JPS60253505A - Manufacturing method of ceramic products - Google Patents
Manufacturing method of ceramic productsInfo
- Publication number
- JPS60253505A JPS60253505A JP10841384A JP10841384A JPS60253505A JP S60253505 A JPS60253505 A JP S60253505A JP 10841384 A JP10841384 A JP 10841384A JP 10841384 A JP10841384 A JP 10841384A JP S60253505 A JPS60253505 A JP S60253505A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- water
- ceramic
- slurry
- absorbing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000002002 slurry Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 17
- 239000011505 plaster Substances 0.000 claims description 9
- 239000005060 rubber Substances 0.000 claims description 5
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 229920003002 synthetic resin Polymers 0.000 claims description 3
- 239000000057 synthetic resin Substances 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000005245 sintering Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010440 gypsum Substances 0.000 description 4
- 229910052602 gypsum Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229920006248 expandable polystyrene Polymers 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000009489 vacuum treatment Methods 0.000 description 2
- MOMKYJPSVWEWPM-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methylphenyl)-1,3-thiazole Chemical compound C1=CC(C)=CC=C1C1=NC(CCl)=CS1 MOMKYJPSVWEWPM-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004794 expanded polystyrene Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000010097 foam moulding Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000019983 sodium metaphosphate Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Producing Shaped Articles From Materials (AREA)
- Moulds, Cores, Or Mandrels (AREA)
- Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、セラミックス含有スラリーを鋳型内に鋳込む
ことによってセラミックス製品を製造する方法に係り、
特に自動車用ターボチャージャケーシング、コンプレッ
サー用ロータなどのように形状が複雑で中空部の肉厚が
異なる製品に適用するのに好適な製造法に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of manufacturing a ceramic product by casting a ceramic-containing slurry into a mold,
In particular, the present invention relates to a manufacturing method suitable for application to products such as automobile turbocharger casings and compressor rotors, which have complex shapes and have different wall thicknesses in their hollow parts.
セラミックス製品を製造する方法の1つに、セラミック
ス含有スラリーを鋳型内に鋳込んで凝固させる方法があ
る。One method for manufacturing ceramic products is to cast a ceramic-containing slurry into a mold and solidify it.
一般に知られているこの種の方法においては鋳型全体が
吸水性材料によって構成される。従って、スラリー中の
水分は鋳型全域から吸収除去されることになる。In this type of generally known method, the entire mold is made of water-absorbing material. Therefore, the water in the slurry will be absorbed and removed from the entire area of the mold.
自動車用ターボチャージャケーシングのように形状が複
雑でかつ肉厚の異なる部分を有する製造に対しては、こ
の方法を適用することは難しい。It is difficult to apply this method to manufacturing products that have complex shapes and parts with different wall thicknesses, such as automobile turbocharger casings.
この方法を適用すると鋳型内にスラリー中の水分の吸収
の速いところと遅いところが生じ、鋳型内の位置によっ
てスラリーの凝固速度に大きな差が生じる。この結果、
セラミックスの固化物には密度に大きなバラツキが生じ
る。When this method is applied, there will be areas within the mold where water in the slurry is absorbed quickly and areas where it is slow, resulting in large differences in the solidification rate of the slurry depending on the position within the mold. As a result,
Large variations in density occur in solidified ceramics.
このように密度に大きなバラツキがあるセラミックス固
化物を鋳型から取り出す薯、離型の際に固化物の表面が
破損したり或は亀裂を生じたりする。When a solidified ceramic material having such large variations in density is removed from a mold, the surface of the solidified material may be damaged or cracked when the mold is released.
さらに鋳型から取り出したセラミック固化物を乾燥及び
焼結したときに収縮に基づく大きな寸法変動が生じ、固
化物が変形したり或は割れを生じることが多い。Further, when the ceramic solidified product taken out from the mold is dried and sintered, large dimensional changes occur due to shrinkage, often resulting in deformation or cracking of the solidified product.
中空のセラミック成形体を作る方法として、鋳型内(石
膏型)にセラミック含有スラリーを注入して所定時間保
持したのち、スラリーを排出する方法がある。この方法
は、きわめて便利で均質なものが出来る反面、均一の肉
厚のものしか得られず肉厚が異なる場合に寸法精度が悪
くなる問題点がある。そのため、ターボチャージャケー
シングのように複雑な中空部を有する成形体を製作する
には適さない。それ故にこれらの問題点を解決するには
中空部と同形の中子を使用する方式が考えられる。この
場合には、中子がセラミックス成形体より取り出せる形
状の場合に限定される。複雑な成形体を得る方法として
、有機材料と吸水性鋳型を組み合せた方法が出願されて
いる。(昭56−286B? )
この方法は、型部分(有機材料)を取り除くために溶融
温度に加熱するため、成形体の周囲を湿り気の高い環境
に維持することや溶融材料を吸収させるなど複雑な処理
工程を経なければならないなどの問題点がある。As a method for making a hollow ceramic molded body, there is a method in which a ceramic-containing slurry is injected into a mold (a plaster mold), held for a predetermined period of time, and then the slurry is discharged. Although this method is extremely convenient and can produce uniform products, it has the problem that only uniform wall thicknesses can be obtained, and dimensional accuracy deteriorates when the wall thicknesses differ. Therefore, it is not suitable for manufacturing a molded body having a complicated hollow part such as a turbocharger casing. Therefore, in order to solve these problems, it is possible to use a core having the same shape as the hollow part. In this case, the core is limited to a shape that can be removed from the ceramic molded body. A method combining an organic material and a water-absorbing mold has been proposed as a method for obtaining a complex molded body. (Sho 56-286B?) This method heats the mold part (organic material) to a melting temperature in order to remove it, so it requires complicated steps such as maintaining a highly humid environment around the molded object and absorbing the molten material. There are problems such as the need to go through a processing process.
本発明の目的は、セラミックス固化物を鋳造から離型し
たとき或はその後焼結したときに、割れ及び変形を生じ
にくいセラミック製品の製造法を提供することにある。An object of the present invention is to provide a method for manufacturing a ceramic product that is less prone to cracking and deformation when a solidified ceramic product is released from casting or sintered afterwards.
本発明、セラミックス含有スラリーを鋳型内に鋳込み、
指向性凝固させるものである。The present invention, casting a ceramic-containing slurry into a mold,
It causes directional coagulation.
本発明は、セラミックス含有スラリーを指向性凝固させ
ることによって得た固化物は非常に緻密で且つ密度のバ
ラツキが少なく、このため離型時に割れることがなく、
更に焼結しても変形が少なく且つ割れが生じにくいとい
う事実の発見に基づいている。In the present invention, the solidified product obtained by directional solidification of the ceramic-containing slurry is very dense and has little variation in density, and therefore does not crack during mold release.
Furthermore, this is based on the discovery that even when sintered, there is little deformation and cracks are less likely to occur.
本発明は、セラミック含有スラリーを鋳型内で凝固した
のち、可溶性模型を溶出させ1次いで、成形体を乾燥・
焼成して最終的なセラミック製品を作ることを特徴とし
ている。In the present invention, after solidifying the ceramic-containing slurry in a mold, the soluble model is eluted, and then the molded body is dried and
It is characterized by firing to create the final ceramic product.
セラミックス含有スラリーは、セラミックスを適当な媒
液中に懸濁させることによって調製される。セラミック
スは1周知の材料の任意のものを使用できる。本発明の
方法を適用するうえで好適なセラミックスは炭化硅素、
窒化珪素、サイヤロン等である。アルミナ、ジルコニア
なども適用できることは勿論である。A ceramic-containing slurry is prepared by suspending the ceramic in a suitable medium. Any known ceramic material can be used. Ceramics suitable for applying the method of the present invention include silicon carbide,
Silicon nitride, Sialon, etc. Of course, alumina, zirconia, etc. can also be used.
セラミックス含有スラリー中におけるセラミックスの粒
子の大きさも任意で良い。The size of the ceramic particles in the ceramic-containing slurry may also be arbitrary.
セラミックスを懸濁させるための媒液はセラミックスを
一様に分散できる性質をそなえたものであれば任意のも
のを使用できる。最も好適な媒液は水である。セラミッ
クスを水に懸濁させてスラリーとする場合には解膠剤を
含有させることが望ましい。Any medium can be used for suspending the ceramics as long as it has the property of uniformly dispersing the ceramics. The most preferred medium is water. When suspending ceramics in water to form a slurry, it is desirable to include a deflocculant.
窒化珪素及び、サイヤロン含有スラリーの場合には、解
膠剤としては、例えばナフタレンスルフォン酸、メタリ
ン酸ソーダ、クエン酸の混合物が良い。In the case of a slurry containing silicon nitride and Sialon, a good deflocculant is, for example, a mixture of naphthalene sulfonic acid, sodium metaphosphate, and citric acid.
水の量は20〜40%にするのが望ましい。It is desirable that the amount of water be 20-40%.
吸水性鋳型としては、石膏型、合成樹脂型或は素焼型な
でを用いることができ、これらを適宜組合せて用いるこ
とができる。As the water-absorbing mold, a plaster mold, a synthetic resin mold, or an unglazed mold can be used, and these can be used in an appropriate combination.
非吸水性鋳型としては、ゴム型、金型、合成樹脂型など
を用いることができ、これらを適宜組み合せて用いるこ
とができる。As the non-water-absorbing mold, a rubber mold, a metal mold, a synthetic resin mold, etc. can be used, and these can be used in an appropriate combination.
平溶性模型としては、ポリスチレン、ワックスなどを用
いることができ、有機溶易で溶解できる材料であれば使
用できる。Polystyrene, wax, etc. can be used as the flat-soluble model, and any material that can be easily dissolved in organic matter can be used.
有機溶剤は、可溶性模型を溶解させ、スラリーの固化物
を溶解されせなければ使用できる。An organic solvent can be used as long as it dissolves the soluble model but does not dissolve the solidified material in the slurry.
本発明の方法を実施するにあたっては、鋳型を吸水性鋳
型と非吸水性鋳型および可溶性模型とによって構成させ
る。In carrying out the method of the present invention, a mold is composed of a water-absorbing mold, a non-water-absorbing mold, and a soluble model.
実施例1 円筒状のパイプを製作した実施例について説明する。 Example 1 An example in which a cylindrical pipe was manufactured will be described.
パイプの形状は外径50mnφで内径が40+n+nφ
で肉厚が5Wtrl、長さが50+m+である。The shape of the pipe is outer diameter 50mmφ and inner diameter 40+n+nφ.
The wall thickness is 5Wtrl and the length is 50+m+.
鋳型は次のようにして製作した。底面の部分に吸水性鋳
型である石膏型を用いた。石膏は市販の焼石膏で石膏1
00重量部に対し水80重量部の割合として、水の中に
石膏を投入し、撹拌ミキサー(回転数30Orpm)で
2分間混練して泥しよう材を調整した。次に木製の模型
内に泥しよう材を流し込み成形した。石膏が硬化したあ
と模型を取り外し、乾燥器で50℃の温度で24時間保
持し水分の放出を行わせた。The mold was manufactured as follows. A plaster mold, which is a water-absorbing mold, was used for the bottom part. Plaster is commercially available calcined gypsum.
Gypsum was added to water at a ratio of 0.00 parts by weight to 80 parts by weight of water, and mixed for 2 minutes with a stirring mixer (rotation speed: 30 rpm) to prepare a slurry material. Next, mud was poured into the wooden model and molded. After the plaster had hardened, the model was removed and kept in a dryer at a temperature of 50°C for 24 hours to release moisture.
可溶性模型は内径の部分をポリスチレンの発泡体により
成形した。市販のポリスチレンビーズを二段発泡成形に
より製作した。すなわち、原料ビーズを予備発泡として
93〜95℃の温水中に2分間加熱して予備発泡させた
。これを水切りを行ったのち、アルミニューム製の金型
の中に軽く充填して密封した。次いで、金型を95℃の
温水中に30分間保持したのち、冷水で冷却すると所望
の発泡体が得られる。The inner diameter of the soluble model was molded from polystyrene foam. Commercially available polystyrene beads were fabricated by two-stage foam molding. That is, the raw material beads were pre-foamed by heating them in hot water at 93 to 95° C. for 2 minutes. After draining the water, it was lightly filled into an aluminum mold and sealed. Next, the mold is held in hot water at 95° C. for 30 minutes and then cooled with cold water to obtain the desired foam.
外径部分の鋳型は半分割したゴム型を採用した。The mold for the outer diameter part was a rubber mold divided in half.
石膏型とゴム型および発泡ポリスチレン模型を組み立て
一体型とした。The plaster mold, rubber mold, and foamed polystyrene model were assembled into one piece.
セラミックス含有スラリーは次のような配合で調整を行
った。The ceramic-containing slurry was prepared using the following formulation.
耐火物粒子;サイヤロン粉末 100重量部水 °40
上記材料300grをポリエチレン容器にプラスチック
ボールとともに入れ回転混合を75時間行った。次にス
ラリー中の空気を取り除くために減圧処理を真空度73
.5cmHg以上の雰囲気で5分間放置した。このよう
にして得たスラリーを前記一体型の開口部(上面)より
流し込み充填した。Refractory particles: Siyalon powder 100 parts by weight Water °40 300 gr of the above material was placed in a polyethylene container together with a plastic ball and mixed by rotation for 75 hours. Next, in order to remove the air in the slurry, vacuum treatment is performed at a vacuum level of 73.
.. It was left for 5 minutes in an atmosphere of 5 cmHg or higher. The slurry thus obtained was poured into the integrated mold through the opening (upper surface) and filled.
スラリーは石膏型から順次水分が吸収され凝固する。そ
の後1石膏型を取り外し鋳型全体を酢酸メチル溶液中に
浸漬すると発泡ポリスチレン模型は直ちに溶融を開始し
て1分間で溶解を終了する。The slurry gradually absorbs water from the plaster mold and solidifies. Thereafter, one plaster mold was removed and the entire mold was immersed in a methyl acetate solution, and the foamed polystyrene model immediately began to melt, and the melting was completed in one minute.
次いで、溶液から鋳型を取り出し、ゴム型を離型すると
グリーンボディが得られる。The mold is then removed from the solution and the rubber mold is released to obtain a green body.
次にグリーンボディの水分を取り除くために次のような
乾燥処理を行った。60℃±2℃の乾燥器内で24時間
加熱保持し、さらに105℃に昇温させて2時間加熱し
た。次に焼結を行った。焼結は次のような処理をした。Next, the following drying process was performed to remove moisture from the green body. The mixture was heated and maintained in a dryer at 60°C±2°C for 24 hours, and further heated to 105°C for 2 hours. Next, sintering was performed. The sintering process was as follows.
黒鉛製の容器に成形体を入れ、この黒鉛容器を焼結炉に
納め、雰囲気を4 X 10−’の真空にしたあと窒素
ガスを導入して1 kg / rlの圧力に保ち加熱を
行った。移温は500℃まで5℃/win、500℃〜
1600℃まで10℃/winで1600℃で2時間加
熱保持し、次に昇温速度10℃/winで1750℃ま
で昇温させ、その温度で5時間加熱保持した後、炉冷し
た。その結果、焼結体し変形もなく、表面および寸法精
度の高いパイプが得られた。The compact was placed in a graphite container, the graphite container was placed in a sintering furnace, the atmosphere was made into a vacuum of 4 x 10-', nitrogen gas was introduced, and the pressure was maintained at 1 kg/rl and heating was performed. . Temperature transfer is 5℃/win up to 500℃, from 500℃
The mixture was heated and held at 1600°C for 2 hours at a rate of 10°C/win to 1600°C, then raised to 1750°C at a temperature increase rate of 10°C/win, heated and held at that temperature for 5 hours, and then cooled in a furnace. As a result, a sintered pipe with no deformation and high surface and dimensional accuracy was obtained.
相対速度は99.5%であった。The relative velocity was 99.5%.
実施例2
自動車用スーパチャージャ用ケーシングを製作した実施
例について説明する。Example 2 An example in which a casing for an automobile supercharger was manufactured will be described.
第1図は鋳型の構成を示す断面図である。FIG. 1 is a sectional view showing the structure of the mold.
セラミックス含有スラリーは次のような配合で調整を行
った。The ceramic-containing slurry was prepared using the following formulation.
耐火物粒子:窒化珪素 100重量部
水 ・ 40
上記材料300grをポリエチレン容器にプラスチック
ボールとともに入れ回転混線を75時間行って所望のス
ラリーを得た。次にスラリー中の空気を取り除くために
減圧処理を真空度73.5cmHHの雰囲気で5分間放
置することによって行った。Refractory particles: Silicon nitride 100 parts by weight Water 40 300 gr of the above material was placed in a polyethylene container together with a plastic ball, and mixed by rotation for 75 hours to obtain a desired slurry. Next, in order to remove the air in the slurry, a vacuum treatment was performed by leaving it for 5 minutes in an atmosphere with a degree of vacuum of 73.5 cmHH.
このようにして得たスラリーを湯口部1より流し込み充
填する6石膏製吸水性鋳型4からスラリ−中の水分がと
り除かれた指向性凝固する。湯口部分が凝固したときに
、鋳型全体を反転し、石膏製吸水性鋳型を取り除き1発
泡ポリスチレン模型3を5の部分より酢酸メチル溶液を
注入すると模型は直ちに溶解を開始して、ついには溶融
して液体状になる。この時にさらに鋳型を傾むけて液体
を排出すると所望の空胴が得られる。The slurry thus obtained is poured into a water-absorbing mold 4 made of gypsum and filled through the sprue 1, where the water in the slurry is removed and solidified directionally. When the sprue part solidifies, the entire mold is turned over, the gypsum water-absorbing mold is removed, and methyl acetate solution is injected into the expanded polystyrene model 3 from part 5, and the model immediately begins to melt and finally melts. It becomes liquid. At this time, by further tilting the mold and draining the liquid, the desired cavity can be obtained.
次に非吸水性模型を取り外すと成形体が得られる。湯口
部分を切り取ると所望のケーシングの成形体(グリーン
ボディ)が得られる。Next, the non-water-absorbing model is removed to obtain a molded body. By cutting out the sprue part, a desired molded casing (green body) is obtained.
次にグリーンボディの水分を取り除くために、50℃で
24時間、110℃で5時間の加熱乾燥を行った。Next, in order to remove moisture from the green body, it was heated and dried at 50°C for 24 hours and at 110°C for 5 hours.
次に焼結を行った。焼結は次のような処理をした。Next, sintering was performed. The sintering process was as follows.
黒鉛製の容器に成形体を入れ、さらにその周囲に窒化硅
素の粉末を充填した。この黒鉛容器を焼結炉シこ納め、
雰囲気を8 X 10−’の真空にしたあと窒素ガスを
導入して0.2kg/dの圧力に保ち加熱を行った。昇
温速度10℃/sinで最高温度1750℃で1.5時
間保持した後、炉冷した。その結果、焼結体は変形もな
く、表面および寸法精度の高いケーシングが得られた。The molded body was placed in a graphite container, and the surrounding area was filled with silicon nitride powder. This graphite container is placed in a sintering furnace,
After the atmosphere was reduced to a vacuum of 8 x 10-', nitrogen gas was introduced and heating was performed while maintaining the pressure at 0.2 kg/d. After being maintained at a maximum temperature of 1750° C. for 1.5 hours at a heating rate of 10° C./sin, it was cooled in a furnace. As a result, the sintered body was not deformed and a casing with high surface and dimensional accuracy was obtained.
相対密度は90%であった。The relative density was 90%.
以上のように本発明によればグリーンボディの密度を高
くでき、鋳型から離型も容易で表面の滑らかな製品が得
られる。特に複雑な中空部分を有する成形体を製作する
場合に効果を発揮する。As described above, according to the present invention, the density of the green body can be increased, and a product with a smooth surface that can be easily released from the mold can be obtained. This is especially effective when producing molded bodies with complex hollow parts.
しかも、乾燥、焼結時の変形が小さく寸法の安定した製
品を得ることができる。Furthermore, a product with stable dimensions and less deformation during drying and sintering can be obtained.
第1図は本発明の一実施例における鋳型の構成を示す断
面図である。
2・・・非吸水性鋳型、3・・・可溶性模型、4・・・
吸水性鋳型。
代理人 弁理士 高橋明夫
第1頁の続き
0発明者 国 谷 啓 −日立市幸町3丁目所内FIG. 1 is a sectional view showing the structure of a mold in an embodiment of the present invention. 2... Non-water-absorbing template, 3... Soluble model, 4...
Absorbent mold. Agent Patent Attorney Akio Takahashi Page 1 Continued 0 Inventor Kei Kuniya - Hitachi City Saiwaimachi 3-chome Office
Claims (1)
鋳型および可溶性模型により構成されたメス型に鋳込み
、指向性凝固させたのち、可溶性模型を有機溶剤により
溶出させ、次いで、成形体を乾燥・焼成することを特徴
とするセラミックス製品の製造法。 2、前記吸水性鋳型が石膏、素焼型で、非吸水性鋳型が
ゴム、合成樹脂、金属で、可溶性模型がポリスチレン、
ワックスであることを特徴とする特許請求の範囲第1項
記載のセラミックス製品の製造法。[Claims] (1) A ceramic-containing slurry is cast into a female mold composed of a water-absorbing mold, a non-water-absorbing mold, and a soluble model, and after directional solidification, the soluble model is eluted with an organic solvent, and then, A method for manufacturing ceramic products, which is characterized by drying and firing a molded body. 2. The water-absorbing mold is made of plaster or an unglazed mold, the non-water-absorbing mold is made of rubber, synthetic resin, or metal, and the soluble model is polystyrene.
The method for producing a ceramic product according to claim 1, wherein the ceramic product is wax.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10841384A JPS60253505A (en) | 1984-05-30 | 1984-05-30 | Manufacturing method of ceramic products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10841384A JPS60253505A (en) | 1984-05-30 | 1984-05-30 | Manufacturing method of ceramic products |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60253505A true JPS60253505A (en) | 1985-12-14 |
JPH0533123B2 JPH0533123B2 (en) | 1993-05-18 |
Family
ID=14484124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10841384A Granted JPS60253505A (en) | 1984-05-30 | 1984-05-30 | Manufacturing method of ceramic products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60253505A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62152804A (en) * | 1985-12-27 | 1987-07-07 | トヨタ自動車株式会社 | Slurry casting molding die and manufacture thereof and manufacture of ceramic product using slurry casting molding die |
JPS63120603A (en) * | 1986-11-11 | 1988-05-25 | トヨタ自動車株式会社 | Slip casting molding method |
JPS63237903A (en) * | 1987-03-26 | 1988-10-04 | トヨタ自動車株式会社 | Slip casting molding method |
JPH0433806A (en) * | 1990-05-30 | 1992-02-05 | Hitachi Ltd | Slip casting method |
JPH04179501A (en) * | 1990-11-15 | 1992-06-26 | Sumitomo Heavy Ind Ltd | Removing method of placement core in molding method of powder injection |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58200879A (en) * | 1982-05-14 | 1983-11-22 | 工業技術院長 | Method of pulling in and connecting underwater pipeline |
-
1984
- 1984-05-30 JP JP10841384A patent/JPS60253505A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58200879A (en) * | 1982-05-14 | 1983-11-22 | 工業技術院長 | Method of pulling in and connecting underwater pipeline |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62152804A (en) * | 1985-12-27 | 1987-07-07 | トヨタ自動車株式会社 | Slurry casting molding die and manufacture thereof and manufacture of ceramic product using slurry casting molding die |
JPS63120603A (en) * | 1986-11-11 | 1988-05-25 | トヨタ自動車株式会社 | Slip casting molding method |
JPS63237903A (en) * | 1987-03-26 | 1988-10-04 | トヨタ自動車株式会社 | Slip casting molding method |
JPH0433806A (en) * | 1990-05-30 | 1992-02-05 | Hitachi Ltd | Slip casting method |
JPH04179501A (en) * | 1990-11-15 | 1992-06-26 | Sumitomo Heavy Ind Ltd | Removing method of placement core in molding method of powder injection |
Also Published As
Publication number | Publication date |
---|---|
JPH0533123B2 (en) | 1993-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900003344B1 (en) | Method for preparing slipcasting mould | |
US4812278A (en) | Process for preparing mold | |
KR890003502B1 (en) | Method for shaping slip-casting and shaping moulds | |
US4919193A (en) | Mold core for investment casting, process for preparing the same and process for preparing mold for investment casting having therewithin said mold core | |
KR0183997B1 (en) | Slip casting method | |
JPH02188460A (en) | Preparation of ceramic core and other king of product | |
JPS60253505A (en) | Manufacturing method of ceramic products | |
JPH04319041A (en) | Cast mold and manufacture therefor | |
EP0210027B1 (en) | Method for forming cast article by slip casting | |
EP0243502A1 (en) | Mold for pad molding of powder | |
JPH0262103B2 (en) | ||
US5266252A (en) | Ceramic slip casting technique | |
JPH0636954B2 (en) | Composition for easily disintegrating mold | |
JPS6092806A (en) | Manufacturing method of ceramic products | |
JPS61176439A (en) | Production of ceramic core | |
JPS6213303A (en) | Slip casting molding method | |
GB1408998A (en) | Ceramic materials with open porosity | |
JPS6330202A (en) | Manufacture of ceramics baked body | |
JPS6321105A (en) | Manufacture of porous molding die for molding ceramics having two layer structure | |
JPS6294303A (en) | Mold for thickening and molding powdered body and thickeningmolding method | |
JPH0234244A (en) | Gypsum structure for casting | |
CN115041631A (en) | Preparation method of multi-material integrated casting mold of hollow turbine blade and casting mold | |
JPH01304902A (en) | Method and apparatus for forming ceramic | |
JPH08309719A (en) | Method for cast molding of ceramic and molded body | |
JPH0448325B2 (en) |