JPS60254625A - Test method for short gate type FET - Google Patents
Test method for short gate type FETInfo
- Publication number
- JPS60254625A JPS60254625A JP10995884A JP10995884A JPS60254625A JP S60254625 A JPS60254625 A JP S60254625A JP 10995884 A JP10995884 A JP 10995884A JP 10995884 A JP10995884 A JP 10995884A JP S60254625 A JPS60254625 A JP S60254625A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- current
- signal
- fet
- schottky
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010998 test method Methods 0.000 title description 6
- 238000012360 testing method Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims description 10
- 230000006866 deterioration Effects 0.000 claims description 2
- 230000001737 promoting effect Effects 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 abstract description 7
- 230000007547 defect Effects 0.000 abstract description 2
- 230000005669 field effect Effects 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 15
- 238000004891 communication Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はマイクロ波用ショットキゲート型FETの試験
方法に係り、特に該マイクロ波用ショットキゲート型F
ETの寿命を短時間で推定する加速寿命試験方法に関す
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for testing a Schottky gate type FET for microwave use, and particularly relates to a method for testing a Schottky gate type FET for microwave use.
This invention relates to an accelerated life test method for estimating the life of an ET in a short time.
マイクロ波電波は直進性に勝れるので、衛星通信の媒体
としては欠(べからざるものである。また通常の高周波
に比べて周波数が2桁以上高く一定時間に送り得る情報
量が著しく増加せしめられるので、近時地上通信の分野
でも多く用いられるようになっている。Microwave radio waves have superior straightness, making them indispensable as a medium for satellite communication.Also, the frequency is more than two orders of magnitude higher than that of ordinary high-frequency waves, significantly increasing the amount of information that can be transmitted in a given period of time. Therefore, it has recently come to be widely used in the field of terrestrial communications.
上記マイクロ波通信用システムを構成する際の能動素子
には砒化ガリウム(GaAs)よりなるショットキゲー
ト型のFETが主として用いられるが、該通信システム
の信頼性を高めるために該FETの長寿命化が強(要望
される。Schottky gate type FETs made of gallium arsenide (GaAs) are mainly used as active elements when configuring the above-mentioned microwave communication system, but in order to improve the reliability of the communication system, it is necessary to extend the life of the FET. Strong (required)
該ショットキゲート型FF、Tにおいて寿命を低下させ
る主因は、いわゆる摩耗故障である。The main cause of shortening the life of Schottky gate type FFs and Ts is so-called wear-out failures.
摩耗故障とは、該FETを長時間動作せしめた際にゲー
ト電極に溝等の欠陥を生じ該ゲートが正常に機能しなく
なり、該FETの性能が失われる故障である。A wear-out failure is a failure in which when the FET is operated for a long period of time, defects such as grooves occur in the gate electrode, the gate no longer functions normally, and the performance of the FET is lost.
該摩耗故障は、動作時におけるゲートの順方向又は逆方
向リーク電流即ちゲート電極と半導体基体との間に形成
されているショットキ接合に流れる電流でゲート電極の
金属原子が半導体基体特にドレイン側に移動する所謂エ
レクトロマイグレーション現象によって生ずる。This wear-out failure is caused by the forward or reverse leakage current of the gate during operation, that is, the current flowing through the Schottky junction formed between the gate electrode and the semiconductor substrate, which causes metal atoms in the gate electrode to move toward the semiconductor substrate, especially the drain side. This is caused by the so-called electromigration phenomenon.
従って該摩耗故障の発生を防止して該FETの長寿命化
を図る為には、該ショットキ接合に常時流れる順方向又
は逆方向リーク電流を減少せしめることが極めて重要で
ある。Therefore, in order to prevent wear-out failures and extend the life of the FET, it is extremely important to reduce the forward or reverse leakage current that constantly flows through the Schottky junction.
然しなから該リーク電流は、ショットキ接合を形成する
際の半導体基体の表面状態、プロセス条件等によって種
々にばらつく性質を有し、該リーク電流の値が限られた
微少値内に一様に収まったFETを製造することは極め
て困難である。However, the leakage current has the property of varying depending on the surface condition of the semiconductor substrate, process conditions, etc. when forming the Schottky junction, and the value of the leakage current is uniformly within a limited and very small value. It is extremely difficult to manufacture FETs that are
そのため上記マイクロ波用ショットキゲート型FETに
おいては、製品の製造条件が略均−な一団例えば製造ロ
フト毎に抜取で上記摩耗故障に対する加速寿命試験を行
うことによって、そのロフトの製品の寿命を保証して出
荷がなされる。Therefore, in the Schottky gate type FET for microwaves mentioned above, the lifespan of the product in that loft can be guaranteed by performing the accelerated life test for wear failure on samples from each manufacturing loft, for example, where the product manufacturing conditions are approximately uniform. The product is then shipped.
この加速寿命試験の方法としては、該試験が完了しない
と製品の出荷ができないので短時間で寿命の予測が可能
であり、且つ製造行程に組み入れられるので其の設備が
出来る限り簡略化さることが望まれる。This method of accelerated life testing makes it possible to predict the lifespan in a short period of time since the product cannot be shipped until the test is completed, and since it is incorporated into the manufacturing process, the equipment can be simplified as much as possible. desired.
上記加速寿命試験においては、摩耗故障の原因となるリ
ーク電流が該ショットキ接合に印加される逆バイアスを
高めることによって増大し、且つその増加率が飽和電流
の大きい物、即ち逆方向特性の鈍っている物はど大きい
ことを利用し、ゲートに通常動作時よりも高い逆バイア
スを印加することによって上記摩耗故障の発生を促進し
、この結果から該マイクロ波用ショットキゲートFET
のロフト品質の選別がなされる。In the accelerated life test described above, the leakage current that causes wear-out failure increases by increasing the reverse bias applied to the Schottky junction, and the rate of increase increases when the saturation current is large, that is, when the reverse characteristics are blunted. Taking advantage of the large size of the Schottky gate FET for microwaves, applying a reverse bias higher than that during normal operation to the gate accelerates the occurrence of the wear-out failure, and from this result, the Schottky gate FET for microwave
A selection of loft quality is made.
最も簡単な加速寿命試験方法はゲートの逆バイアスを深
くする所謂DCテスト法である。然しこの方・法におい
てDCバイアスを充分に深くすると接合に降伏電流が流
れるので、ゲートを摩耗故障させ加速試験を実行出来る
が、バイアスが負荷線に沿って移行するため正常のゲー
ト動作から外れた状況下で寿命を推定する加速試験とな
り、正確にFETの寿命を推定することができないとい
う欠点を生ずる。The simplest accelerated life test method is the so-called DC test method in which the reverse bias of the gate is deepened. However, in this method, if the DC bias is deep enough, a breakdown current will flow in the junction, so the gate will wear out and fail and an accelerated test can be performed, but the bias will shift along the load line and the gate will deviate from normal operation. This results in an accelerated test for estimating the lifetime of the FET, which has the disadvantage that it is not possible to accurately estimate the lifetime of the FET.
従ってこの方法では高々リーク電流程度のゲート電流し
か流すことが出来ないので、試験時間が非常に長くなる
という問題がある。Therefore, in this method, only a gate current comparable to the leakage current can be passed, so there is a problem that the test time becomes extremely long.
そこで従来上記試験時間が長引くという問題を除去する
加速試験方法として、通常のゲート動作電圧を中心とし
て通常動作時よりも大きなマイクロ波信号をゲートに入
力する方法が多く用いられていた。Conventionally, as an accelerated testing method to eliminate the above-mentioned problem of prolonging the test time, a method has often been used in which a microwave signal larger than that during normal operation is input to the gate, centering on the normal gate operating voltage.
然しこの方法においては加速用の付加信号にマイクロ波
を用いるために、第6図に示すマイクロ波バーンイン装
置のような複雑且つ大がかりな装置が必要であり、その
ため費用の増大及び作業の複雑化を招いていた。However, in this method, since microwaves are used as the additional signal for acceleration, a complicated and large-scale device such as the microwave burn-in device shown in FIG. 6 is required, which increases costs and complicates the work. I was invited.
第6図において、1はマイクロ波発振器、2は可変減衰
器、3は増幅器、4.7はアイソレータ、5はディレク
ショナル・カプラ、6はパワーレベル・モニタ、8はD
Cバイアス電源、9はホントプレート、10は減衰器、
11は被試験FE’Tを示している。In Figure 6, 1 is a microwave oscillator, 2 is a variable attenuator, 3 is an amplifier, 4.7 is an isolator, 5 is a directional coupler, 6 is a power level monitor, and 8 is a D
C bias power supply, 9 is the real plate, 10 is the attenuator,
11 indicates the FE'T to be tested.
本発明は上記従来の加速寿命試験方法の、装置費用が膨
大になり且つ作業が複雑になるという問題点を解決する
ためになされたものである〔問題点を解決するための手
段〕
上記本発明の目的は、マイクロ波用ショットキゲート型
FETの動作寿命を推定するに際して、該FETの許容
動作信号レヘルより高い信号レベルを有するラジオ周波
数以下の交流信号を該FETのゲートに入力して該FE
Tを動作せしめることによって、該ショットキゲートの
接合の劣化を促進する本発明によるショットキゲート型
FETの試験方法によって達成される。The present invention has been made in order to solve the problems of the conventional accelerated life test method described above, that the equipment cost becomes enormous and the work becomes complicated. [Means for solving the problems] The present invention described above The purpose of this is to estimate the operating life of a Schottky gate type FET for microwaves by inputting an AC signal below the radio frequency having a signal level higher than the allowable operating signal level of the FET to the gate of the FET.
This is achieved by the Schottky gate FET testing method according to the present invention, which accelerates the deterioration of the Schottky gate junction by activating the Schottky gate FET.
即ち本発明の加速寿命試験方法においては、マイクロ波
用ショットキゲートFETのドレイン電圧、ドレイン電
流及びゲート電圧を通常動作する際に使用される値に固
定した状況の下で、ゲート電圧に通常動作時よりも大き
な信号レベルを有するラジオ周波数(10hHz)以下
の交流信号を重畳することによって、ゲートの直流バイ
アス点を中心にしてゲートに加わるバイアス電圧を大き
く振らせ、これによってショットキ接合にリーク電流以
上の逆方向電流と更には順方向電流を流して、摩耗故障
の発生を促進するものである。That is, in the accelerated life test method of the present invention, the drain voltage, drain current, and gate voltage of a microwave Schottky gate FET are fixed at values used during normal operation, and the gate voltage is adjusted to the value used during normal operation. By superimposing an AC signal below the radio frequency (10 hHz) with a signal level greater than that, the bias voltage applied to the gate is greatly swung around the DC bias point of the gate. This is to promote the occurrence of wear-out failures by passing a reverse current and further a forward current.
摩耗故障は電流値に依存し、この平均電流値は周波数に
無関係であるということから、この方法によれば摩耗故
障を促進するためにゲートに入力される交流信号に、従
来用いられていたマイクロ波信号にかわってラジオ周波
数以下の交流信号例えば50〜6Hzの商用周波数信号
が用いられるので、加速試験装置は大幅に簡略化され且
つ操作も簡単になる。Since wear-out failures depend on the current value, and this average current value is independent of frequency, this method uses conventional microcontrollers for the AC signal input to the gate to promote wear-out failures. Since an alternating current signal below the radio frequency, for example a commercial frequency signal of 50 to 6 Hz, is used instead of the wave signal, the acceleration test apparatus is greatly simplified and the operation thereof becomes easier.
以下本発明を実施例について、図によって説明する。 The present invention will be described below with reference to embodiments and drawings.
第1図は本発明の一実施例の回路図、第2図はFETの
出力特性図、第3図は交流信号をゲートに入力した状態
を合わせて示すショットキゲートの電流−電圧(1−V
)特性図、第4図はゲート電流と平均寿命の相関図、第
5図はゲート入力信号の他の一例を示すI−V特性図で
ある、第1図は商用周波数(50〜60Hz)の交流信
号をゲートに入力することにって、ゲート金属(例えば
アルミニウム)−半導体(GaAs)ショットキ接合に
逆方向降伏電流と順方向電流を交互に流しゲート電極の
摩耗故障の発生を促進して該ショソトキゲー)FETの
寿命を推定する加速試験装置の回路図である。Fig. 1 is a circuit diagram of an embodiment of the present invention, Fig. 2 is an output characteristic diagram of the FET, and Fig. 3 shows the current-voltage (1-V
) characteristic diagram, Figure 4 is a correlation diagram between gate current and average life, Figure 5 is an I-V characteristic diagram showing another example of gate input signal, Figure 1 is a graph of commercial frequency (50 to 60 Hz). By inputting an alternating current signal to the gate, a reverse breakdown current and a forward current are alternately passed through the gate metal (e.g. aluminum)-semiconductor (GaAs) Schottky junction to promote wear-out failure of the gate electrode. FIG. 2 is a circuit diagram of an accelerated test device for estimating the life of an FET.
同図において、21は試験されるFET、22はゲート
に直流バイアス(−2V程度)を印加する第1の直流電
源、23はドレインとソース間に直流電圧(5V程度)
を印加する第2の直流電源、24はゲートに交流信号を
印加する交流電源(50〜60Hz)、25は信号電圧
を加減するトランス、26はゲート電流を測定する電流
計、27はドレイン−ソース間を流れる飽和電流を測定
する電流計、RLは負荷抵抗、Rは抵抗、Cはコンデン
サ、Eは電圧針、GNDは接地部を示す。In the figure, 21 is the FET to be tested, 22 is a first DC power supply that applies a DC bias (about -2V) to the gate, and 23 is a DC voltage (about 5V) between the drain and source.
24 is an AC power source (50 to 60 Hz) that applies an AC signal to the gate, 25 is a transformer that adjusts the signal voltage, 26 is an ammeter that measures the gate current, and 27 is a drain-source RL is a load resistance, R is a resistance, C is a capacitor, E is a voltage needle, and GND is a grounding point.
本発明の加速寿命試験は例えば同図のような簡単な装置
を用い、通常動作時と同様の直流ゲート・バイアスが印
加されているゲートに更に所望の振幅即ち信号レベルv
gを有する交流信号を入力することによって行われる。The accelerated life test of the present invention uses, for example, a simple device like the one shown in the figure, and further tests the desired amplitude, that is, the signal level v, on the gate to which the same DC gate bias as in normal operation is applied.
This is done by inputting an alternating current signal with g.
そして該交流信号の信号レベルvgを通常動作時の許容
信号レベルより大きくし、この交流信号によってゲート
・バイアス電圧を第2図に示すFETの出力特性図の負
荷線例えばaに沿ってb点のまわりで上下にふらせ、シ
ョットキ接合に逆方向降伏電流と順方向ゲート電流を交
互に流し、この両型流とリーク電流との総和によって摩
耗故障の発生を加速する。なお第2図において、Ids
はドレイン電流、Vdsはドレイン電圧、v6はゲート
電圧、Idssは飽和電流、Vd5sは飽和電圧を表し
ている。Then, the signal level vg of the AC signal is made higher than the permissible signal level during normal operation, and the gate bias voltage is adjusted by this AC signal at point b along the load line, for example, a in the FET output characteristic diagram shown in FIG. The Schottky junction is swung up and down, causing reverse breakdown current and forward gate current to flow alternately through the Schottky junction, and the sum of these two types of current and leakage current accelerates the occurrence of wear-out failures. In addition, in Fig. 2, Ids
is the drain current, Vds is the drain voltage, v6 is the gate voltage, Idss is the saturation current, and Vd5s is the saturation voltage.
例えばFET21のゲートの逆方向耐圧が一15Vの場
合、該ゲートに入力する交流信号φの電圧を13V程度
に設定しゲートの直流バイアス例えば−2vに載せてや
れば、第3図に示すゲートの1−■特性図のようにゲー
ト・バイアス電圧V(,3が一2vの点を中心にして±
13Vの幅vgで振れ、C3点にバイアス電圧が達した
時降伏電流IGIIが、02点に達した時には順方向電
流I’GFがゲートに流れることになる。For example, if the reverse breakdown voltage of the gate of FET21 is 115V, if the voltage of the AC signal φ input to the gate is set to about 13V and the DC bias of the gate is set to, for example, -2V, the gate shown in FIG. 1-■ As shown in the characteristic diagram, the gate bias voltage V (, 3 is ±
It swings with a width vg of 13V, and when the bias voltage reaches point C3, breakdown current IGII flows to the gate, and when it reaches point 02, forward current I'GF flows to the gate.
なおここで、これら゛の電流の総和であるゲート電流の
時間的平均値は、交流信号の振幅のみに依存し周波数に
は依存しない。従って振幅即ち信号レベルを等しくすれ
ば上記商用周波数信号を用いた場合の平均ゲート電流の
値と、従来のマイクロ波信号を用いた場合の平均ゲート
電流の値とは等しくなる。Note that the temporal average value of the gate current, which is the sum of these currents, depends only on the amplitude of the AC signal and does not depend on the frequency. Therefore, if the amplitudes, that is, the signal levels are made equal, the average gate current value when using the above-mentioned commercial frequency signal will be equal to the average gate current value when using the conventional microwave signal.
そこでゲート電流に依存するゲート金属のマイグレーシ
ョン量も等しくなり、上記実施例における摩耗故障の加
速率は従来のマイクロ波バーンイン装置を用いた場合と
同様の高い値が得られる。Therefore, the amount of migration of the gate metal depending on the gate current becomes equal, and the acceleration rate of wear-out failure in the above embodiment is as high as that when using the conventional microwave burn-in device.
第4図は上記実施例のようにゲート(ショットキ接合)
に電流を流した時、ゲート電流IG (mA〕と摩耗故
障発生の平均寿命(hrs )との関係を表した図で、
図中Aは寿命Taが
Ta= k−J −” ・exp(Eat/KT)の式
で示されるようにゲート電流Jの2乗の逆数に比例して
減少するという設計理論に基づく順方向電流に対するカ
ーブで、
Bは寿命Tbが
Tb= k ・J−’−exp(Haz/KT)の式で
示されるようにゲート電流Jの逆数に比例して減少する
という実験的事実に基づく逆方向電流に対するカーブで
ある。なお、これらのカーブはチャネル温度Tchを通
常動作時の110℃として得たものである。Figure 4 shows the gate (Schottky junction) as in the above example.
This is a diagram showing the relationship between the gate current IG (mA) and the average lifespan (hrs) of occurrence of wear-out failure when current is applied to the
In the figure, A is the forward current based on the design theory that the lifetime Ta decreases in proportion to the reciprocal of the square of the gate current J, as shown by the formula Ta = k-J −” ・exp(Eat/KT). In the curve for Note that these curves were obtained with the channel temperature Tch set to 110° C. during normal operation.
上記実施例においてはゲート電流が順逆両方向に流れる
ので上記摩耗故障発生寿命はさらに短縮される。In the embodiment described above, since the gate current flows in both forward and reverse directions, the wear-out failure occurrence life is further shortened.
なお上記寿命はチャネル温度の逆数の指数関数に比例し
て減少することは良く知られているので、上記試験に際
してFET0昇温手段を併用すれば更に試験時間の短縮
が図れる。なお通常チャネル温度は150〜250℃の
範囲に選ぶ。It is well known that the above lifetime decreases in proportion to an exponential function of the reciprocal of the channel temperature, so if FET0 temperature increasing means is used in conjunction with the above test, the test time can be further shortened. Note that the channel temperature is usually selected in the range of 150 to 250°C.
上記実施例においてはゲート入力信号にラジオ周波数以
下の正弦波形を有する交流信号を用いたが、ラジオ周波
数以下では形成が極めて容易な矩形波、三角波等を用い
ても勿論同様な効果が得られる。In the above embodiment, an alternating current signal having a sinusoidal waveform below the radio frequency is used as the gate input signal, but the same effect can of course be obtained by using a rectangular wave, a triangular wave, etc. which are extremely easy to form below the radio frequency.
又該寿命試験に逆方向電流を主として寄与させたい場合
は、第5図に示すように逆方向のパルス幅wbが広く順
方向のパルス幅Wfの狭い交流パルス信号をゲートに印
加すればよい。(Vaはゲート・バイアス、I6はゲー
ト電流、IGFは順方向ゲート電流、IGSは飽和ゲー
ト電流、TGBは降伏ゲート電i!り
〔発明の効果〕
以上説明のように本発明によればラジオ周波数以下の低
い周波数信号を直流ゲート・バイアスに重畳することに
よってマイクロ波用ショットキゲート形FETの摩耗故
障に対する加速寿命試験が、従来マイクロ波信号を用い
た時と同様な短時間で且つ正確になされる。If it is desired that the reverse current mainly contributes to the life test, an AC pulse signal having a wide reverse pulse width wb and a narrow forward pulse width Wf may be applied to the gate as shown in FIG. (Va is the gate bias, I6 is the gate current, IGF is the forward gate current, IGS is the saturation gate current, TGB is the breakdown gate voltage i!) [Effects of the Invention] As explained above, according to the present invention, the radio frequency By superimposing the following low frequency signals on the DC gate bias, accelerated life tests for wear-out failure of microwave Schottky gate FETs can be performed in the same short time and accurately as when conventional microwave signals are used. .
従ってマイクロ波バーンイン装置を用いる従来の試験に
比べ、著しく簡略化された試験装置によって上記摩耗故
障に対する加速寿命試験が行えるので、マイクロ波ショ
ットキゲート形FETの試験費用が削減され、且つ作業
も容易になる。Therefore, compared to conventional tests using microwave burn-in equipment, accelerated life tests for wear-out failures can be performed using a significantly simplified test equipment, reducing testing costs for microwave Schottky gate FETs and making work easier. Become.
第1図は本発明の一実施例の回路図、
第2図はFETの出力特性図、
第3図は交流信号をゲートに入力した状態を合わせて示
すショットキゲートの電流−電圧特性図、第4図はゲー
ト電流と平均寿命の相関図、第5図はゲート入力信号の
他の一例を示す電流−電圧特性図、
第6図は従来の加速寿命試験装置のブロック構成図であ
る。
図において、
21は試験されるFET、22は第1の直流電源、23
は第2の直流電源、24は交流電源(50〜60Hz)
、25はトランス、26.27は電流計、RLは負荷抵
抗Rは抵抗、Eは電圧計、GNDは接地部を示す。
第1 屈
第2@ 第3叫
峯4刷
Q、 / /、(1) lOθ
’T”トt;LIe C7F143
第5 目Fig. 1 is a circuit diagram of an embodiment of the present invention, Fig. 2 is an output characteristic diagram of an FET, Fig. 3 is a current-voltage characteristic diagram of a Schottky gate, which also shows the state in which an AC signal is input to the gate. FIG. 4 is a correlation diagram between gate current and average life, FIG. 5 is a current-voltage characteristic diagram showing another example of a gate input signal, and FIG. 6 is a block configuration diagram of a conventional accelerated life test apparatus. In the figure, 21 is the FET to be tested, 22 is the first DC power supply, and 23 is the FET to be tested.
is the second DC power supply, 24 is the AC power supply (50 to 60Hz)
, 25 is a transformer, 26.27 is an ammeter, RL is a load resistance, R is a resistance, E is a voltmeter, and GND is a grounding part. 1st Ku 2nd @ 3rd Kyoho 4th printing Q, / /, (1) lOθ 'T”t; LIe C7F143 5th
Claims (1)
定するに際して、該FETの許容動作信号レベルより高
い信号レベルを有するラジオ周波数以下の交流信号を該
FETのゲートに入力して該FETを動作せしめること
によって、該ショットキゲートの接合の劣化を促進する
ことを特徴とするショットキゲート型FETの試験方法
。When estimating the operating life of a Schottky gate type FET for microwaves, an alternating current signal below a radio frequency having a signal level higher than the allowable operating signal level of the FET is input to the gate of the FET to operate the FET. A method for testing a Schottky gate type FET, characterized by promoting deterioration of a junction of the Schottky gate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10995884A JPS60254625A (en) | 1984-05-30 | 1984-05-30 | Test method for short gate type FET |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10995884A JPS60254625A (en) | 1984-05-30 | 1984-05-30 | Test method for short gate type FET |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60254625A true JPS60254625A (en) | 1985-12-16 |
Family
ID=14523445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10995884A Pending JPS60254625A (en) | 1984-05-30 | 1984-05-30 | Test method for short gate type FET |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60254625A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6049213A (en) * | 1998-01-27 | 2000-04-11 | International Business Machines Corporation | Method and system for testing the reliability of gate dielectric films |
CN104316857A (en) * | 2014-10-31 | 2015-01-28 | 北京工业大学 | IGBT thermal fatigue test system |
-
1984
- 1984-05-30 JP JP10995884A patent/JPS60254625A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6049213A (en) * | 1998-01-27 | 2000-04-11 | International Business Machines Corporation | Method and system for testing the reliability of gate dielectric films |
CN104316857A (en) * | 2014-10-31 | 2015-01-28 | 北京工业大学 | IGBT thermal fatigue test system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Trew et al. | AlGaN/GaN HFET reliability | |
Angelotti et al. | Experimental characterization of charge trapping dynamics in 100-nm AlN/GaN/AlGaN-on-Si HEMTs by wideband transient measurements | |
Raffo et al. | Assessing GaN FET performance degradation in power amplifiers for pulsed radar systems | |
Sasse et al. | MOSFET degradation under RF stress | |
Hayashi et al. | Accelerated aging for gate oxide of SiC MOSFETs under continuous switching conditions by applying advanced HTGB test | |
Goncalves et al. | Pulsed I/V and S‐parameters measurement system for isodynamic characterization of power GaN HEMT transistors | |
JPS60254625A (en) | Test method for short gate type FET | |
Bengtsson et al. | VSWR testing of RF-power GaN transistors | |
de Oliveira et al. | Impact of dynamic on-resistance of high voltage GaN switches on the overall conduction losses | |
Stephens et al. | RF reliability of short channel NMOS devices | |
Ghizzo et al. | Preconditioning of p-GaN power HEMT for reproducible Vth measurements | |
CN102313613B (en) | Method for measuring FET channel temperature | |
Zhao et al. | Study on the Influence of Strong Electromagnetic Pulse on GaAs HEMT Devices | |
Tlig et al. | Power RF N-LDMOS ageing effect on conducted electromagnetic interferences | |
Yanagi et al. | Measurement scheme to model an SiC MOSFET for simulating its switching behaviors | |
Alim et al. | Effect of different separation frequencies of the two-tone input signal on the output power of GaN on SiC HEMT | |
Akmal et al. | Minimization of baseband electrical memory effects in GaN HEMTs using active IF load-pull | |
JP3016297B2 (en) | Method for measuring field effect transistors | |
Santarelli et al. | Evaluation of gan fet power performance reduction due to nonlinear charge trapping effects | |
Vadalà et al. | mm-wave GaN HEMT technology: advances, experiments, and analysis | |
Belaïd et al. | Thermal effect on performance of N-MOSFET transistor under pulsed RF tests | |
Rudolph et al. | Determining GaN HEMT Trap Models from MHz Load-Line Measurement–A Case Study | |
CN119147925A (en) | Alternating current time-lapse breakdown effect characterization system and method applied to MOSFET device | |
Murao et al. | An investigation on current collapse induced memory effects of GaN power amplifier for LTE base station applications | |
RU2098839C1 (en) | Method for classification of transistors with respect to leakage current levels |