JPS60257521A - Exposure apparatus for forming pattern - Google Patents
Exposure apparatus for forming patternInfo
- Publication number
- JPS60257521A JPS60257521A JP59113147A JP11314784A JPS60257521A JP S60257521 A JPS60257521 A JP S60257521A JP 59113147 A JP59113147 A JP 59113147A JP 11314784 A JP11314784 A JP 11314784A JP S60257521 A JPS60257521 A JP S60257521A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- light
- exposed
- exposure
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、集積回路用の基板上にレジストパターンの潜
像を形成するバタン形成用露光装置に関するもので、特
に2強力な遠紫外光源であるエキシマレーザを用いるこ
とにより、高精度かつ高速度のバタン形成を可能とする
ことを図ったものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an exposure device for forming a pattern that forms a latent image of a resist pattern on a substrate for an integrated circuit, and particularly relates to an exposure device for forming a pattern using two powerful deep ultraviolet light sources. By using an excimer laser, it is possible to form battens with high precision and high speed.
集積回路の製作に使用されるホトリソグラフィ技術にお
ける露光用光源のうち、最も多用されているものは紫外
線である。紫外線を用いた露光方式で実現できる実用的
最小バタン寸法は1.5uTn程度であるが、集積回路
の高密度化、大規模化にともない、今後より一層微細な
バタンか要求される。Among the light sources for exposure in photolithography techniques used in the fabrication of integrated circuits, the most commonly used light source is ultraviolet light. The practical minimum batten size that can be realized by an exposure method using ultraviolet rays is about 1.5 uTn, but as integrated circuits become denser and larger, even finer battens will be required in the future.
紫外線露光での最小バタン寸法を制限している要因のひ
とつは紫外線の波長(350〜450nm)であるため
、更に微細なバタンを得るためには短波長化が望まれる
。そのため、遠紫外露光法と呼ばれる200〜300n
mの波長を利用する方式が開発されている。光源には重
水素ランプやHg−Xeランプが光源として用いられる
が2強度・が不十分なため。One of the factors limiting the minimum batten size in ultraviolet exposure is the wavelength of the ultraviolet light (350 to 450 nm), so in order to obtain even finer battens, shorter wavelengths are desired. Therefore, 200~300n
A method using a wavelength of m has been developed. Deuterium lamps and Hg-Xe lamps are used as light sources, but their intensity is insufficient.
1回の露光に数分以上を要し、大量にかつ高速度で集積
回路を生産できないという欠点があった。One disadvantage is that it takes several minutes or more for one exposure, and integrated circuits cannot be produced in large quantities and at high speed.
ところで、紫外線を用いた露光方式には、コンタクト露
光方式、プロキシミティ露光方式、1対1投影露光方式
、縮小投影露光方式がある。このうち、2声以下のバタ
ンを有する集積回路の生産には縮小投影露光方式が適す
るが、その弱点は処理能力にある。例えば、超LSIと
呼ばれるような集積回路の生産に使用すると、4インチ
径ウェハでせいぜい40枚/時程度の処理能力しか達成
できない。処理能力を向上できない最大の原因はステッ
プアンドレピート方式とも呼ばれる。この方式のウェハ
移動方式にある。即ち、レチクルを固定し、ウェハを所
定位置に正確に静止させ、シャッタを開いて露光してか
らシャッタを閉じ2次にウェハを所定位置まで移動させ
静止後シャッタの開閉を行なうという動作を繰り返す方
式に原因がある。各動作に要する時間は使用条件によっ
て異なってくるが2本格的な超LSIといわれる256
にビットランダムアクセスMOSメモリの場合を想定す
れば、移動と静止に0.8〜1秒、露光即ちシャッタの
開から閉までが0.2秒と考えられ、移f aheth
+。−6,M7、ヵ。’J IPJ* ’it a h
6゜3れは、正確に位置を制御しながら移動と静止を
繰り返すという、この方法に本質的な問題であり。By the way, exposure methods using ultraviolet rays include a contact exposure method, a proximity exposure method, a one-to-one projection exposure method, and a reduction projection exposure method. Among these, the reduction projection exposure method is suitable for producing integrated circuits having two or less tones, but its weak point lies in its processing capacity. For example, when used in the production of integrated circuits called VLSIs, it is possible to achieve a throughput of only about 40 wafers/hour at most with a 4-inch diameter wafer. The biggest reason why processing performance cannot be improved is also called the step-and-repeat method. This method is based on the wafer movement method. In other words, the reticle is fixed, the wafer is accurately stopped at a predetermined position, the shutter is opened and exposed, the shutter is closed, and the wafer is then moved to a predetermined position and the shutter is opened and closed after the reticle is stopped. There is a cause. The time required for each operation varies depending on the usage conditions, but 256, which is said to be a full-scale ultra-LSI,
Assuming the case of a bit random access MOS memory, it is considered that it takes 0.8 to 1 second for movement and rest, and 0.2 seconds for exposure, that is, from opening to closing the shutter,
+. -6, M7, Ka. 'J IPJ* 'it a h
6.3 This is an essential problem with this method, which involves repeating movement and stopping while accurately controlling the position.
これを桁違いに高速化することは極めて困難である。It is extremely difficult to speed up this process by an order of magnitude.
本発明の目的は、従来技術での上記した問題を解決し、
微細パタンを高速に形成することができ。The purpose of the present invention is to solve the above-mentioned problems in the prior art,
Capable of forming fine patterns at high speed.
これにより、集積回路の生産性を向上することを可能と
するバタン形成用露光装置を提供することにある。Thereby, it is an object of the present invention to provide an exposure apparatus for forming a button, which makes it possible to improve the productivity of integrated circuits.
本発明の特徴は、上記目的を達成するために。 The features of the present invention are to achieve the above object.
光源として少なくともエキシマレーザを備え、この光源
からの光をマスクを通過させた後被露光基板に照射させ
る光束を形成する光学系と、上記光束と上記被露光基板
との相対的位置関係を連続的に変化させる手段と、上記
相対的位置関係が予め設定された位置関係に達した時点
で上記光源を発光させる制御系とを備えた構成とするこ
とにある。an optical system that includes at least an excimer laser as a light source, and that forms a beam of light that irradiates the substrate to be exposed after the light from the light source passes through a mask, and a relative positional relationship between the beam of light and the substrate to be exposed; and a control system that causes the light source to emit light when the relative positional relationship reaches a preset positional relationship.
1゛ 〔発明の実施例〕 以下8図面により本発明の詳細な説明する。1゛ [Embodiments of the invention] The present invention will be explained in detail with reference to the following eight drawings.
第1′図は本発明による屈折光学系縮小投影方式の露光
装置の構成図である。1はエキシマレーザを発生する光
源、2はレーザ光束の成形と露光量制御の機能をもつ光
学系、3はレチクル、4はレチクルを通過してきた光束
を収束、結像させる光学系、5はレーザ光束、6はノボ
ラック系ポジ形ホトレジスト膜、7はウェハ、8はウェ
ハ7を保持し移動させるステージである。エキシマレー
ザはKrFガスを用い発振波長は249’nm、パルス
出力は700mJ、パルス巾15nsecである。ホト
レジスト膜6の感度は約50mJ/cJである。光学系
2および4により、レーザ光束5はホトレジスト膜6上
では10mm角に収束され、1回のパルスでレジストを
感光させるに十分な強度をもつ。FIG. 1' is a block diagram of a refractive optical system reduction projection type exposure apparatus according to the present invention. 1 is a light source that generates an excimer laser, 2 is an optical system that functions to shape the laser beam and control the exposure amount, 3 is a reticle, 4 is an optical system that converges and images the light beam that has passed through the reticle, and 5 is a laser A luminous flux, 6 a novolak positive photoresist film, 7 a wafer, and 8 a stage for holding and moving the wafer 7. The excimer laser uses KrF gas, has an oscillation wavelength of 249'nm, a pulse output of 700mJ, and a pulse width of 15nsec. The sensitivity of the photoresist film 6 is approximately 50 mJ/cJ. By the optical systems 2 and 4, the laser beam 5 is converged to a 10 mm square on the photoresist film 6, and has sufficient intensity to expose the resist with one pulse.
第2図は、第1図の露光装置における露光動作を詳しく
説明するための図であり、5はレーザ光。FIG. 2 is a diagram for explaining in detail the exposure operation in the exposure apparatus of FIG. 1, and 5 is a laser beam.
束、6はホトレジスト、7はウェハ、9及び10は既に
露光されたチップ、11は露光中のチップ、12及び1
3は露光予定のチップの位置である。ウェハ7はステー
ジ上に保持されたまま、第2図の状態ではX方向に10
0mm / secの速さで連続移動している。チップ
9及び10を露光し、ウェハ7と光束5の位置関係が第
2図の如くなった時に1図示されていない位置検出信号
処理部からのトリガによって、エキシマレーザを発光さ
せ、ホトレジスト膜6を感光させる。この場合1位置検
出信号処理部の内部およびそのトリガを受けて発光する
までの時間遅れを予め見込んで信号処理を行なえる構成
としである。さて、エキシマレーザのパルス巾は15n
secであり、この間ホトレジスト膜6を支持するウェ
ハ7は100mn/secで移動している。従って。6 is a photoresist, 7 is a wafer, 9 and 10 are already exposed chips, 11 is a chip being exposed, 12 and 1
3 is the position of the chip to be exposed. The wafer 7 is held on the stage, and in the state shown in FIG.
It is continuously moving at a speed of 0mm/sec. When the chips 9 and 10 are exposed and the positional relationship between the wafer 7 and the light beam 5 becomes as shown in FIG. Expose to light. In this case, the structure is such that the signal processing can be performed while taking into account in advance the time delay between the interior of the 1-position detection signal processing section and the time from receiving the trigger to emitting light. Now, the pulse width of the excimer laser is 15n.
sec, and during this time the wafer 7 supporting the photoresist film 6 is moving at 100 mn/sec. Therefore.
パルス光が出ている時間にウェハが移動する距離は僅か
0 、0015 AMであり、集積回路に使用されるバ
タン幅に比較すると無視できる大きさである。チップ1
1の露光の後、引き続きチップ12.13を順次露光す
る。以上の例では、ウェハをX方向に連続移動させたが
、Y方向との移動を組み合わせることによりウェハ全面
にチップパタンを露光することができる。第3図はウェ
ハの移動経路の例を表わしている。この図のように移動
させた場合、4インチ径つェハ全面に10+nm角チッ
プを露光するのに要する時間は約6秒である。ウェハの
装着、脱着の時間を考慮に入れても1本露光装置の処理
量は数100枚/時を達成できる。The distance that the wafer moves during the time the pulsed light is emitted is only 0.0015 AM, which is negligible compared to the batten width used in integrated circuits. chip 1
After exposure 1, chips 12 and 13 are sequentially exposed. In the above example, the wafer was continuously moved in the X direction, but by combining movement with the Y direction, it is possible to expose the entire surface of the wafer with a chip pattern. FIG. 3 shows an example of a wafer movement path. When moving as shown in this figure, the time required to expose a 10+nm square chip on the entire surface of a 4-inch diameter wafer is about 6 seconds. Even taking into consideration the time for loading and unloading wafers, the throughput of one exposure device can achieve several hundred wafers/hour.
ところで、上記実施例によれば、ウェハとレチクルの相
対的移動速度Vは次式で表わされる。By the way, according to the above embodiment, the relative moving speed V between the wafer and the reticle is expressed by the following equation.
v (n+n+/5ec) = d (mm) X f
(Hz)ここにdは繰返し露光距離ピッチ、fはエキ
シマレーザの発振周波数である。本実施例のエキシマレ
ーザの最大発振周波数は15〇七であるから。v (n+n+/5ec) = d (mm) X f
(Hz) Here, d is the repetitive exposure distance pitch, and f is the oscillation frequency of the excimer laser. This is because the maximum oscillation frequency of the excimer laser in this embodiment is 1507.
d =10mnとすると相対移動速度の最大値はv =
1500mm/ seeとなる。この場合でも、 1
5nsecの1パルス中でのウェハの移動距離は0.0
225IMlと僅小であり、かつ4インチウェハ全面露
光に要する時間は0.4秒となり、従来例の200倍以
上の処理能方向上が可能となる。If d = 10 mn, the maximum value of relative movement speed is v =
It becomes 1500mm/see. Even in this case, 1
The distance the wafer moves in one pulse of 5 nsec is 0.0
It is as small as 225 IMl, and the time required to expose the entire surface of a 4-inch wafer is 0.4 seconds, making it possible to increase throughput by more than 200 times that of the conventional example.
第4図は」二記実施例における光学系2および5の説明
図である。14はレーザ光束、15はレーザ光強度調節
用フィルタ、16はレーザ光束拡大用レンズ、17は拡
大された光束を平行光にするためのレンズ、18はレチ
クル、19はレチクルを通して来た光束をウェハ20面
上に収束、結像させるレンズである。本実施例は光学系
の基本要素を図示しており、これ以外の変形は公知の技
術をもって数多く考えられる。FIG. 4 is an explanatory diagram of the optical systems 2 and 5 in the second embodiment. 14 is a laser beam, 15 is a filter for adjusting laser beam intensity, 16 is a lens for enlarging the laser beam, 17 is a lens for converting the expanded beam into parallel light, 18 is a reticle, and 19 is a wafer for the beam that has passed through the reticle. This is a lens that converges and forms an image on 20 planes. This embodiment illustrates the basic elements of the optical system, and many other modifications can be made using known techniques.
第5図には別の実施例を示す。本実施例はプロキシミテ
ィ露光法を例示している。ウェハ24上に形成したホト
レジスト膜23上に、マスク22を通過した光束21を
照射して露光する。マスク2zとホトレジスト膜23の
間隔は数〜数10庫であり、レーザ光束21とウェハ2
4およびホトレジスト膜23との相対的位置関係を連続
的に変化させつつパルス光により露光する。マスク22
のパタンは等倍でホトレジスト膜23上に転写される。FIG. 5 shows another embodiment. This example illustrates a proximity exposure method. The photoresist film 23 formed on the wafer 24 is exposed by irradiating the light flux 21 that has passed through the mask 22 . The distance between the mask 2z and the photoresist film 23 is several to several tens, and the distance between the laser beam 21 and the wafer 2 is
4 and the photoresist film 23 while continuously changing the relative positional relationship with the photoresist film 23. mask 22
The pattern is transferred onto the photoresist film 23 at the same size.
前述の実施例同様。Same as the previous embodiment.
高速露光を実現できる。High-speed exposure can be achieved.
第6図には反射光学系を用いた縮小投影露光装置の実施
例を示す。28はエキシマレーザとレーザ光束を拡大成
形する機能と光量調節機能をもつ光源光学系、29はレ
ーザ光束、30はレチクル、31は反射光学縮小系、3
2はホトレジスト膜をその表面に形成したウェハ、33
は反射縮小されたレーザ光束である。ウェハ32はレー
ザ光束33に対して連続移動しており、相互の位置関係
が所定の位置関係になった時にエキシマレーザをパルス
的に発光させ、レチクル30の縮小像をウェハ32表面
に結像させる。FIG. 6 shows an embodiment of a reduction projection exposure apparatus using a reflective optical system. 28 is an excimer laser and a light source optical system having a function of enlarging and shaping the laser beam and a light amount adjustment function; 29 is a laser beam; 30 is a reticle; 31 is a reflective optical reduction system;
2 is a wafer with a photoresist film formed on its surface, 33
is the reflected and reduced laser beam. The wafer 32 is continuously moving with respect to the laser beam 33, and when the mutual positional relationship reaches a predetermined positional relationship, the excimer laser is emitted in pulses to form a reduced image of the reticle 30 on the surface of the wafer 32. .
第7図は第6図中の反射光学系31を説明する図である
。34および35は反射鏡である。平行なレーザ光束2
9に成形されたエキシマレーザの光束はレチクル30を
通過後2反射鏡34および35により縮小されウェハ3
2表面に結像する。FIG. 7 is a diagram illustrating the reflective optical system 31 in FIG. 6. 34 and 35 are reflecting mirrors. Parallel laser beam 2
After passing through the reticle 30, the light beam of the excimer laser shaped into the wafer 3
2 images are formed on the surface.
第6図および第7図の実施例においても、第1〜5図の
実施例同様、従来例に比べ極めて高速に。In the embodiments shown in FIGS. 6 and 7, similar to the embodiments shown in FIGS. 1 to 5, the speed is extremely high compared to the conventional example.
かつ高精度のパタンを形成できる。In addition, highly accurate patterns can be formed.
以上の実施例では、KrFエキシマレーザを用いたが、
XeCJ XeF、ArF、F2.KrCQなどのエキ
シマレーザを用いることもできる。また。In the above embodiments, a KrF excimer laser was used, but
XeCJ XeF, ArF, F2. An excimer laser such as KrCQ can also be used. Also.
エキシマレーザ単独ではなくエキシマレーザにラマンシ
フタを組み合わせたものを光源とすることもできる。ま
た、エキシマレーザによって励起される色素レーザを光
源とすることもできる。さらに、感光性樹脂としては上
記実施例に限定されることなく、広く公知の材料を用い
ることができる。Instead of using an excimer laser alone, a combination of an excimer laser and a Raman shifter can also be used as the light source. Further, a dye laser excited by an excimer laser can also be used as a light source. Furthermore, the photosensitive resin is not limited to the above examples, and widely known materials can be used.
また、被露光基板としてはウェハだけでなく、ホトマス
ク基板等を広く使用できる。その他、光学系としては上
記実施例に限らず、公知のレンズ。Furthermore, not only wafers but also photomask substrates and the like can be widely used as the substrate to be exposed. In addition, the optical system is not limited to the above-mentioned embodiments, and may be a known lens.
反射鏡、フィルタ等を使用して差し支えない。Reflectors, filters, etc. may be used.
また2本実施例では、被露光基板と光束との相対的位置
関係を連続的に変化させるために、被露光基板を移動せ
しめたが、光束の方を移動させても良く、また光束と被
露光基板の両者を移動させても良い。In addition, in the two embodiments, the exposed substrate was moved in order to continuously change the relative positional relationship between the exposed substrate and the light beam, but the light beam may also be moved, or the light beam and the exposed substrate may be moved. Both of the exposed substrates may be moved.
以上説明したように2本発明によれば9強力な遠紫外光
源であるエキシマレーザを用い、ウェハ等の被露光基板
とマスクもしくはレチクルを通過した光束とを相対的に
連続移動させつつ、短時間パルス光で露光を行なう構成
であるため、極めて高速に微細パタンを形成でき、集積
回路基板の生産性を大幅に向上できる利点がある。As explained above, according to the present invention, an excimer laser, which is a powerful far-ultraviolet light source, is used to continuously move the light flux that has passed through the mask or reticle and the substrate to be exposed, such as a wafer, for a short period of time. Since the exposure is performed using pulsed light, fine patterns can be formed at extremely high speeds, which has the advantage of greatly improving the productivity of integrated circuit boards.
第1図は本発明実施例装置の構成図、第2図はその動作
説明用の露光順序の説明図、第3図は第1図におけるウ
ェハ移動の説明図、第4図は第1図中の屈折光学系を示
す図、第5図は本発明の他の実施例の構成図、第6図は
本発明のさらに他の実施例の構成図、第7図は第6図中
の一部詳細説明図である。
〈符号の説明〉
1・・・エキシマレーザ光源
2.4・・・光学系 3,18.30・・・レチクル5
、14.21..29.33・・・レーザ光束6.2
3・・・ホトレジスト膜
7、20..24.32・・・ウェハ
8・・・ステージ 9〜13・・・チップ15・・・フ
ィルタ 16.17.19・・・レンズf 22’・・
・マスク 34.35・・・反射鏡28・・・光源光学
系 31・・・反射光学縮小系特許出願人 日本電信電
話公社
il 図
°コミ用7
t3図
1’4図
1’5図
牙6図
0
!7図Fig. 1 is a configuration diagram of the apparatus according to the embodiment of the present invention, Fig. 2 is an explanatory diagram of the exposure order for explaining its operation, Fig. 3 is an explanatory diagram of wafer movement in Fig. 1, and Fig. 4 is a diagram in Fig. 1. FIG. 5 is a block diagram of another embodiment of the present invention, FIG. 6 is a block diagram of still another embodiment of the present invention, and FIG. 7 is a part of FIG. 6. It is a detailed explanatory diagram. <Explanation of symbols> 1... Excimer laser light source 2.4... Optical system 3, 18. 30... Reticle 5
, 14.21. .. 29.33...Laser luminous flux 6.2
3... Photoresist film 7, 20. .. 24.32...Wafer 8...Stage 9-13...Chip 15...Filter 16.17.19...Lens f 22'...
・Mask 34. 35...Reflector 28...Light source optical system 31...Reflective optical reduction system Patent applicant Nippon Telegraph and Telephone Public Corporation il Figure° Comic use 7 t3 Figure 1'4 Figure 1'5 Figure fang 6 Figure 0! Figure 7
Claims (1)
露光装置において、光源として少なくともエキシマレー
ザを備え、この光源からの光をマスクを通過させた後被
露光基板に照射させる光束を形成する光学系と、上記光
束と上記被露光基板との相対的位置関係を連続的に変化
させる手段と。 上記相対的位置関係が予め設定された位置関係に達した
時点で上記光源を発光させる制御系とを備えたことを特
徴とするバタン形成用露光装置。[Scope of Claims] An exposure apparatus used to form a latent image of a resist pattern on a substrate includes at least an excimer laser as a light source, and the light from the light source passes through a mask and then irradiates the substrate to be exposed. an optical system for forming a light beam; and means for continuously changing the relative positional relationship between the light beam and the substrate to be exposed. A control system for causing the light source to emit light when the relative positional relationship reaches a preset positional relationship.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59113147A JPS60257521A (en) | 1984-06-04 | 1984-06-04 | Exposure apparatus for forming pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59113147A JPS60257521A (en) | 1984-06-04 | 1984-06-04 | Exposure apparatus for forming pattern |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60257521A true JPS60257521A (en) | 1985-12-19 |
Family
ID=14604755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59113147A Pending JPS60257521A (en) | 1984-06-04 | 1984-06-04 | Exposure apparatus for forming pattern |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60257521A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61502507A (en) * | 1984-06-21 | 1986-10-30 | アメリカン テレフオン アンド テレグラフ カムパニ− | Deep UV lithography |
WO2006003863A1 (en) * | 2004-06-30 | 2006-01-12 | Integrated Solutions Co., Ltd. | Exposure equipment |
WO2007069480A1 (en) * | 2005-12-17 | 2007-06-21 | Sharp Kabushiki Kaisha | Aligner and aligning method |
US8451426B2 (en) | 2006-06-07 | 2013-05-28 | V Technology Co., Ltd. | Exposure method and exposure apparatus |
EP3204689A1 (en) * | 2014-10-06 | 2017-08-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Light distributor, a system comprising a light distributor and at least one led luminaire, and a method for producing a light distributor |
-
1984
- 1984-06-04 JP JP59113147A patent/JPS60257521A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61502507A (en) * | 1984-06-21 | 1986-10-30 | アメリカン テレフオン アンド テレグラフ カムパニ− | Deep UV lithography |
WO2006003863A1 (en) * | 2004-06-30 | 2006-01-12 | Integrated Solutions Co., Ltd. | Exposure equipment |
KR101149089B1 (en) * | 2004-06-30 | 2012-05-25 | 브이 테크놀로지 씨오. 엘티디 | Exposure equipment |
WO2007069480A1 (en) * | 2005-12-17 | 2007-06-21 | Sharp Kabushiki Kaisha | Aligner and aligning method |
US8451426B2 (en) | 2006-06-07 | 2013-05-28 | V Technology Co., Ltd. | Exposure method and exposure apparatus |
EP3204689A1 (en) * | 2014-10-06 | 2017-08-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Light distributor, a system comprising a light distributor and at least one led luminaire, and a method for producing a light distributor |
US10605975B2 (en) | 2014-10-06 | 2020-03-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Light distributor, a system comprising a light distributor and at least one LED luminaire and a method for producing a light distributor |
EP3204689B1 (en) * | 2014-10-06 | 2022-03-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Light distributor, a system comprising a light distributor and at least one led luminaire, and a method for producing a light distributor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4705729A (en) | Method for photochemically enhancing resolution in photolithography processes | |
JPH0614508B2 (en) | Step-and-repeat exposure method | |
JP4545874B2 (en) | Illumination optical system, exposure apparatus provided with the illumination optical system, and device manufacturing method using the exposure apparatus | |
CA1173889A (en) | High resolution optical lithography method and apparatus having excimer laser light source and stimulated raman shifting | |
JP2007128115A (en) | Embedded etch stop for phase shift mask and planar phase shift mask to reduce topography induced and waveguide effect | |
JP4194986B2 (en) | Lithographic apparatus, device manufacturing method and device | |
JP4109648B2 (en) | Tone reversal printing controlled by lighting equipment | |
KR940000904B1 (en) | Mask alignment system | |
US5436114A (en) | Method of optical lithography with super resolution and projection printing apparatus | |
JPS60257521A (en) | Exposure apparatus for forming pattern | |
JP2503495B2 (en) | Exposure apparatus and exposure method | |
US7417709B2 (en) | Method and apparatus for exposing semiconductor substrates | |
JPH10270330A (en) | Pattern forming method and apparatus | |
KR100551206B1 (en) | Lithographic projection apparatus | |
JPH08278625A (en) | Production of photomask | |
US6295123B1 (en) | Multiple photon absorption for high resolution lithography | |
JPS6310149A (en) | Irradiating light quantity controller | |
JPH0715875B2 (en) | Exposure apparatus and method | |
JPH11340138A (en) | Removal of standing wave existing in photoresist | |
JP2007525826A (en) | Method and apparatus for printing a pattern with improved CD uniformity | |
US20240385545A1 (en) | Lithography process monitoring method | |
JPS62187815A (en) | Light quantity controller | |
JPS60117735A (en) | Pattern transfer method | |
JPH06325998A (en) | Projection exposure method and its device | |
JPH0332016A (en) | Apparatus for controlling amount of projected light |