリフェニレ
ンオキサイド、あるいは、−R2は−C211+ O−
、fC2H40ゴ、千〇3H60+、+C+HaO÷、
+ C51−I IQ O+から成る群より選ばれる。Poly(4-methylpentene-1), polyethylene/propylene copolymer, polyvinyl trimedel (where m is 1
, 2.3 integers. R1 is -C1-l5-G2 +-15
, -C3Ht, -C4H9,7CsH,1. ), or -R2 is -C211+ O-
, fC2H40go, 1003H60+, +C+HaO÷,
+C51-I IQ O+.
)で表わされるポリウレタン、あるいは一般式が
7CH2、−C2H4−H4−1−C3H6−1−C4
171より成る群より選ばれる。ここでmは1゜2.3
の整数。〉で表わされるポリスルホンであった。) or whose general formula is 7CH2, -C2H4-H4-1-C3H6-1-C4
Selected from the group consisting of 171. Here m is 1°2.3
an integer of It was a polysulfone represented by
その中でも、特に好ましいのは、ポリ(4メチルペンテ
ン−1)とポリビニルトリメチルシランテアル。i i
l jm B ノIll 厚ハ、0.01μ以上0゜3
μ以下が好ましい。膜厚が0.01μを越えない場合は
、ピンホールが発生して気体分離性能は低くなり、0.
3μを越える場合には、気体透過抵抗が大きくなり、複
合膜の気体透過性能が低くなるので好ましくない。Among these, particularly preferred are poly(4-methylpentene-1) and polyvinyltrimethylsilanteal. i i
l jm B ノIll Thickness: 0.01μ or more 0゜3
It is preferably less than μ. If the film thickness does not exceed 0.01 μm, pinholes will occur and the gas separation performance will decrease.
If it exceeds 3μ, the gas permeation resistance increases and the gas permeation performance of the composite membrane decreases, which is not preferable.
本発明における四官能以上のシランおよびシロキサン架
橋剤とは、ポリオルガノシロキサンの末端シラノール基
と反応する四官能以上の縮合型シランおよびシロキサン
架橋剤のことである。この中、シラン架橋剤の種類とし
ては、テトラアセトキシシランに代表されるアセトキシ
系シラン、テトラジメチルオキシムシランに代表される
オキシム系シラン、エチルオルソシリケート、プロビル
オルソシリケートに代表されるアルコキシ系シラン、テ
トラキスイソプロベニキシシランに代表されるアルケニ
ルオキシ系シラン、アミド系シラン、アミノ系シランな
どがある。架橋速度が速いという点で、アセトキシ系シ
ラン、オキシム系シラン、アルコキシ系シラン、アルケ
ニルオキシ系シランが好ましい。その中で特に好ましい
ものは、テトラアセトキシシラン、テトラジメチルオキ
シムシラン、エチルオルソシリケートである。また、四
官能以上のシロキサン架橋剤としては、三官能シランと
四官能シランの共加水分解縮合物や各四官能シランの部
分加水分解縮合物や三官能シランと三官能シランの共加
水分解縮合物および三官能シランと四官能シランの共加
水分解綜合物などの多官能シランが加水分解して生成さ
れる四官能以上の縮合物がある。その中で好ましいのは
三官能シランと四官能シランの共加水分解縮合物や、各
四官能シランの部分加水分解縮合物である。その他のシ
ロキサンは架橋速度が遅いため好ましくない。The term "tetrafunctional or higher functional silane and siloxane crosslinking agent" in the present invention refers to a tetrafunctional or higher functional condensed silane and siloxane crosslinking agent that reacts with the terminal silanol group of polyorganosiloxane. Among these, the types of silane crosslinking agents include acetoxy silanes represented by tetraacetoxysilane, oxime silanes represented by tetradimethyloxime silane, alkoxy silanes represented by ethyl orthosilicate and probyl orthosilicate, Examples include alkenyloxy silanes represented by tetrakisisoprobenoxysilane, amide silanes, and amino silanes. Preferred are acetoxy-based silanes, oxime-based silanes, alkoxy-based silanes, and alkenyloxy-based silanes because of their high crosslinking speeds. Particularly preferred among these are tetraacetoxysilane, tetradimethyloxime silane, and ethyl orthosilicate. In addition, as tetrafunctional or higher functional siloxane crosslinking agents, cohydrolyzed condensates of trifunctional silanes and tetrafunctional silanes, partial hydrolyzed condensates of each tetrafunctional silane, and cohydrolyzed condensates of trifunctional silanes and trifunctional silanes. There are also tetrafunctional or higher functional condensates produced by hydrolysis of polyfunctional silanes, such as co-hydrolyzed sulfates of trifunctional silanes and tetrafunctional silanes. Among these, preferred are cohydrolyzed condensates of trifunctional silanes and tetrafunctional silanes, and partial hydrolyzed condensates of each tetrafunctional silane. Other siloxanes are not preferred because of their slow crosslinking speeds.
好ましい具体的なシロキサン架橋剤としてはエチルポリ
シリケート、ペンタジメチルオキシムシロキサン、ヘキ
サジメチルオキシムシロキサン、ヘキサアセトキシシロ
キサンなどがある。Preferred specific siloxane crosslinking agents include ethyl polysilicate, pentadimethyloxime siloxane, hexadimethyloxime siloxane, and hexaacetoxysiloxane.
本発明におけるポリオルガノシロキサンは、末端基の数
の少なくとも5Qmo1%以上、好ましくは、80mo
1%以上、さらに好ましくは末端基が全てシラノール基
である重合体である。末端基の数の50mo1%未満が
シラノール基の場合、未架橋のポリオルガノシロキサン
の存在の為、著しく架橋速度が低下し、薄膜形成性が悪
くなり好ましくない。The polyorganosiloxane in the present invention has at least 5Qmo1% or more of the number of terminal groups, preferably 80mo
1% or more, more preferably a polymer in which all terminal groups are silanol groups. If less than 50 mo1% of the terminal groups are silanol groups, the crosslinking rate will drop significantly due to the presence of uncrosslinked polyorganosiloxane, and thin film forming properties will deteriorate, which is undesirable.
ポリオルガノシロキサンの分子量は、1,000以上3
00.000以下、好ましくは、10゜000以上、i
oo、ooo以下が望ましい。分子量が1,000未満
の場合、架橋密度が高すぎてもろくなり、ピンホールレ
スの極薄膜を得る事が困難である為、好ましくない。ま
た、分子量が300.000を越える場合は、架橋密度
の低下や架橋速度の低下により、薄膜形成性が著しく損
なわれるので好ましくない。The molecular weight of polyorganosiloxane is 1,000 or more3
00.000 or less, preferably 10°000 or more, i
oo, ooo or less is desirable. If the molecular weight is less than 1,000, the crosslinking density is too high and it becomes brittle, making it difficult to obtain an extremely thin film without pinholes, which is not preferable. Furthermore, if the molecular weight exceeds 300,000, it is not preferable because thin film forming properties are significantly impaired due to a decrease in crosslinking density and a decrease in crosslinking speed.
ポリオルガノシロキサンの化学構造は、次式で示される
。The chemical structure of polyorganosiloxane is shown by the following formula.
→5i−0−)−i:1
2
(但し、R1、R2は−CHs 、−〇2 Hs、−N
)−12、−CH=CH2、−CaHsから選ばれる。→5i-0-)-i:1 2 (However, R1 and R2 are -CHs, -〇2 Hs, -N
)-12, -CH=CH2, -CaHs.
)
であるが、好ましいのはR1、R2とも一〇H3で、そ
れ以外の置換基は気体透過性が低く、薄膜形成性が悪い
為好ましくない。) However, preferred is 10H3 for both R1 and R2, and other substituents are not preferred because they have low gas permeability and poor thin film forming properties.
このポリオルガノシロキサン極薄膜の膜厚は、0.01
μ以上、1.0μ以下が好ましい。膜厚が0.01μに
満たない場合は、ピンホールが発生し易くなり好ましく
ない。膜厚が1.0μを越える場合は、複合膜の気体透
過性の低下が著しく好ましくない。The film thickness of this polyorganosiloxane ultra-thin film is 0.01
It is preferably 1.0 μ or more and 1.0 μ or less. If the film thickness is less than 0.01 μm, pinholes are likely to occur, which is undesirable. If the film thickness exceeds 1.0 μm, the gas permeability of the composite film will significantly decrease, which is undesirable.
本発明の気体分離用積層複合膜の製造方法について説明
する。 ゛
あらかじめ、四官能以上のシランおよびシロキサン架橋
剤と、ポリオルガノシロキサンと、触媒を水と非混和性
の溶媒に溶解した溶液を調製する。The method for manufacturing the laminated composite membrane for gas separation of the present invention will be explained. ``In advance, a solution is prepared in which a tetrafunctional or higher functional silane and a siloxane crosslinking agent, a polyorganosiloxane, and a catalyst are dissolved in a water-immiscible solvent.
ポリオルガノシロキサンの濃度は、0.01wt%以上
5.0wt%以下が好ましい。濃度が0.01wt%に
満たない場合、ピンホールレスの薄膜を形成する事が困
難になり、5.□wt%を越える場合は、1.0μ未満
のIIIを得る事が難しく好ましくない。シランおよび
シロキサン架橋剤の添加量は、ポリオルガノシロキサン
の末端シラノール基数の2倍以上20倍以下が好ましく
、それ以外の添加量では、ゲル化が進んだり、架橋速度
が遅くなる為好ましくない。触媒は、架橋速度を速くす
るため添加するが、ジブチル錫ジアセテート、ジブチル
錫ジオクトエート、スタナスオクトエートなどがある。The concentration of polyorganosiloxane is preferably 0.01 wt% or more and 5.0 wt% or less. If the concentration is less than 0.01 wt%, it becomes difficult to form a pinhole-free thin film.5. If it exceeds □wt%, it is difficult to obtain III of less than 1.0μ, which is not preferable. The amount of silane and siloxane crosslinking agent added is preferably 2 times or more and 20 times or less the number of terminal silanol groups of the polyorganosiloxane. Any other amount is not preferable because gelation progresses or the crosslinking rate becomes slow. Catalysts are added to increase the crosslinking rate, and include dibutyltin diacetate, dibutyltin dioctoate, stannath octoate, and the like.
溶媒は、水と非混和性である事が好ましい。水と非混和
性でないと、架橋反応の反応開始剤である水が溶媒中に
含まれる為、溶液中で架橋が進み取り扱いが不便で好ま
しくない。これらの溶媒には、シクロヘキサン、エチル
エーテル、 )クロロホルム、ペンタン、ジオキサン、
フレオン系溶媒、ヘキサメチルジシロキサンなどがある
。Preferably, the solvent is immiscible with water. If it is not miscible with water, water, which is a reaction initiator for the crosslinking reaction, will be included in the solvent, so crosslinking will proceed in the solution, making handling inconvenient and undesirable. These solvents include cyclohexane, ethyl ether, )chloroform, pentane, dioxane,
Freon solvents, hexamethyldisiloxane, etc.
この溶媒は、多孔質支持体を浸さない事が必要であり、
多孔質支持体との組み合せで選ばなければならない。こ
の様にして調製された溶液を、多孔質支持体に薄く均−
叫塗布し、熱風で乾燥して複金膜を作成する。次に、高
気体分離性を有する重合体を、ベンゼン、トルエン、キ
シレン、ジクロロメタン、ジクロロエタン、シクロヘキ
サン、シクロヘキセン、テトラクロロエタン等の溶媒に
溶解し製膜液B′を調製する。濃度は、o、oi〜5.
0wt%、特に好ましくは、0.03〜2.0wt%が
適当であった。It is necessary that this solvent does not soak the porous support.
It must be selected in combination with the porous support. The solution prepared in this way is spread thinly and uniformly onto a porous support.
It is coated and dried with hot air to create a composite gold film. Next, a polymer having high gas separation properties is dissolved in a solvent such as benzene, toluene, xylene, dichloromethane, dichloroethane, cyclohexane, cyclohexene, or tetrachloroethane to prepare a film forming solution B'. The concentration is o, oi to 5.
0 wt%, particularly preferably 0.03 to 2.0 wt%, was suitable.
このように調製した製膜液B′を水面上に滴下し、展開
して薄膜を形成させ、あらかじめ作成したポリオルガノ
シロキサン複合膜の薄膜表面に担持し気体分離用複合膜
を作成する。The membrane-forming solution B' prepared in this manner is dropped onto the water surface, spread to form a thin film, and supported on the thin film surface of a polyorganosiloxane composite membrane prepared in advance to prepare a composite membrane for gas separation.
なお、本発明における特性の評価基準は次のとおりであ
る。Note that the evaluation criteria for characteristics in the present invention are as follows.
(1)気体透過性、気体分離性
本発明の気体分離用複合膜を隔てて、−次側の圧力を2
atm二次側の圧力を1 atmにし、複合膜を透過
してきた気体(酸素または窒素)透過速度を精密膜流量
計5F−101(スタンダード・テクノロジー社製)で
測定した。(1) Gas permeability and gas separation property The composite membrane for gas separation of the present invention is separated so that the pressure on the next side can be reduced to 2
The pressure on the ATM secondary side was set to 1 atm, and the permeation rate of gas (oxygen or nitrogen) passing through the composite membrane was measured using a precision membrane flowmeter 5F-101 (manufactured by Standard Technology).
酸素透過度を気体透過性能とし、酸素透過速度と窒素透
過速度の比である分離係数を気体分離性能の評価基準と
した。The oxygen permeability was defined as the gas permeation performance, and the separation coefficient, which is the ratio of the oxygen permeation rate to the nitrogen permeation rate, was used as the evaluation standard for the gas separation performance.
(2) 接着性
本発明の気体分離用複合膜の極薄膜8表面上に、別々に
準備した多孔質支持体を載置して圧力2g/dで加圧接
着させた後、多孔質支持膜を剥離した。剥離後の気体分
離用複合膜の気体(酸素または窒素)透過速度を前記同
様測定し、酸素透過速度と分離係数を接着前と剥離後の
差異で評価した。(2) Adhesion After placing a separately prepared porous support on the surface of the ultra-thin membrane 8 of the composite membrane for gas separation of the present invention and adhering it under pressure at a pressure of 2 g/d, the porous support membrane was peeled off. The gas (oxygen or nitrogen) permeation rate of the composite membrane for gas separation after peeling was measured in the same manner as described above, and the oxygen permeation rate and separation coefficient were evaluated based on the difference between before and after peeling.
(実施例) 次に、実施例に基づいて本発明の実施態様を説明する。(Example) Next, embodiments of the present invention will be described based on Examples.
実施例1
両末端がシラノール基であるポリジメチルシロキサン(
数平均分子量約5万)9.5重量部、エチルオルソシリ
グー1〜0.4重吊部、スタナス2−エチルヘキソエー
ト0.1m1部をシクロヘキサンに溶解し、固形分Q、
5wt%に調製する。この希薄溶液をポリスルボン多孔
質支持体に塗布し、120℃で1分間加熱乾燥した後、
室温で10分間乾燥し複合膜を作成した゛。次に、ポリ
〈4メチルペンテン−1)(商品名TPX−MXOO1
、三井石油化学社製)をシクロヘキセンに溶解し、0.
1重金部に調製する。この溶液を水面上に展開し、薄膜
を形成させ、あらかじめ作成したポリジメチルシロ主1
ノーン複合膜の薄膜表面に、該薄膜を担持して気体分離
用複合膜を作成した。ポリ(4メチルペンテン−1)薄
膜の膜厚は約0.02μ、ポリジメチルシロキサン薄膜
の膜厚は約0゜1μであった。この気体分離用複合膜の
酸素透過速度ならびに酸素と窒素の分離係数を測定しl
j結果を表−1に示す。ポリジメチルシロキサン薄膜を
介在したにもかかわらず高気体透過性能でかつ高気体分
離性能であった。Example 1 Polydimethylsiloxane with silanol groups at both ends (
9.5 parts by weight (number average molecular weight: approximately 50,000), 1 to 0.4 parts of ethyl orthosiligo, and 0.1 ml part of Stanas 2-ethylhexoate were dissolved in cyclohexane, solid content Q,
Adjust to 5wt%. This diluted solution was applied to a polysulfone porous support, and after heating and drying at 120°C for 1 minute,
A composite membrane was prepared by drying at room temperature for 10 minutes. Next, poly(4-methylpentene-1) (product name TPX-MXOO1)
, manufactured by Mitsui Petrochemicals Co., Ltd.) was dissolved in cyclohexene.
Adjust to 1 part of heavy metal. Spread this solution on the water surface to form a thin film,
A composite membrane for gas separation was prepared by supporting the thin film on the surface of the non-non composite membrane. The thickness of the poly(4-methylpentene-1) film was approximately 0.02 μm, and the thickness of the polydimethylsiloxane thin film was approximately 0°1 μm. The oxygen permeation rate and oxygen and nitrogen separation coefficient of this composite membrane for gas separation were measured.
j The results are shown in Table-1. Despite the presence of a polydimethylsiloxane thin film, high gas permeability and high gas separation performance were achieved.
実施例2
ボリフエニレンオキザイド(重聞平均分子量約5万)を
ベンゼンに溶解し、Q、5wt%の溶液を調製する。こ
の溶液を水面上に展開し薄膜を形成させる。実施例1と
同様の作成方法で作成したポリジメチルシロキサン複合
膜の薄膜表面に該薄膜を担持し気体分離用複合膜を作成
した。ポリフェニレンオキサイド薄膜の膜厚は約0.0
4/l、ポリジメチルシロキサンIII!の膜厚は約0
.1μであった。この気体分離用複合膜の酸素透過速度
ならびに酸素と窒素の分離係数を測定した結果を表−1
に示す。気体透過性と気体分離性はともに1曇れている
。Example 2 Borifuenylene oxide (weighted average molecular weight of about 50,000) is dissolved in benzene to prepare a 5 wt % Q solution. This solution is spread on the water surface to form a thin film. A polydimethylsiloxane composite membrane prepared by the same method as in Example 1 was supported on the surface of the thin film to prepare a composite membrane for gas separation. The thickness of the polyphenylene oxide thin film is approximately 0.0
4/l, polydimethylsiloxane III! The film thickness is approximately 0
.. It was 1μ. Table 1 shows the results of measuring the oxygen permeation rate and oxygen and nitrogen separation coefficient of this composite membrane for gas separation.
Shown below. Both gas permeability and gas separation are 1 cloudy.
実施例3
実施例1で作成した気体分離用複合膜の薄膜表面に、ポ
リスルホン多孔質支持体を圧力2 ’;J / aKで
接着させた後剥離して、気体分離用複合膜の酸素透過速
度ならびに酸素と窒素の分離係数を測定した結果を表−
2に示す。Example 3 A polysulfone porous support was adhered to the thin film surface of the composite membrane for gas separation prepared in Example 1 at a pressure of 2'; J/aK and then peeled off to determine the oxygen permeation rate of the composite membrane for gas separation. The table below shows the results of measuring the separation coefficient between oxygen and nitrogen.
Shown in 2.
実施例4
実施例2で作成した気体分離用複合膜に実施例3と同様
にして行なった接着剥1!Iff後の結果を表−2に示
す。Example 4 Adhesion peeling 1 was performed on the gas separation composite membrane prepared in Example 2 in the same manner as in Example 3! The results after Iff are shown in Table-2.
実施例3、実施例4とも接着剥11!+前後で気体透過
性ならびに気体分離性は変化せず、本発明が接着性の良
い事を示している。Adhesion peeling in both Examples 3 and 4 was 11! Gas permeability and gas separation properties do not change between before and after +, indicating that the present invention has good adhesive properties.
比較例1
実施例1で調製したポリ(4メヂルペンテンー1)シク
ロヘキセンQ、1wt%溶液を水面に展開し、薄膜を形
成した。この薄膜をポリスルホン多孔質支持体に担持し
、気体分離用複合膜を作成した。この複合膜のポリ(4
メチルペンテン−1)薄膜の膜厚は約0.02μであっ
た。この気体分離用複合膜の酸素透過速度および酸素と
窒素の分離係数を測定した結果を表−1に示す。実施例
1で作成したポリジメチルシロキサン1llXを介在せ
しめた気体分離用複合膜が、気体透過性の点で劣ってい
ない事がわかる。Comparative Example 1 A 1 wt % solution of poly(4-methylpentene-1) cyclohexene Q prepared in Example 1 was spread on a water surface to form a thin film. This thin film was supported on a polysulfone porous support to prepare a composite membrane for gas separation. This composite membrane poly(4
The thickness of the methylpentene-1) thin film was about 0.02μ. Table 1 shows the results of measuring the oxygen permeation rate and oxygen/nitrogen separation coefficient of this composite membrane for gas separation. It can be seen that the composite membrane for gas separation containing polydimethylsiloxane 1llX prepared in Example 1 is not inferior in terms of gas permeability.
比較例2
実施例2で調製したポリフェニレンオキサイドのベンゼ
ンQ、5wt%溶液を水面上に展開し、薄膜を形成せし
め、ポリスルホン多孔質支持体膜に担持して気体分離用
複合膜を作成する。ポリフェニレンオキサイド薄膜の膜
厚は約0.04μであった。この気体分離用複合膜の酸
素透過速度および酸素と窒素の分離係数を測定した結果
を表−1に示す。実施例2で作成したポリジメチルシロ
キサン薄膜を介在せしめた気体分離用複合膜が気体透過
性の点で劣っていないことがわかる。Comparative Example 2 A 5 wt % solution of polyphenylene oxide in benzene Q prepared in Example 2 is spread on a water surface to form a thin film and supported on a polysulfone porous support membrane to prepare a composite membrane for gas separation. The thickness of the polyphenylene oxide thin film was about 0.04μ. Table 1 shows the results of measuring the oxygen permeation rate and oxygen/nitrogen separation coefficient of this composite membrane for gas separation. It can be seen that the composite membrane for gas separation in which the polydimethylsiloxane thin film prepared in Example 2 was interposed was not inferior in terms of gas permeability.
比較例3
比較例1で作成した気体分離用複合膜の薄膜表面に、ポ
リスルホン多孔質支持体を圧力2Q/aKで加圧接着さ
せ、その後剥離した気体分離用複合膜の酸素透過速度、
酸素と窒素の分離係数を測定し、表−2に示す。Comparative Example 3 A polysulfone porous support was adhered to the thin film surface of the gas separation composite membrane prepared in Comparative Example 1 at a pressure of 2Q/aK, and the oxygen permeation rate of the gas separation composite membrane was then peeled off.
The separation coefficient between oxygen and nitrogen was measured and shown in Table 2.
比較例4
比較例2で作成した気体分離用複合膜を比較例3と同様
にして加圧接着させ、その後剥離した。Comparative Example 4 The composite membrane for gas separation prepared in Comparative Example 2 was bonded under pressure in the same manner as Comparative Example 3, and then peeled off.
気体分離用複合膜の酸素透過速度、酸素と窒素の分離係
数を測定し表−2に示す。The oxygen permeation rate and the separation coefficient between oxygen and nitrogen of the composite membrane for gas separation were measured and are shown in Table 2.
比較例31.比較例4ともポリジメチルシロキサン薄膜
を介在させない気体分離用複合膜は接着性が悪く気体分
離性能が失なわれてしまうことがわかる。Comparative example 31. It can be seen that in Comparative Example 4, the composite membrane for gas separation without a polydimethylsiloxane thin film had poor adhesion and lost gas separation performance.
1
上記から明らかなように本発明の気体分離性能 11.
1合膜は、薄膜層Bが多孔質支持体Δから剥離しにくい
為、取り扱い性が良く、気体透過性、気体分離性がとも
に優れていることがわかる。1. Gas separation performance of the present invention as is clear from the above 11.
It can be seen that the No. 1 composite film has good handling properties because the thin film layer B is difficult to peel off from the porous support Δ, and has excellent gas permeability and gas separation performance.
表−1
*2 0y2.:窒素透過速度(m!/m2− hr−
atm )*3 α :分離係数
表−2
(発明の効果)
本発明の気体分離用複合膜は、多孔質支持体Aと高気体
分離性を有する重合体からなる極薄膜Bの間に、四官能
以上のシランおよびシロキサン架橋剤で架橋したポリオ
ルガノシロキサンからなる極薄膜Cが介在されているの
でポリオルガノシロキサンの優れた接着性ならびに気体
透過性により、次のような優れた効果を得ることができ
る。Table-1 *2 0y2. :Nitrogen permeation rate (m!/m2-hr-
atm) *3 α: Separation coefficient table-2 (Effects of the invention) The composite membrane for gas separation of the present invention has a Since the ultra-thin film C made of polyorganosiloxane crosslinked with a functional or higher silane and siloxane crosslinking agent is interposed, the following excellent effects can be obtained due to the excellent adhesiveness and gas permeability of polyorganosiloxane. can.
(1) 複合膜は、使用時に薄膜が剥離しない為、取り
扱い性に優れている。(1) Composite membranes are easy to handle because the thin film does not peel off during use.
(2) 気体分離性能および気体透過性能がともに著し
く優れている。(2) Both gas separation performance and gas permeation performance are extremely excellent.
特許出願人 東 し 株 式 会 社
手続補正南
69.11.14
昭和 年 月 日
特許庁長官 志賀 学 殿
づ、事件の表示
昭和59年特許願第114512号
2、発明の名称
気体分離用複合膜
3、補正をする者
事件との関係 特許出願人
件 所 東京都中央区日本橋至町2丁目2番地5、補正
により増加する発明の数 なし6、補正の対象
明細書の1特許請求の範囲」の欄および「発明の詳細な
説明」の欄
7、補■の内容
明細m中
(1) 第3頁14行
[および1を[架橋剤または四官能以上の」と補正する
。Patent Applicant Azuma Shi Co., Ltd. Company Procedures Amendment South 69.11.14 1939 Date of Patent Office Commissioner Manabu Shiga Dear Manabu Shiga, Indication of Case 1982 Patent Application No. 114512 2 Name of Invention Composite membrane for gas separation 3. Relationship with the case of the person making the amendment Patent applicant Address: 2-2-5 Nihonbashi Tocho, Chuo-ku, Tokyo Number of inventions increased by the amendment None 6. Scope of one patent claim in the specification to be amended Column 7 of "Detailed Description of the Invention", Supplement (1), page 3, line 14, in Column 7, supplement (2), line 14.
(2) 第6貞8行
「および」を[架橋剤または四官能以上の」と補正する
。(2) Correct “and” in line 8 of the 6th sentence to read “crosslinking agent or tetrafunctional or higher functional”.
(3) 第6貞11行
[および1を[架橋剤または四官能以、トの縮合型Iと
補正する。(3) Line 6, line 11 [and 1 are corrected as [cross-linking agent or tetrafunctional, condensed type I].
(4) 第6頁12行 「シラン」を「四官能以上のシラン」と補正する。(4) Page 6, line 12 Correct "silane" to "silane with four or more functional functions".
(5) 第7真15行 「および」を1または」と補正する。(5) 7th true line 15 Correct "and" to "1 or".
(6) 第7頁8行
[シロキサンjを「四官能以上のシロキ→プン」と補正
する。(6) Page 7, line 8 [Siloxane j is corrected as "siloxane with four or more functional functions → pun".
(7) 第9頁15行
[および−1を[架橋剤または四官能以上の1と補正す
る。(7) Page 9, line 15 [and -1 is corrected to [crosslinking agent or 1 with tetrafunctional or higher functionality].
(8) 第10頁3行 [シランJを1−四官能以上のシラン−1と補正する。(8) Page 10, line 3 [Silane J is corrected with mono-tetrafunctional or higher functional silane-1.
(9) 第10頁3tj
「および」を1=架橋剤または四官能以上の)と補正づ
る。(9) Page 10 3tj "and" is amended to read 1=crosslinking agent or tetrafunctional or higher functional.
(10) 第17頁第15行 rQ N2 、Jをf’Q 02 Jと補■する。(10) Page 17, line 15 Complement rQ N2 , J with f'Q 02 J.
(11) 第18頁4イー1
r d3よび1を[架橋剤または四官能以−にの−1と
補正する。(11) Page 18 4E1 r d3 and 1 are corrected to [crosslinking agent or -1 of more than tetrafunctionality].
(12、特許請求の範囲を別紙のごとく補正する。(12. The claims are amended as shown in the attached sheet.
別紙 特許請求の範囲Attachment Scope of claims
Claims (1)
る極薄膜Bの間に、四官能以上のシランおよびシロキサ
ン架橋剤で架橋したポリオルガノシロキサンからなる極
薄膜Cが介在されてなる気体分離用複合膜。A gas in which an ultra-thin film C made of a polyorganosiloxane cross-linked with a tetrafunctional or higher functional silane and a siloxane cross-linking agent is interposed between a porous support A and an ultra-thin film B made of a polymer having high gas separation properties. Composite membrane for separation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59114512A JPS60257806A (en) | 1984-06-06 | 1984-06-06 | Gas separating composite membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59114512A JPS60257806A (en) | 1984-06-06 | 1984-06-06 | Gas separating composite membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60257806A true JPS60257806A (en) | 1985-12-19 |
JPH0419891B2 JPH0419891B2 (en) | 1992-03-31 |
Family
ID=14639605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59114512A Granted JPS60257806A (en) | 1984-06-06 | 1984-06-06 | Gas separating composite membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60257806A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61111121A (en) * | 1984-11-02 | 1986-05-29 | Toray Ind Inc | Composite membrane for separating gas |
EP0256530A2 (en) * | 1986-08-14 | 1988-02-24 | Toray Industries, Inc. | Gas separation membrane |
EP0681862A2 (en) * | 1994-05-09 | 1995-11-15 | Hoechst Aktiengesellschaft | Composite membrane and process for the production thereof |
JP2013166131A (en) * | 2012-02-16 | 2013-08-29 | Fujifilm Corp | Composite separation membrane, and separation membrane module using the same |
CN113522048A (en) * | 2021-07-13 | 2021-10-22 | 陕西科技大学 | Oil-water separation membrane based on oxime carbamate bond, preparation method and application thereof |
-
1984
- 1984-06-06 JP JP59114512A patent/JPS60257806A/en active Granted
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61111121A (en) * | 1984-11-02 | 1986-05-29 | Toray Ind Inc | Composite membrane for separating gas |
EP0256530A2 (en) * | 1986-08-14 | 1988-02-24 | Toray Industries, Inc. | Gas separation membrane |
EP0681862A2 (en) * | 1994-05-09 | 1995-11-15 | Hoechst Aktiengesellschaft | Composite membrane and process for the production thereof |
EP0681862A3 (en) * | 1994-05-09 | 1996-01-17 | Hoechst Ag | Composite membrane and process for the production thereof. |
JP2013166131A (en) * | 2012-02-16 | 2013-08-29 | Fujifilm Corp | Composite separation membrane, and separation membrane module using the same |
US9314736B2 (en) | 2012-02-16 | 2016-04-19 | Fujifilm Corporation | Separation composite membrane and separating membrane module using the same |
CN113522048A (en) * | 2021-07-13 | 2021-10-22 | 陕西科技大学 | Oil-water separation membrane based on oxime carbamate bond, preparation method and application thereof |
CN113522048B (en) * | 2021-07-13 | 2022-07-01 | 陕西科技大学 | Oil-water separation membrane based on oxime carbamate bond, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0419891B2 (en) | 1992-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2527528B2 (en) | Composite gas separation membrane and its manufacturing method | |
EP0143552B1 (en) | Composite membrane and process for the production thereof | |
JPH07304887A (en) | Composite membrane and its preparation | |
JPH057749A (en) | Fluorine-containing polyimide type composite membrane and asymmetric membrane, preparation of them and gas separating/concentrating method using said membranes | |
JPS59154106A (en) | Gas-separation membrane | |
JPS6135803A (en) | Composite hollow yarn | |
JPS59225705A (en) | Composite membrane and preparation thereof | |
JPS60257806A (en) | Gas separating composite membrane | |
JPS60257803A (en) | Permselective composite membrane | |
JPH0479687B2 (en) | ||
JPS59199001A (en) | Composite membrane for gas separation and its manufacture | |
JPH119974A (en) | Composite hollow-yarn membrane for external pressure gas separation and method for producing the same | |
JPH01262922A (en) | Reactive post-treatment of gas separation membrane | |
JPS61120617A (en) | Composite membrane for separating gas | |
JPS61111121A (en) | Composite membrane for separating gas | |
JPS61107923A (en) | Method for producing gas selectively permeable composite membrane | |
JPS61149226A (en) | Gas permselective composite membrane and preparation thereof | |
JPS61107908A (en) | Manufacture of composite semipermeable membrane | |
JPS62227409A (en) | Method for repairing permselective composite membrane | |
JPS63194701A (en) | Composite membrane | |
JPH0451217B2 (en) | ||
JPH08215550A (en) | Dual membrane and its production | |
JPH05111626A (en) | Gaseous oxygen separating membrane and its production | |
JPH0693990B2 (en) | Composite membrane for gas separation | |
JP2506917B2 (en) | Porous support and gas separation composite membrane using the same |