[go: up one dir, main page]

JPS60253907A - Shape measuring instrument - Google Patents

Shape measuring instrument

Info

Publication number
JPS60253907A
JPS60253907A JP11235284A JP11235284A JPS60253907A JP S60253907 A JPS60253907 A JP S60253907A JP 11235284 A JP11235284 A JP 11235284A JP 11235284 A JP11235284 A JP 11235284A JP S60253907 A JPS60253907 A JP S60253907A
Authority
JP
Japan
Prior art keywords
measured
shape
detection means
shape measuring
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11235284A
Other languages
Japanese (ja)
Inventor
Tadahiro Nagase
忠広 長瀬
Kiyoaki Niimi
清明 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP11235284A priority Critical patent/JPS60253907A/en
Publication of JPS60253907A publication Critical patent/JPS60253907A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/54Revolving an optical measuring instrument around a body

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure with good accuracy in non-contact type and yet continuously by providing a position detecting means detecting the rotation or reciprocating motion position of a detecting means and an arithmetic means obtaining the shape of the body to be measured with the calculation of the output which is from a photoelectric transducer. CONSTITUTION:A shape measuring instrument is equipped with a position detecting means encoder 12 detecting the rotation or reciprocating motion position of detectors 2, 2 and an arithmetic means 13 obtaining the shape of the body 1 to be measured with the calculation of the output transmitted from a photoelectric transducer 10. And it inputs the output (VP, VG) and (HP, HG) of the photoelectric transducer 10 into a microcomputor 21 via an interface 20 every position change of (n-2) (n-1) (n). The shape is then displayed on a displayer 22 while a circular arc for three tangent lines (n, n-1, n-2) from the three tangent lines thereof is drawn and the detectors 2, 2 are rotated for 360 deg. or reciprocated more than 90 deg.. Measurement is thus enabled with good accuracy and with non- contact and yet continuously.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、圧延材、棒材、線材などのように、長手方
向に比較的変化の少い条材の形状をオンラインであるい
はオフラインの静止した状態で測定するのに適し、前記
条材を始めとする被測定物の形状を非接触で測定するの
に使用される形状測定装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is capable of changing the shape of a strip material, such as a rolled material, bar, wire rod, etc., which has relatively little change in the longitudinal direction, either online or offline. The present invention relates to a shape measuring device that is suitable for measuring the shape of an object in a non-contact manner and is suitable for measuring the shape of an object to be measured, such as the strip.

(従来技術) 例えば、丸棒鋼や鋼線材の圧延過程において、その直径
および形状を連続して測定することができれは、この測
定した値をただちに圧延系統にフィードバックし、棒鋼
や線材などの寸法および形状制御を連続して行うことが
可能となり、品質および生産性の著しい向上が実現され
る。
(Prior art) For example, if it is possible to continuously measure the diameter and shape of round steel bars or steel wire rods during the rolling process, the measured values can be immediately fed back to the rolling system and the dimensions of the steel bars or wire rods can be measured. It becomes possible to continuously perform shape control and shape control, and significant improvements in quality and productivity are realized.

この場合、直径や形状の測定は、圧延温度が高いこと、
圧延材の走行速度が大であること、圧延材が上下左右に
振れを生ずること、などの理由がら、非接触方式でなさ
れることが必要である。
In this case, the measurement of diameter and shape requires high rolling temperature,
It is necessary to use a non-contact method for reasons such as the high running speed of the rolled material and the fact that the rolled material vibrates vertically and horizontally.

従来、非接触方式の測定装置は、被測定物の直径を測定
するものとして、例えは特公昭57−37806号によ
って開示されているが、被測定物の形状を非接触で測定
しうる装置は現場的に適用しうるものがなかった。その
ため、構造が比較的簡単で圧延現場等において容易にか
つ精度よく棒鋼や線材等の形状を測定することができる
形状測定装置の開発が望まれていた。
Conventionally, non-contact measuring devices have been disclosed in Japanese Patent Publication No. 57-37806 for measuring the diameter of objects to be measured, but there are no devices that can measure the shape of objects in a non-contact manner. There was nothing that could be applied in the field. Therefore, it has been desired to develop a shape measuring device that has a relatively simple structure and can easily and accurately measure the shapes of steel bars, wire rods, etc. at rolling sites and the like.

(発明の目的) この発明は、このような要望を満たすべくなされたもの
で、棒材や線材等の被測定物の形状を非接触式でしかも
連続的に精度良く測定することができる形状測定装置を
提供することを目的としている。
(Purpose of the Invention) The present invention was made to meet such needs, and is a shape measurement method that can measure the shape of objects to be measured such as rods and wires in a non-contact manner and continuously with high accuracy. The purpose is to provide equipment.

(発明の構成) この発明による形状測定装置は、被測定物に光線を照射
する光源および前記被測定物を通過した光線の前記被測
定物による影との境界を検知する光電変換素子を備えた
非接触型検知手段と、前記検知手段を前記被測定物のま
わりで回転または往復動させる駆動手段と、前記検知手
段の回転または往復動位置(角度を含む)を検出する位
置検出手段と、前記光電変換素子からの出力を演算して
前記被測定物の形状を得る演算手段と、を備えたことを
特徴としている。
(Structure of the Invention) A shape measuring device according to the present invention includes a light source that irradiates a light beam onto an object to be measured, and a photoelectric conversion element that detects a boundary between the light beam that has passed through the object to be measured and a shadow caused by the object to be measured. a non-contact detection means, a drive means for rotating or reciprocating the detection means around the object to be measured, a position detection means for detecting the rotational or reciprocating position (including angle) of the detection means; The present invention is characterized by comprising a calculation means for calculating the output from the photoelectric conversion element to obtain the shape of the object to be measured.

この発明の実施態様においては、非接触型検知手段にお
ける光源が第1の光学系を備えており、被測定物に平行
光線を照射するようにしたものとすることもできる。こ
の場合、平行光線を照射すれは、光源と被測定物との距
離が変動しても影響を受けないので、圧延材などをオン
ラインで形状4(1j定する場合に適している。また、
被測定物を通過した(平行)光線を直接光電変換素子で
受けるようにすることもできるが、第2の光学系を介し
て前記(平行〕光線を前記光電変換素子で受けるように
することもできる。
In an embodiment of the present invention, the light source in the non-contact detection means may include a first optical system, and may irradiate the object to be measured with parallel light. In this case, the parallel light beam irradiation is not affected even if the distance between the light source and the object to be measured changes, so it is suitable for determining the shape of rolled material etc. online.
The (parallel) light beam that has passed through the object to be measured can be directly received by the photoelectric conversion element, but it is also possible to receive the (parallel) light beam by the photoelectric conversion element via a second optical system. can.

また、被測定物については特に限定されないか、例えば
圧延材である場合には、前記演算手段により得た前記圧
延材の形状から圧延機のロール調整を自動的に行うフィ
ードバック手段を設けるようにすることもできる。
The object to be measured is not particularly limited; for example, in the case of a rolled material, a feedback means is provided to automatically adjust the rolls of the rolling mill based on the shape of the rolled material obtained by the calculation means. You can also do that.

さらに、この発明の実施態様においては、前記非接触型
検知手段を被測定物と略直交する同一平面内において直
交して2チヤンネル配置する構成としたり、前記非接触
型検知手段を被測定物と略直交する同一平面あるいは近
接する平面において一定角度で3チャンネル以上配置す
る構成としたりすることができる。そして、前記非接触
型検知手段を前記被測定物のまわりで3600回転また
は90’以上往復動させて被測定物の形状を測定するよ
うになすことができる。
Furthermore, in an embodiment of the present invention, the non-contact detection means may be arranged in two channels orthogonally in the same plane substantially orthogonal to the object to be measured, or the non-contact detection means may be arranged in two channels orthogonally to the object to be measured. Three or more channels may be arranged at a constant angle on the same substantially orthogonal plane or on adjacent planes. The shape of the object to be measured can be measured by reciprocating the non-contact type detection means around the object to be measured by 3600 rotations or more than 90'.

第1図はこの発明による形状測定装置の原理的説明図で
あって、線■■■は被測定物に対し経時的あるいは同時
的に照射された光線の光と影との境界を示している。そ
こで、前記線■と線■とでできる角の2等分線fL、と
、線■と線■とでできる角の2等分線文2との交点0を
中心として、前記線■、■、■に接する円弧は−っであ
り、この線■、■、■の範囲(角度αの範囲)だけ前記
交点Oを中心として半径rで円弧を描き、線■。
FIG. 1 is an explanatory diagram of the principle of the shape measuring device according to the present invention, and the line ■■■ indicates the boundary between the light and the shadow of the light beam irradiated onto the object to be measured over time or simultaneously. . Therefore, the lines ■, , ■ is -, and an arc with radius r is drawn with the intersection O as the center within the range of these lines ■, ■, ■ (range of angle α), and line ■.

■、■の方向が連続して変化する毎にそれぞれの半径で
円弧を描いてこれを3600にわたってプロットすれば
被測定物の形状を知ることができる。
The shape of the object to be measured can be determined by drawing an arc with each radius each time the directions (1) and (2) change continuously and plotting this over 3,600 degrees.

(実施例) 第2図ないし第7図はこの発明の実施例を示す図であっ
て、第2図において、1は被測定物、2.2は非接触型
検知手段を構成する2チヤンネルの非接触型検知器であ
る。それぞれの非接触型検知器2は、被測定物1に平行
光線3を照射するための光源4およびレンズ5からなる
第1の光学系6と、前記被測定物1を通過した平行光線
3を集光する第2の光学系としてのレンズ8と、前記レ
ンズ8を通過した光線を受けて前記被測定物1による前
記光線の影の位置(影の始まり)(P)と幅(G)とを
検知する微小光電変換素子群からなる光電変換素子10
とを備えており、両検知器2.2は前記被測定物1と略
直交する同一平面内において直交して配置しである。
(Embodiment) FIGS. 2 to 7 are diagrams showing embodiments of the present invention. In FIG. 2, 1 is an object to be measured, and 2.2 is a two-channel structure constituting a non-contact detection means. It is a non-contact type detector. Each non-contact type detector 2 includes a first optical system 6 consisting of a light source 4 and a lens 5 for irradiating parallel light rays 3 onto the object to be measured 1, and a first optical system 6 for irradiating the parallel light 3 that has passed through the object to be measured 1. A lens 8 as a second optical system for condensing light, and a position (P) and width (G) of the shadow of the light beam by the object to be measured 1 that receives the light beam passing through the lens 8. Photoelectric conversion element 10 consisting of a group of minute photoelectric conversion elements that detects
Both detectors 2.2 are arranged orthogonally in the same plane that is substantially orthogonal to the object to be measured 1.

また、11は前記検知器2,2を被測定物1のまわりで
回転または往復動させる駆動手段、12は前記検知器2
.2の回転または往復動位置(角度を含む)を検出する
位置検出手段、13は前記光電変換素子10からの出力
を演算して前記被測定物1の形状を得る演算手段である
Further, 11 is a driving means for rotating or reciprocating the detectors 2, 2 around the object to be measured 1, and 12 is a driving means for rotating or reciprocating the detectors 2, 2.
.. Position detection means 13 detects the rotational or reciprocating position (including angle) of 2, and calculation means 13 calculates the output from the photoelectric conversion element 10 to obtain the shape of the object 1 to be measured.

なお、図←こおいて、HH’は絶対系の水平面、vV′
は絶対系の垂直面を示している。
In addition, in the figure, HH' is the horizontal plane of the absolute system, vV'
indicates the vertical plane of the absolute system.

上記光電変換素子1oの出力は、第3図に示すように、
光線が被測定物1によって遮断された影の部分の幅(G
)がLoであり、これによって被測定物1の寸法を知る
ことができ、光線のあたる部分がH4となり、このHi
の部分の幅によって被測定物1の位置Pを知ることがで
きる。
The output of the photoelectric conversion element 1o is as shown in FIG.
The width of the shadow part where the light beam is blocked by the object to be measured 1 (G
) is Lo, which allows us to know the dimensions of the object to be measured 1, and the part hit by the light beam is H4, and this Hi
The position P of the object to be measured 1 can be determined by the width of the portion.

第4図は上記演算手段13の説明図であって、15は光
電変換素子(例えば、電荷結合素子;CCD)10を駆
動させるドライバー、16は光電変換素子10からの出
力を受けるレシーバ−117は波形整形回路、18はカ
ウンターである。
FIG. 4 is an explanatory diagram of the arithmetic means 13, in which 15 is a driver that drives the photoelectric conversion element (for example, a charge-coupled device; CCD) 10, and 16 is a receiver 117 that receives the output from the photoelectric conversion element 10. The waveform shaping circuit 18 is a counter.

また、12は前記位置検出手段としてのエンコーダー、
20は前記光電変換素子1oがらの出力(VP (n)
、VG (n)、HP (n)、HG(n))およびエ
ンコーダー12からの出力(EN (n) )をマイク
ロコンピュータ21に入カスるインターフェイス、22
はマイクロコンピュータ21からの出力によって前記被
測定物1の形状を表示するディスプレイである。
Further, 12 is an encoder as the position detecting means;
20 is the output (VP (n)) of the photoelectric conversion element 1o
, VG (n), HP (n), HG (n)) and an interface 22 that inputs the output (EN (n)) from the encoder 12 to the microcomputer 21;
is a display that displays the shape of the object to be measured 1 based on the output from the microcomputer 21.

次に、上記構成の形状測定装置によって被測定物1の形
状を測定する要領について第5図を含めて説明すると、
光源4,4を点灯して被測定物1に平行光線3,3を照
射し、光電変換素子1o。
Next, the procedure for measuring the shape of the object to be measured 1 using the shape measuring device having the above configuration will be explained with reference to FIG.
The light sources 4, 4 are turned on to irradiate the object to be measured 1 with parallel light beams 3, 3, and the photoelectric conversion element 1o.

10によって影の位置(VP (n)、HP(n))と
幅(VG (n)、HG (n))とを検出すると同時
に、駆動手段11を作動させて前記非接触型検知器2.
2を3600回転または90°以上往復動させ、このと
きの位置(角度)(EN (n))をエンコーダー12
により検出する。
10 to detect the position (VP (n), HP (n)) and width (VG (n), HG (n)) of the shadow, and at the same time actuate the driving means 11 to move the non-contact type detector 2.
2 is rotated 3600 times or reciprocated over 90 degrees, and the position (angle) (EN (n)) at this time is recorded using the encoder 12.
Detected by.

そこで、第5図に示すステップ1o1において、それぞ
れエンコーダ12の出力EN、垂直側および水平側にお
ける光電変換素子1oの出方(VP 、VC)Piよぴ
(HP、HG)を第1図に示した位置変化■→■→■す
なわち(n−2)→(n−1)−(n)ごとにインター
フェイス2゜を介してマイクロコンピュータ21に入力
し、ステップ102において各個を読込み、前記出力(
VP 、VG)t’lび(HP、HG)によッテ判定さ
れる被測定物1のドリフト量に従ってステップ103に
おいてドリフト量の補正を行い、次いでステップ104
においてエンコーダ12によって検知される位置毎に前
記被測定物1の表面に接する絶対系における接線の式f
vp (n ) +fvc (n)、、fo p (n
)、fHG(n)の算出を行い、次にステップ105に
おいて前記第1図に示したような3接線(n 、 n−
1、n−2)からその3接線に対する円弧を描き、検知
器2゜2が360°回転または90’以上往復動する間
にこれを継続してプロットすることによりディスプレイ
22旋おいて被測定物1の形状を表示する。したがって
、例えば第6図に示す形状の被測定物1は、第7図に示
すようにその形状が表示される6そして、被測定物1が
圧延材である場合には、形状の測定結果を仕上圧延機に
戻すフィードバック手段を設けるようにし、前記形状の
測定結果に応じて、仕上圧延機におけるカリバ一方向。
Therefore, in step 1o1 shown in FIG. 5, the output EN of the encoder 12, the output directions (VP, VC) and Pi (HP, HG) of the photoelectric conversion element 1o on the vertical and horizontal sides are shown in FIG. The position change ■→■→■, that is, (n-2)→(n-1)−(n), is inputted to the microcomputer 21 via the interface 2°, each is read in step 102, and the output (
In step 103, the drift amount is corrected according to the drift amount of the object to be measured 1 determined by t'l (VP, VG) and (HP, HG), and then in step 104.
The equation f of the tangent in the absolute system that is in contact with the surface of the object to be measured 1 at each position detected by the encoder 12 in
vp (n) + fvc (n),, fo p (n
), fHG(n) is calculated, and then in step 105 three tangents (n, n-
1, n-2) to its three tangents, and plot this continuously while the detector 2゜2 rotates 360° or reciprocates over 90', the display 22 rotates and the object to be measured is drawn. Display the shape of 1. Therefore, for example, the shape of the object 1 to be measured as shown in FIG. 6 is displayed as shown in FIG. Feedback means is provided to feed back to the finishing mill, and depending on the shape measurement result, the caliber is adjusted in one direction in the finishing mill.

自由面方向を認識し、ロールすき、ロール狂いを知るこ
とにより自動的かつ連続的にロール調整を行うようにす
る。
To automatically and continuously perform roll adjustment by recognizing the free surface direction and knowing roll clearance and roll deviation.

なお、この発明による形状測定装置は、非接触型検知器
2が1チヤンネルだけであっても形状の測定は可能であ
るが、上記実施例に示したように2チヤンネル直交して
設けることが望ましく、さらには3チャンネル設けるこ
とによってドリフトの影響をうけずに正確な半径r、中
心O(第1図)を得ることができるため、著しく正確な
形状測定が可能となる。ただし、この場合には、相互の
干渉を生じないように例えば3チヤンネルの検知器の位
置を若干ずらすなどの対策を講じる必要がある。
Although the shape measuring device according to the present invention can measure the shape even if the non-contact detector 2 has only one channel, it is preferable to provide two channels perpendicular to each other as shown in the above embodiment. Furthermore, by providing three channels, it is possible to obtain an accurate radius r and center O (FIG. 1) without being affected by drift, making extremely accurate shape measurement possible. However, in this case, it is necessary to take measures such as slightly shifting the positions of the three-channel detectors to prevent mutual interference.

また、上記実施例では、被測定物1が変動した場合のド
リフト補正を、光電変換素子10に照射される光の影の
位置(VP (n)、HP (n))と幅(VG (n
)、HG (n)) とを検知することにより行ったが
、そのほか1例えば被測定物1に照射される光の両接線
の中心線が常に光学系の中心を通るように前記両接線を
平行移動させる処理を電気的に施すことにより行うこと
もできる。
In addition, in the above embodiment, the drift correction when the object to be measured 1 fluctuates is performed using the position (VP (n), HP (n)) and width (VG (n)) of the shadow of the light irradiated onto the photoelectric conversion element 10.
), HG (n)), but in addition, 1.For example, the center line of both tangents of the light irradiated to the object to be measured 1 always passes through the center of the optical system. The moving process can also be performed electrically.

さらに、上記実施例では被測定物1に平行光線を照射す
る場合を示しているが、例えば被測定物が静止した状態
にある場合などには、光源と被測定物との距離は一定で
あるので、平行光線でなくとも測定は可能である。
Furthermore, although the above embodiment shows a case where the object to be measured 1 is irradiated with a parallel beam of light, the distance between the light source and the object to be measured is constant, for example when the object to be measured is in a stationary state. Therefore, measurement is possible even if the beams are not parallel.

このように、この発明によれば、被測定物1の表面形状
(曲率)を知ることが可能であり、仕上圧延機から出た
棒材や線材等の形状を測定する場合に、その表面形状の
分布を解析することにより、圧延材の測定部位やカリバ
ーの荒れ具合などを知ることができる。すなわち、通常
の場合前記棒材や線材等の横断面を見ると数種の曲率か
ら構成されており、例えば丸鋼の断面は第8図に示すよ
うにカリバー形状が転写されて、製品寸法のl/2であ
るrlの部分、r2=2r1の部分、自由面のr3の部
分からなっている。そこで、このような丸鋼をこの発明
による形状測定装置で測定した場合に、圧延ロール使用
開始直後は第9図に実線で示すような曲率が得られ、圧
延ロールの摩耗が進んだ場合にはそれが圧延材に転写さ
れて例えば第9図に破線で示したような曲率が得られる
。したかって、圧延材に捻転かあるとしてもロール方向
および自由面方向を知ることができると共に圧延ロール
の摩耗の進行度を知ることができる。
As described above, according to the present invention, it is possible to know the surface shape (curvature) of the object to be measured 1, and when measuring the shape of a bar, wire, etc. coming out of a finishing mill, it is possible to know the surface shape. By analyzing the distribution of , it is possible to know the measurement location of the rolled material and the degree of roughness of the caliber. That is, in normal cases, when looking at the cross section of the bar or wire rod, etc., it is composed of several types of curvature. For example, the cross section of round steel has a caliber shape transferred to it, as shown in Figure 8, and the product dimensions are It consists of a part rl which is l/2, a part r2=2r1, and a part r3 which is a free surface. Therefore, when such a round steel is measured using the shape measuring device according to the present invention, the curvature shown by the solid line in Fig. 9 is obtained immediately after the rolling roll starts to be used, and when the rolling roll wear progresses, This is transferred to the rolled material to obtain, for example, a curvature as shown by the broken line in FIG. Therefore, even if the rolled material is twisted, the roll direction and free surface direction can be known, and the degree of wear of the rolling rolls can also be known.

(発明の効果) 以上説明してきたように、この発明による形状測定装置
は、被測定物に光線を照射する光源と、前記被測定物を
通過した光線の前記被測定物による影との境界を検知す
る光電変換素子と、を備えた非接触型検知手段と、前記
検知手段を前記被測定物のまわりで回転または往復動さ
せる駆動手段と、前記検知手段の回転または往復動位置
を検出する位置検出手段と、前記光電変換素子からの出
力を演算して前記被測定物の形状を得る演算手段と、を
備えた構成を有するものであるから、棒材や線材等の被
測定物の形状を非接触式でしかも連続的に精度よく測定
することが可能であり、例えば、高温の鋼線材が高速で
走行する圧延工場において、鋼線材の形状を連続的に測
定し、この結果を圧延系統にフィードバックすることに
よって、常に正確な断面形状を有する製品の圧延を行う
ことが可能となり、圧延精度および圧延作業性の著しい
向上を実現することが可能になるという著大な効果をも
たらす。
(Effects of the Invention) As explained above, the shape measuring device according to the present invention detects the boundary between the light source that irradiates the object to be measured and the shadow caused by the object of the light that has passed through the object to be measured. a non-contact detection means comprising: a photoelectric conversion element for detection; a drive means for rotating or reciprocating the detection means around the object to be measured; and a position for detecting the rotational or reciprocating position of the detection means. Since it has a configuration including a detection means and a calculation means for calculating the output from the photoelectric conversion element to obtain the shape of the object to be measured, it is possible to determine the shape of the object to be measured such as a bar or wire. It is possible to perform non-contact measurement continuously and with high precision. For example, in a rolling mill where high-temperature steel wire rods run at high speed, the shape of the steel wire rods can be continuously measured and the results sent to the rolling system. Feedback makes it possible to always roll a product having an accurate cross-sectional shape, and brings about the remarkable effect that it becomes possible to realize a remarkable improvement in rolling accuracy and rolling workability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による形状測定装置の測定原理を示す
説明図、第2図はこの発明の一実施例による形状測定装
置の全体説明図、第3図は光電変換素子の出力説明図、
第4図は演算手段の説明図、第5図は演算処理のフロー
チャート、第6図および第7図は被測定材形状および演
算後の表示出力を示す説明図、第8図は丸鋼の断面形状
例を示す説明図、第9図は形状測定した曲率の変化を示
す説明図である。 1・・・被測定物、 2・・・非接触型検知手段、 3・・・光線、 10・・・光電変換素子、 11・・・駆動手段、 12・・・位置検出手段、 13・・・演算手段。 第1図 第2図 2 第3図 第4図 /15 第5図 第8図 第9図 位1
FIG. 1 is an explanatory diagram showing the measurement principle of the shape measuring device according to the present invention, FIG. 2 is an overall explanatory diagram of the shape measuring device according to an embodiment of the present invention, and FIG. 3 is an explanatory diagram of the output of the photoelectric conversion element.
Figure 4 is an explanatory diagram of the calculation means, Figure 5 is a flowchart of the calculation process, Figures 6 and 7 are explanatory diagrams showing the shape of the material to be measured and the display output after calculation, and Figure 8 is the cross section of the round steel. FIG. 9 is an explanatory diagram showing a shape example, and FIG. 9 is an explanatory diagram showing a change in curvature measured by shape. DESCRIPTION OF SYMBOLS 1... Object to be measured, 2... Non-contact detection means, 3... Light beam, 10... Photoelectric conversion element, 11... Drive means, 12... Position detection means, 13...・Calculation means. Figure 1 Figure 2 Figure 2 Figure 3 Figure 4/15 Figure 5 Figure 8 Figure 9 Position 1

Claims (6)

【特許請求の範囲】[Claims] (1)被測定物に光線を照射する光源と、前記被測定物
を通過した光線の前記被測定物による影との境界を検知
する光電変換素子と、を備えた非接触型検知手段と、 前記検知手段を前記被測定物のまわりで回転または往復
動させる駆動手段と、 前記検知手段の回転または往復動位置を検出する位置検
出手段と、 前記光電変換素子からの出力を演算して前記被測定物の
形状を得る演算手段と、 を備えたことを特徴とする形状測定装置。
(1) A non-contact detection means comprising a light source that irradiates a light beam onto an object to be measured, and a photoelectric conversion element that detects the boundary between the light beam that has passed through the object and the shadow caused by the object; A drive means for rotating or reciprocating the detection means around the object to be measured; a position detection means for detecting the rotational or reciprocating position of the detection means; A shape measuring device comprising: arithmetic means for obtaining the shape of an object to be measured;
(2)被測定物が圧延材であり、演算手段により得た前
記圧延材の形状から圧延機のロール調整を行うフィード
バック手段を備えた特許請求の範囲第(1)項記載の形
状測定装置。
(2) The shape measuring device according to claim (1), wherein the object to be measured is a rolled material, and the device includes feedback means for adjusting the rolls of a rolling mill based on the shape of the rolled material obtained by the calculation means.
(3)非接触型検知手段を被測定物と略直交する同一平
面内において直交して2チヤンネル配置した特許請求の
範囲第(1)項または第(2)項記載の形状測定装置。
(3) A shape measuring device according to claim (1) or (2), wherein the non-contact detection means are disposed in two orthogonal channels in the same plane substantially orthogonal to the object to be measured.
(4)非接触型検知手段を被測定物と略直交する同一平
面あるいは近接する平面において一定角度で3チャンネ
ル以上配置した特許請求の範囲第(1)項または第(2
)項記載の形状測定装置。
(4) Claims (1) or (2) in which three or more channels of non-contact detection means are arranged at a constant angle on the same plane or adjacent plane substantially perpendicular to the object to be measured.
) The shape measuring device described in section 2.
(5)非接触型検知手段を被測定物のまわりで360°
回転させるようにした特許請求の範囲第(1)項ないし
第(4)項のいずれかに記載の形状測定装置。
(5) Non-contact detection means 360° around the object to be measured
A shape measuring device according to any one of claims (1) to (4), which is configured to rotate.
(6)非接触型検知手段を被測定物のまわりで90°以
上往復動させるようにした特許請求の範囲8(1)項な
いし第(4)項のいずれかに記載の形状測定装置。
(6) The shape measuring device according to any one of claims 8(1) to (4), wherein the non-contact type detection means is configured to reciprocate by 90 degrees or more around the object to be measured.
JP11235284A 1984-05-31 1984-05-31 Shape measuring instrument Pending JPS60253907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11235284A JPS60253907A (en) 1984-05-31 1984-05-31 Shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11235284A JPS60253907A (en) 1984-05-31 1984-05-31 Shape measuring instrument

Publications (1)

Publication Number Publication Date
JPS60253907A true JPS60253907A (en) 1985-12-14

Family

ID=14584542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11235284A Pending JPS60253907A (en) 1984-05-31 1984-05-31 Shape measuring instrument

Country Status (1)

Country Link
JP (1) JPS60253907A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403908A2 (en) * 1989-06-19 1990-12-27 Hartmetallwerkzeugfabrik Andreas Maier Gmbh Procedure and device to measure the contours of an object
EP1154226A2 (en) * 2000-05-11 2001-11-14 LAP GmbH Laser Applikationen Procedure and device for measuring of thickness and unroundness of elongated objects
JP2010038554A (en) * 2008-07-31 2010-02-18 Jfe Steel Corp Oil well pipe screw-thread shape perimeter measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0403908A2 (en) * 1989-06-19 1990-12-27 Hartmetallwerkzeugfabrik Andreas Maier Gmbh Procedure and device to measure the contours of an object
EP1154226A2 (en) * 2000-05-11 2001-11-14 LAP GmbH Laser Applikationen Procedure and device for measuring of thickness and unroundness of elongated objects
EP1154226A3 (en) * 2000-05-11 2002-05-02 LAP GmbH Laser Applikationen Procedure and device for measuring of thickness and unroundness of elongated objects
JP2010038554A (en) * 2008-07-31 2010-02-18 Jfe Steel Corp Oil well pipe screw-thread shape perimeter measuring device

Similar Documents

Publication Publication Date Title
EP2492634B1 (en) Method of measuring flatness of sheet and method of manufacturing steel sheet using same
CN110017784A (en) A kind of online quality inspection device of curling steel roll end and method
EP0736342A1 (en) Method and apparatus for measuring cross sectional dimensions of sectional steel
CN113551619B (en) On-line measuring method and device for straightness of seamless steel pipe
JPS60253907A (en) Shape measuring instrument
JP2000283729A (en) Method and device for measuring outside diameter of traveling pipe or rod
JPH05141957A (en) Film thickness measuring device
KR102231141B1 (en) System for inspecting appearance of rolled plate and method of inspecting appearance of rolled plate using the same
JP3217843B2 (en) Method and apparatus for online non-destructive measurement of properties of continuously manufactured products
JP3747661B2 (en) Measuring device for bending amount of rod-shaped body
KR20000058084A (en) method of adjusting position in bar steel rolling mill and roll position adjusting guidance apparatus
JPH06246341A (en) Automatic shape measuring device and correction controller for electric resistance welded steel tube
JPS589709A (en) Bar mill guide control device
JPH01295108A (en) Method and device for measuring profile of roll
JPH0449043B2 (en)
CN219776673U (en) Novel sheet plane vision detection and thickness detection system
CN107552576A (en) A kind of cold coiling machine mandrel locus online dimension detection method
JPH0424121B2 (en)
JPS5863803A (en) Measuring method for bending rate of bar-like material
JPS6375608A (en) Method for measuring roll profile
JPH06273103A (en) Measuring method of outer diameter of cylindrical object
JP2006234540A (en) H-section steel shape measuring method
JPS61269007A (en) Method for measuring the level difference in the welded part of a welded pipe
JPH09126746A (en) Thickness gauge
JP2001153618A (en) Side dimension measuring method for angle steel and angle steel manufacturing method