JPS60256049A - Freezing forecast device - Google Patents
Freezing forecast deviceInfo
- Publication number
- JPS60256049A JPS60256049A JP59112777A JP11277784A JPS60256049A JP S60256049 A JPS60256049 A JP S60256049A JP 59112777 A JP59112777 A JP 59112777A JP 11277784 A JP11277784 A JP 11277784A JP S60256049 A JPS60256049 A JP S60256049A
- Authority
- JP
- Japan
- Prior art keywords
- water
- metal container
- drain pipe
- water supply
- water feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008014 freezing Effects 0.000 title abstract description 14
- 238000007710 freezing Methods 0.000 title abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000002184 metal Substances 0.000 claims abstract description 27
- 230000005855 radiation Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 6
- 206010060904 Freezing phenomenon Diseases 0.000 abstract description 2
- 230000017525 heat dissipation Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/02—Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
- G01N25/04—Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of melting point; of freezing point; of softening point
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/025—Change of phase or condition
- G01N2291/0251—Solidification, icing, curing composites, polymerisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/10—Number of transducers
- G01N2291/102—Number of transducers one emitter, one receiver
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、液体から固体への相変化に伴う音波特性の
変化により動作する超音波送受信器を利用した凍結予知
器に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a freeze predictor using an ultrasonic transmitter/receiver that operates based on a change in acoustic characteristics accompanying a phase change from liquid to solid.
従来冬期に水を供給する設備において、事前に凍結の情
報を得る手段として,気温から判断する方法があった。Conventionally, in equipment that supplies water during the winter, there has been a method of determining freezing based on the temperature as a means of obtaining information about freezing in advance.
しかし給排水管内では水は流れたり止ったりしており,
氷点下で必ずしも凍結するとは限らず、正確な凍結情報
を得ることはできなかった。また、凍結時の対策も人手
によるものであって,的確に対処できないという問題点
があった。However, water flows and stops in the water supply and drainage pipes.
It was not always possible to obtain accurate freezing information at below freezing temperatures. Furthermore, countermeasures against freezing are also manual and have the problem of not being able to take appropriate action.
この発明は以上のような問題点を改善するためになされ
たもので,外周に放熱フィンを有しかつ給排水管と連通
ずるように一体的に設けられた金属製容器と、この金属
製容器および給排水管をはさんで対向するように設けら
れた超音波送受信器とを設けることにより,凍結現象を
音波機ばん特性を利用して、事前に正確に検知、予知し
、電気的信号で通報することができる凍結予知器を提案
するものである。This invention was made in order to improve the above-mentioned problems, and includes a metal container that has heat dissipation fins on the outer periphery and is integrally provided so as to communicate with a water supply and drainage pipe, and this metal container and By installing an ultrasonic transmitter/receiver that faces each other across the water supply and drainage pipes, freezing phenomena can be accurately detected and predicted in advance by utilizing the characteristics of sonic waves, and reported using electrical signals. This paper proposes a freeze predictor that can
第1図はこの発明の一実施例による凍結予知器を示す断
面図、第2図は金属製容器の断面図、第3図はその平面
図、第4図は超音波送受信器の断面図、第5図は(A)
〜(C)は使用状態の説明図、第6図(A)〜(C)は
出力波形図である。FIG. 1 is a sectional view showing a freeze predictor according to an embodiment of the present invention, FIG. 2 is a sectional view of a metal container, FIG. 3 is a plan view thereof, and FIG. 4 is a sectional view of an ultrasonic transmitter/receiver. Figure 5 is (A)
6(C) are explanatory diagrams of usage conditions, and FIGS. 6(A) to 6(C) are output waveform diagrams.
図において、(1)は超音波送信器で、放熱フィン(2
)を有する円筒状の金属製容器(3)の一端に配設され
ている。金属製容器(3)は給Mト水管(4)と連通す
るようにその壁面に一体的に取付けられている。超音波
受信器(5)は給排水管(4)の内壁に送信器(])と
相対向するように同心軸上に配設されている。前記円筒
状の金属製容器(3)の内径は給排水管(4)の内径よ
り小さくなっている。In the figure, (1) is an ultrasonic transmitter, and heat dissipation fins (2)
) is arranged at one end of a cylindrical metal container (3). The metal container (3) is integrally attached to the wall surface of the water supply pipe (4) so as to communicate therewith. The ultrasonic receiver (5) is arranged on the inner wall of the water supply and drainage pipe (4) on a concentric axis so as to face the transmitter (]). The inner diameter of the cylindrical metal container (3) is smaller than the inner diameter of the water supply and drainage pipe (4).
超音波送受信器(1)、(5)の構成は第4図に示すよ
うに、検知側が閉口端を成し防水性を保つ外筒(7)の
閉口端(8)の内側面中央部に、圧電素子(9)および
金属共振体(10)が貼付されて構成される振動子が配
設され、閉口端(8)外側面、即ち検知面には突起部(
]1)が設けられ、開口端(12)には電気信号入出力
端子(13)を有する蓋(14)により密封されている
。閉口端(8)の外周に設けられたねじ部(15)によ
り、送信器(1)は金属製容器(3)にねじ付は固定さ
れ、受信器(5)は給排水管(4)の内壁に検知面を露
出してねじ付は固定されている。As shown in Figure 4, the configuration of the ultrasonic transmitter/receiver (1) and (5) is as shown in Fig. 4. , a vibrator configured by pasting a piezoelectric element (9) and a metal resonator (10), and a protrusion (
]1), and the open end (12) is hermetically sealed with a lid (14) having an electrical signal input/output terminal (13). The transmitter (1) is fixed to the metal container (3) by a threaded part (15) provided on the outer periphery of the closed end (8), and the receiver (5) is fixed to the inner wall of the water supply and drainage pipe (4). The detection surface is exposed and the screw is fixed.
上記のような超音波送受信器(1)、 (5)は前記圧
電素子(9)の厚み、金属共振体(10)の厚み、閉口
端(8)壁の厚み、および突起部(11)の高さの合計
寸法から送信器(1)で出力される音波のく共振)周波
数が決定され、使用されるモートは縦方向振動となる。The ultrasonic transmitter/receiver (1), (5) as described above has the following characteristics: the thickness of the piezoelectric element (9), the thickness of the metal resonator (10), the thickness of the wall of the closed end (8), and the thickness of the protrusion (11). The frequency (resonance) of the sound wave output by the transmitter (1) is determined from the total height, and the moat used vibrates in the longitudinal direction.
また突起部(11)は送信出力の増幅効果を有する。The protrusion (11) also has the effect of amplifying the transmission output.
上記のように構成された凍結予知器においては、小さい
内径を有する金属製容器(3)の内部空間(6)は水の
留り場となり、給排水管(4)内の水の流れの影響も少
ない。そして放熱フィン(2)により内部空間(6)は
外気により集中的に急速に冷却され、給排水管(4)内
の凍結前に内部空間(6)内の水が凍結される。このよ
うに給排水管(4)内の水の流れがない場合に、内部空
間(6)内の凍結が先に生じるように、放熱フィン(2
)の放熱効果、内部空間(6)の寸法、即ち金属製容器
(3)の内径が設計されるものとする。この場合、常時
給排水管(4)内に水が流れている場合は、その流速に
より凍結予知器の時間的余裕は異なる。そして木が流れ
ていない場合は凍結予知は容易となる。In the freeze predictor configured as described above, the internal space (6) of the metal container (3) with a small inner diameter becomes a water retention area, and the influence of the water flow in the water supply and drainage pipe (4) is also reduced. few. The interior space (6) is intensively and rapidly cooled by the outside air by the radiation fins (2), and the water in the interior space (6) is frozen before the water in the water supply and drainage pipe (4) is frozen. In this way, when there is no flow of water in the water supply and drainage pipe (4), the heat dissipation fins (2
), the dimensions of the internal space (6), that is, the inner diameter of the metal container (3) shall be designed. In this case, when water is constantly flowing in the water supply and drainage pipe (4), the time margin of the freeze predictor differs depending on the flow velocity. And if trees are not washed away, it is easier to predict freezing.
通常凍結の恐れのない高温時には、第5図(A)のよう
に金属製容器(3)の内部空間(6)内および給排水管
(4)内は凍結することなく、送信器(1)から水中に
送り出される音圧を受ける受信器(5)の出力v1は第
6図(A)に示すようになる。そして氷点下の気温では
水の留り場となっている内部空間(6)が放熱フィン(
2)の放熱効果を受け第5図CB)に示すように給排水
’1’ (4)の内部より早く凍結し始める。内部空間
(6)内の氷は送信器(1)に対し負荷として働き、か
つ音波は固相と液相を伝わるため伝ばん損失を増し、第
6図(B)に示すように受信器(5)で検知する音圧は
低下し、受信器(5)の出力■2も低下する。さらに気
温が下がり給排水管(4)内の水の流れが止まると、給
排水管(4)内も凍結する。その結果、第5図(C)に
示すように送受信器(1)、(5)間は同相(氷)のみ
となり、第6図(C)に示すように、伝ばん損失は減少
して音圧は増加し、受信器(5)の出力v3は増す。液
相内と固相内の伝ばん損失を比較すると前者の方が大き
くなるため、受信器(5)で受ける音圧は後者の方が大
きく、V 3 > V + > V 2の関係を示す。Normally, when the temperature is high and there is no risk of freezing, the interior space (6) of the metal container (3) and the water supply and drainage pipe (4) do not freeze, as shown in Figure 5 (A), and the transmitter (1) The output v1 of the receiver (5) which receives the sound pressure sent into the water is as shown in FIG. 6(A). At sub-zero temperatures, the internal space (6), which serves as a reservoir for water, is replaced by heat dissipation fins (
Due to the heat dissipation effect of 2), the water starts to freeze earlier than the inside of the water supply and drainage '1' (4), as shown in Figure 5 CB). The ice in the internal space (6) acts as a load on the transmitter (1), and the sound waves propagate through the solid and liquid phases, increasing the propagation loss, and as shown in Figure 6 (B), the receiver ( The sound pressure detected by 5) decreases, and the output (2) of the receiver (5) also decreases. When the temperature further drops and the flow of water in the water supply and drainage pipe (4) stops, the interior of the water supply and drainage pipe (4) also freezes. As a result, as shown in Figure 5 (C), only the same phase (ice) exists between the transmitter and receiver (1) and (5), and as shown in Figure 6 (C), the propagation loss decreases and the sound The pressure increases and the output v3 of the receiver (5) increases. Comparing the propagation loss in the liquid phase and the solid phase, the former is larger, so the sound pressure received by the receiver (5) is larger in the latter, indicating the relationship V 3 > V + > V 2 .
これらの情報を用いることにより、給排水管(4)内の
凍結の予知および凍結現象を検知することができる。By using this information, it is possible to predict freezing in the water supply and drainage pipe (4) and detect the freezing phenomenon.
なお1以上の説明において放熱フィン(2)および金属
製容器(3)の形状、構造等は制限されない。Note that in the above descriptions, the shapes, structures, etc. of the radiation fins (2) and the metal container (3) are not limited.
また金属製容器(3)は給排水管(4)の両側に設けて
もよい。Moreover, the metal container (3) may be provided on both sides of the water supply and drainage pipe (4).
この発明によれば、放熱フィンを有する金属製容器およ
び給排水管をはさんで超音波送受信器を設けたので次の
ような効果がある。According to this invention, since the ultrasonic transmitter/receiver is provided across the metal container having radiation fins and the water supply/drainage pipe, the following effects can be obtained.
■ 圧電素子を超音波送受信器に利用しているため、給
排水管内部の凍結の予知を電気的に行うことができる。■ Since a piezoelectric element is used as an ultrasonic transmitter/receiver, it is possible to electrically predict freezing inside water supply and drainage pipes.
■ 電気的検知が行われるシステム化が可能である。■ It is possible to create a system in which electrical detection is performed.
■ 放熱フィンの放熱効果により急速凍結が行われ、給
排水管の凍結予知を正確かつ迅速に行うことができる。■ Rapid freezing occurs due to the heat dissipation effect of the heat dissipation fins, making it possible to accurately and quickly predict freezing of water supply and drainage pipes.
■ 軽量で、取り扱いは容易である。■ Lightweight and easy to handle.
第1図はこの発明の一実施例による凍結予知器を示す断
面図、第2図は金属製容器の断面図、第3図はその平面
図、第4図は超音波送受信器の断面図、第5図は(A)
〜(C)は使用状態の説明図、第6図(^)〜(C)は
出力波形図である。
各図中、同一符号は同一部分を示し、(1)は超音波送
信器、(2)は放熱フィン、(3)は金属製容器、(4
)は給排水管、(5)は超音波受信器、(7)は外筒。
(9)は圧電素子、 (10)は金属共振体、 (14
)は蓋である。
第1図 第2図
第3図
第4図
1
第6図
第5図
(A) (B)
(C)FIG. 1 is a sectional view showing a freeze predictor according to an embodiment of the present invention, FIG. 2 is a sectional view of a metal container, FIG. 3 is a plan view thereof, and FIG. 4 is a sectional view of an ultrasonic transmitter/receiver. Figure 5 is (A)
- (C) are explanatory diagrams of usage conditions, and Figs. 6 (^) - (C) are output waveform diagrams. In each figure, the same reference numerals indicate the same parts, (1) is the ultrasonic transmitter, (2) is the heat radiation fin, (3) is the metal container, (4) is the
) is the water supply and drainage pipe, (5) is the ultrasonic receiver, and (7) is the outer cylinder. (9) is a piezoelectric element, (10) is a metal resonator, (14)
) is the lid. Figure 1 Figure 2 Figure 3 Figure 4 Figure 1 Figure 6 Figure 5 (A) (B) (C)
Claims (3)
ずるように一体的に設けられた金属製容器と、この金属
製容器および給排水管をはさんで対向するように設けら
れた超音波送受信器とを備えたことを特徴とする凍結予
知器。7(1) Outer periphery b'' = A metal container that has radiation fins and is integrally provided so as to communicate with the water supply and drainage pipe, and a superstructure that is provided to face the metal container and the water supply and drainage pipe in between. A freeze predictor characterized by comprising a sonic wave transmitter/receiver.7
ることを特徴とする特許請求の範囲第1項記載の凍結予
知器。(2) The freeze predictor according to claim 1, wherein the metal container has an inner diameter tJ+ smaller than that of the water supply and drainage pipe.
この外筒の検知側外面に突出する突起部と、前記外筒の
検知側内面に設けられた圧電素子および金属共振体と、
前記外筒の反対側を密封する電気的信号入出力端子を有
する蓋とを備えたことを特徴とする特許請求の範囲第1
項または第2項記載の凍結予知器。(3) The ultrasonic transmitter/receiver includes an outer cylinder housing a piezoelectric element;
a protrusion protruding from the outer surface of the outer cylinder on the detection side; a piezoelectric element and a metal resonator provided on the inner surface of the outer cylinder on the detection side;
Claim 1, further comprising: a lid having an electrical signal input/output terminal that seals the opposite side of the outer cylinder.
Freeze predictor according to item 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59112777A JPS60256049A (en) | 1984-06-01 | 1984-06-01 | Freezing forecast device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59112777A JPS60256049A (en) | 1984-06-01 | 1984-06-01 | Freezing forecast device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60256049A true JPS60256049A (en) | 1985-12-17 |
JPH0369065B2 JPH0369065B2 (en) | 1991-10-30 |
Family
ID=14595235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59112777A Granted JPS60256049A (en) | 1984-06-01 | 1984-06-01 | Freezing forecast device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60256049A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2081022A1 (en) * | 2008-01-15 | 2009-07-22 | Linde Aktiengesellschaft | Method and device for freezing pipes |
US8550703B2 (en) | 2010-09-27 | 2013-10-08 | Sartorius Stedim North America Inc. | Systems and methods for use in freezing or thawing biopharmaceutical materials |
CN106645141A (en) * | 2016-09-26 | 2017-05-10 | 东南大学 | Experimental device for defrosting curved surface by utilizing ultrasonic waves |
CN106886057A (en) * | 2016-12-29 | 2017-06-23 | 杭州电子科技大学 | Portable water pipe freezes blocking position survey meter |
CN110410686A (en) * | 2019-09-06 | 2019-11-05 | 大连理工大学 | A system and method for detecting icing of water supply pipelines based on ultrasonic waves |
-
1984
- 1984-06-01 JP JP59112777A patent/JPS60256049A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2081022A1 (en) * | 2008-01-15 | 2009-07-22 | Linde Aktiengesellschaft | Method and device for freezing pipes |
US8550703B2 (en) | 2010-09-27 | 2013-10-08 | Sartorius Stedim North America Inc. | Systems and methods for use in freezing or thawing biopharmaceutical materials |
CN106645141A (en) * | 2016-09-26 | 2017-05-10 | 东南大学 | Experimental device for defrosting curved surface by utilizing ultrasonic waves |
CN106886057A (en) * | 2016-12-29 | 2017-06-23 | 杭州电子科技大学 | Portable water pipe freezes blocking position survey meter |
CN110410686A (en) * | 2019-09-06 | 2019-11-05 | 大连理工大学 | A system and method for detecting icing of water supply pipelines based on ultrasonic waves |
Also Published As
Publication number | Publication date |
---|---|
JPH0369065B2 (en) | 1991-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4570881A (en) | Process for detecting the likelihood of ice formation, ice warning system for carrying out the process and utilization thereof | |
US5824915A (en) | Volumetric flow meter | |
KR101576771B1 (en) | Ultrasonic water meter with anti-freezing function and single-body type flow channel | |
US20160061778A1 (en) | Fluid measuring device | |
US20100257940A1 (en) | Ultrasonic transducer for determining and/or monitoring flow of a measured medium through a measuring tube | |
JPS60256049A (en) | Freezing forecast device | |
RU2659353C1 (en) | Measuring device and method for determining the speed of a flow of a fluid environment through the pipeline | |
KR880003171A (en) | Surface Acoustic Gas Flow Rate Sensor with Magnetic Heating | |
GB1249024A (en) | Improvements in or relating to apparatus for determining the freezing point of a liquid | |
US20050016281A1 (en) | Acoustic transducer | |
JPS6123955A (en) | Freezing previewing device | |
US6931944B2 (en) | Measuring head for an ultrasonic flowmeter | |
RU2180433C2 (en) | Ultrasonic piezoelectric converter | |
JP2007120933A (en) | Heat exchanger | |
JP3038584B2 (en) | Ultrasonic object detection device | |
CN114487101B (en) | Freezing point detection and ice accumulation early warning device and method | |
SU759908A1 (en) | Vibration-type density meter sensor | |
FI104289B (en) | Procedure for detecting freezing in a SAW dew point sensor and sensor construction | |
JPS5814174B2 (en) | Ultrasonic thawing device | |
RU1810820C (en) | Method of manufacturing ultrasonic transducer | |
JP3590901B2 (en) | Flowmeter | |
SU407591A1 (en) | ULTRASONIC SENSOR | |
JPH10160535A (en) | Detector of ultrasonic gas flowmeter | |
SU1138668A1 (en) | Device for measuring temperature | |
RU29773U1 (en) | Electromagnetic flow meter |