[go: up one dir, main page]

JPS60250403A - Curved surface producing method - Google Patents

Curved surface producing method

Info

Publication number
JPS60250403A
JPS60250403A JP59105476A JP10547684A JPS60250403A JP S60250403 A JPS60250403 A JP S60250403A JP 59105476 A JP59105476 A JP 59105476A JP 10547684 A JP10547684 A JP 10547684A JP S60250403 A JPS60250403 A JP S60250403A
Authority
JP
Japan
Prior art keywords
point
cross
curved surface
curve
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59105476A
Other languages
Japanese (ja)
Other versions
JPH067361B2 (en
Inventor
Hajime Kishi
甫 岸
Maki Seki
関 真樹
Norihisa Amano
天野 典寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP59105476A priority Critical patent/JPH067361B2/en
Publication of JPS60250403A publication Critical patent/JPS60250403A/en
Publication of JPH067361B2 publication Critical patent/JPH067361B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To produce easily the NC data on a smooth coupling curved surface by obtaining the coordinate value of the i-th intermediate point when the 1st section curve is divided into M parts and then the coordinate value of the j-th point when the 1st and 2nd section curves are divided into N parts respectively. CONSTITUTION:A curved surface between two section curves is formed from data, etc. in an NC processing mode of a 3-dimensional metallic mold, etc. Then the NC data for processing of curved surface is produced for processing. The data specifying section 11, 21 and 22, an action curve 11a and reference curves 21a and 22a are supplied through an operation board of a curved surface producing device together with the division number M of the curve 11a and the division number N of curves 21a and 22a respectively. Then the coordinate value of the j-th points Po.j and PM.j are calculated when curves 21a and 22a are divided into N parts respectively. At the same time, the i-th point Pi.o is also calculated when the curve 11a is divided into M parts. Thus a conversion matrix is obtained to convert the section 11 and an intermediate section 13 into the same plane. Then the Nc data is produced from the coordinate values of a start point Po.o through an end point PM.o.

Description

【発明の詳細な説明】 〈産業上の利用分計〉 本発明は曲面生成方法に係り、特に与えられたいくつか
の断面曲線を用いて曲面を生成する曲面生成方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application> The present invention relates to a curved surface generation method, and more particularly to a curved surface generation method for generating a curved surface using several given cross-sectional curves.

〈背景技術〉 3次元金型等の設計図面上の曲面は一般に複数の断面曲
線によって表現されており、ある断面曲線と次の断面曲
線間の形状データは存在しない。
<Background Art> A curved surface on a design drawing of a three-dimensional mold or the like is generally expressed by a plurality of cross-sectional curves, and shape data between one cross-sectional curve and the next does not exist.

ところで、数値制御加工に際しては乙のように中間の形
状が与えられていないにもかかわらず、上記2つの断面
曲線間をなめらかにつながるように加工することが要求
さオ」る。このことは、換言するならば上記2つの断面
曲線間の曲面を、該断面曲線のデータ等から生成し、該
生成された曲面に関するデータを用いて曲面加工用のN
Cデータを作成し、該NCデータに基づいて加工しなけ
ればならないことを意味する。このtこめ、従来より種
々の曲面生成方法が提案されて実用化されている。
By the way, when numerically controlled machining is performed, it is required to process the two cross-sectional curves so as to smoothly connect them, even though an intermediate shape is not provided as shown in FIG. In other words, a curved surface between the above two cross-sectional curves is generated from the data of the cross-sectional curve, etc., and data regarding the generated curved surface is used to create the N for curved surface machining.
This means that C data must be created and processed based on the NC data. To this end, various methods of generating curved surfaces have been proposed and put into practical use.

〈発明の目的ン 本発明の目的は与えられた断面曲線に清めらかにつなが
る3次元自由曲面を簡単な方法で生成てきる曲面生成方
法を提供ずろことである。
<Object of the Invention> An object of the present invention is to provide a curved surface generation method that can easily generate a three-dimensional free-formed surface that smoothly connects to a given cross-sectional curve.

〈発明の概要〉 本発明は第1の与えられた断面曲線を2つの与えられた
第2、第3の断面曲線に治って変化させながら移動させ
、該移動により形成される曲面を生成する曲面生成方法
であり、乙の方法においては第1の断面曲線をM分割し
た時の1番目の中間点P、oの座標値をめるステップ、
第2、第3の断面曲線をそれぞれN分割した時の」番目
の各ポイントP0.1、Pol、の座標値をめるステッ
プ、第1の断面曲線の始点P。、。と終点P工、。と前
記中間点P、、。の関係を用いて、ポインI−P、、、
p++、Jをそれぞれ始点、終点とする中間断面曲線上
の前記中間点P1.。に対応する中間点P18、をめる
ステップ、’%Jを変化させて全ポインI−P、Jい=
1.2、・・M; j=1.2、・・・N)により曲面
を生成するステップを有する。この方法によれば、簡単
にいくつかの断面曲線に囲まれた曲面を生成できる。
<Summary of the Invention> The present invention provides a curved surface that moves a first given cross-sectional curve while changing into two given second and third cross-sectional curves, and generates a curved surface formed by the movement. This is a generation method, and in the method B, the step of calculating the coordinate values of the first intermediate point P, o when the first cross-sectional curve is divided into M,
Step of calculating the coordinate values of each point P0.1, Pol, when the second and third cross-sectional curves are divided into N parts, and the starting point P of the first cross-sectional curve. ,. and the terminal P-engine. and the intermediate point P, . Using the relationship, point I-P, ,
The intermediate point P1. on the intermediate cross-sectional curve with p++ and J as the starting point and ending point, respectively. . The intermediate point P18 corresponding to , the step of changing '%J and all points I-P, J =
1.2,...M; j=1.2,...N). According to this method, a curved surface surrounded by several cross-sectional curves can be easily generated.

〈実施例〉 第1図は本発明に係る曲面生成方法を説明する説明図、
第2図は処理の流れ図である。第1図において、11は
3次元曲面体を切断する断面、11aは断面11により
3次元曲面体を切断した場合の断面曲線(動作曲線)、
21.22は動作曲線11aの始点P。111、終点P
い、。をそれぞれ含む断面、21a、22aばそれぞれ
断面21.22により3次元曲面体を切断した場合の断
面曲線(基準曲線)であり、各基準曲線の終点はP。N
PPM、Ilである。13は基準曲線21a122aを
それぞれN分割した場合の第3番目のポイントP。、4
、pMl、を含み、かつポイントP、0.より断面21
に降ろした垂線の足Qを含む中間断面である。13aは
後述する方法により生成される中間断面曲線、P、、は
中間断面曲線上の中間点である。
<Example> FIG. 1 is an explanatory diagram illustrating a curved surface generation method according to the present invention,
FIG. 2 is a flowchart of the process. In FIG. 1, 11 is a cross section of the three-dimensional curved body, 11a is a cross-sectional curve (operation curve) when the three-dimensional curved body is cut by the cross section 11,
21.22 is the starting point P of the operating curve 11a. 111, end point P
stomach,. The cross sections 21a and 22a are cross-sectional curves (reference curves) obtained when the three-dimensional curved body is cut by the cross sections 21 and 22, respectively, and the end point of each reference curve is P. N
PPM, Il. 13 is the third point P when the reference curve 21a122a is divided into N parts. , 4
, pMl, and points P, 0. Cross section 21
This is an intermediate cross section that includes the foot Q of the perpendicular line drawn down to . 13a is an intermediate cross-sectional curve generated by a method described later, and P is a midpoint on the intermediate cross-sectional curve.

以下、第1図、第2図に従って曲面生成処理を説明する
The curved surface generation process will be described below with reference to FIGS. 1 and 2.

(1)まず、図示しない曲面生成装置の操作盤から断面
11.21.22、動作曲線1181基準曲線21a、
22aを特定するデータ、並びに動作曲線11aの分割
数M、基準曲線21a122aの分割数Nを入力する。
(1) First, from the operation panel of the curved surface generation device (not shown), cross sections 11, 21, 22, operation curve 1181, reference curve 21a,
22a, the number of divisions M of the operating curve 11a, and the number of divisions N of the reference curve 21a122a are input.

(2)プロセッサは1→1.1→Jとする。(2) The processor is 1→1.1→J.

(3)ついて、プロセッサは各基準曲線2 ]、 a、
22aをそれぞれN分割した場合の3番目のポイン)P
。11、p、、の座標値を演算する。
(3), the processor calculates each reference curve 2 ], a,
3rd point when dividing 22a into N parts)P
. 11, calculate the coordinate values of p, .

(4)ポイントP。J N P M、J演算後、プロセ
ッサは動作曲線11aをM分割した時の、第1番目のポ
イントP、。を演算する。尚、ポイントP。14、P、
、J、、P、。の演算法は周知であり、たとえば特願昭
56−54044号明細書を参照されたい。
(4) Point P. After the J N P M, J operation, the processor calculates the first point P, when the operating curve 11a is divided into M. Calculate. Also, point P. 14.P.
,J., ,P. The calculation method is well known; see, for example, Japanese Patent Application No. 56-54044.

(5)断面11及び中間断面13を所定の同一平面(H
−V平面・・・第3図参照)に変換する変換マトリクス
M1、M2をめる。そして、該変換マトリクスM1を用
いて、動作曲線11aを含む断面11を所定の平面に変
換した時の該動作曲線の始点P。、。、終点p、、1中
間点P、。の座標値(XOp Y o)、(Xl p 
Y□)、CXpy)をそれぞれめ、又変換マトリクスM
2を用いて、ポイン)P。、、p、、を含む中間断面1
3を前記所定平面に変換したときの該ポインl−P、、
、PMl、の座標値(ξつ、η0)、(ξ1.η1)を
それぞれめる。
(5) The cross section 11 and the intermediate cross section 13 are arranged on the same predetermined plane (H
-V plane...see Figure 3). Then, the starting point P of the motion curve when the cross section 11 including the motion curve 11a is transformed into a predetermined plane using the transformation matrix M1. ,. , end point p,, 1 intermediate point P,. The coordinate values of (XOp Y o), (Xl p
Y□), CXpy) respectively, and the transformation matrix M
2, point) P. Intermediate cross section 1 including ,,p, ,
3 is converted to the predetermined plane, the point l-P,
, PMl, coordinate values (ξ, η0) and (ξ1.η1) are determined, respectively.

(6)しかる後、中間点P1..の座標値(ξ、η)を
次式 %式%(1) (2) (3) (4) (5) (6) により演算する。これは、Po、。 、。、Pl、。の
、P。
(6) After that, the intermediate point P1. .. The coordinate values (ξ, η) of are calculated using the following formula % (1) (2) (3) (4) (5) (6). This is Po. ,. ,Pl,. Of, P.

各座標値に対して、次式 %式%) ) が成立するからである。以上により中間点P、。がPO
,0” +1.。間を内分あるいは外分している比と同
一の比でP。+ J ’ P”+ Jを内分あるいは外
分する中間点P1..のH−V平面上の座標値がまるこ
とになる。
This is because the following formula %) holds true for each coordinate value. As a result of the above, the intermediate point P. is P.O.
, 0" + 1..P with the same ratio as the ratio that internally or externally divides between P. + J'P" + J' intermediate point P1. .. The coordinate values on the H-V plane will be a circle.

(7)中間点P1.4の座標値(ξ、ワ)がまれば、プ
ロセッサは変換マトリクスM2の逆変換マトリクスM2
−1を用いて、(ξ、η)を断面13上の座標値に逆変
換して、ポインI−P、、の座標値をめ、メモリに記憶
する。
(7) If the coordinate values (ξ, wa) of the intermediate point P1.4 are equal, the processor converts the inverse transformation matrix M2 of the transformation matrix M2
-1, (ξ, η) is inversely transformed into the coordinate values on the cross section 13, and the coordinate values of the points I-P, , are obtained and stored in the memory.

(8)ついで、1−Mかどうかを判別し、l〈Mてあれ
ばi + 1→lとして、ステップ(4)以降の処理を
繰り返す。
(8) Next, it is determined whether 1-M or not, and if l<M, then i + 1→l and the process from step (4) is repeated.

(9)一方、i=Mであれば、j=Nかどうかを判別す
る。j<Nであれば、 j+1→J11→l により’S Jを更新してステップ(3)以降の処理を
繰り返す。
(9) On the other hand, if i=M, determine whether j=N. If j<N, 'SJ is updated by j+1→J11→l and the process from step (3) onwards is repeated.

(10)ステップ(9)の判別においてj=Nであれば
曲面生成の処理は終了し、以後ポイントP、、(i=1
.2、・・・・M、j=1.2、・・・・N)を用いて
曲面加工用のNCデータを作成する。
(10) If j=N in the determination of step (9), the surface generation process ends, and from now on, points P, , (i=1
.. 2,...M, j=1.2,...N) to create NC data for curved surface machining.

〈発明の効果〉 以上説明したように、本発明によれば第1の断面曲線1
1aをM分割した時の1番目の中間点P、。
<Effects of the Invention> As explained above, according to the present invention, the first cross-sectional curve 1
The first intermediate point P when 1a is divided into M parts.

の座標値をめるステップ、第1、第2の断面曲線21a
、22aをそれぞれN分割した時の3番目の各ポイント
P。11、p、、の座標値をめるステップ、第1の断面
曲線11aの始点P。、0と終点P、1.。と前記中間
点P、、oの関係を用いて、ポイントP。、、p、、を
それぞれ始点、終点とする中間断面曲線13a上の前記
中間点P、oに対応する中間点P、、Jをめるステップ
を有し、11 Jを変化させて全ポイントP、Jい−1
,2、・・M、j−1,2、・・・N)により曲面を生
成するように構成したから、簡単に、かつ与えられた断
面曲線を清めらかに連結する曲面を生成することができ
た。
Step of calculating the coordinate values of the first and second cross-sectional curves 21a
, 22a is divided into N parts, each third point P. Step 11: finding the coordinate values of p, , the starting point P of the first cross-sectional curve 11a. , 0 and the end point P, 1. . Point P using the relationship between and the intermediate points P,, o. , , p, , respectively, on the intermediate cross-sectional curve 13a, which corresponds to the intermediate points P and o, are found as intermediate points P, , J, and all points P are obtained by changing J. , J-1
, 2,...M, j-1, 2,...N), it is possible to easily generate a curved surface that smoothly connects the given cross-sectional curves. was completed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる曲面生成方法の説明図、第2図
は本発明の処理の流れ図、第3図はH−V平面に変換し
た変換図である。 11.21.22・・・断面 11 a、 21 a、 22 a・・・断面曲線13
・・・中間断面、13a・・中間断面曲線特許出願人 
ファナック株式会社 代理人 弁理士 齋藤千幹 第1図 7 第3図 第2図
FIG. 1 is an explanatory diagram of the curved surface generation method according to the present invention, FIG. 2 is a flowchart of the process of the present invention, and FIG. 3 is a conversion diagram of conversion to an HV plane. 11.21.22...Cross section 11 a, 21 a, 22 a...Cross section curve 13
...Intermediate section, 13a...Intermediate section curve patent applicant
FANUC Co., Ltd. Agent Patent Attorney Chiki Saito Figure 1 Figure 7 Figure 3 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)第1の与えられtコ断面曲線を2つの与えられた
第2、第3の断面曲線に沿って変化させ□ながら移動さ
せ、該移動により形成される曲面を生成する曲面生成方
法において、第1の断面曲線をM分割した時の1番目の
中間点P3.。の座標値をめるステップ、第1、第′2
の断面曲線をそれぞれN分割した時の1番目の各ポイン
トP。、1、 。、。 座標値を゛めるステップ、第1の断面臼□線の始点p、
、oと終点Ph、oと前記中間点P1.。の関係を用い
て、ポイントP。、3、p、、をそれぞれ始点、終点と
する中間断面曲線上の前記中間点P 、 +’oに対応
する中間点P1..をめるステップ、iz Jを変化さ
せ、全ポインl−P、、、、−二1.2、・・M、j=
1.2、・・・N)により曲面を生成するステップを有
する曲面生成方法。
(1) In a curved surface generation method that moves a first given t cross-sectional curve while changing it along two given second and third cross-sectional curves, and generates a curved surface formed by the movement. , the first intermediate point P3. when the first cross-sectional curve is divided into M parts. . Step of calculating the coordinate values of 1st and 2nd
Each first point P when dividing the cross-sectional curve into N parts. ,1, . ,. Step of calculating coordinate values, starting point p of the first cross-sectional mill □ line,
, o and the end point Ph, o and the intermediate point P1. . Using the relationship, point P. , 3, p, , respectively, are the intermediate points P1., which correspond to the intermediate points P and +'o on the intermediate cross-sectional curve as the end points. .. step, change iz J, all points l-P,,,,-21.2,...M,j=
1.2,...N) A curved surface generation method comprising the step of generating a curved surface.
(2)第1の断面曲線を含む断面を所定の平面に変換し
た時の該第1断面曲線の始点、終点及び前記中間点の座
標値をそれぞれ(xo、 yo) 、(xIFす)、(
−7p 、 Y ) 、又前記ポイントP。、4、P、
4、を含?断面を前記所定平面に変換したときの該ポイ
ン)P、、、P、、、、の座標値を、それぞれ(ξ。。 η0)、(ξ1. Vl)とした時、前記所定平面上の
中間点P1,4の座、標値(ξ、η)をξ= (−n、
f0+町ξ、) / (m、−n、)η=(−n、ηo
+myη、) / (m、−n、)mう=x−x Q nX=x−x。 m、=y−y0 n、:y−y。 より演算し、(ξ、η)をポイントP0.4、Pol、
を含む曹記断面上の座標値に逆変換して、ポイン1−P
、、の座標値をめることを特徴とする特許請求の範囲第
(1)項記載の曲面生成方法。
(2) When the cross section including the first cross-sectional curve is converted into a predetermined plane, the coordinate values of the start point, end point, and intermediate point of the first cross-sectional curve are (xo, yo), (xIF), (
-7p, Y), and the above point P. ,4.P.
4. Including? When the coordinate values of the points) P, , P, , , when the cross section is converted to the predetermined plane are (ξ.. η0) and (ξ1. Vl), respectively, the intermediate point on the predetermined plane is The coordinates and values (ξ, η) of points P1, 4 are ξ= (-n,
f0 + town ξ, ) / (m, -n,) η = (-n, ηo
+myη, ) / (m, -n,)m=x-x Q nX=x-x. m,=y-y0 n,:y-y. Calculate (ξ, η) from point P0.4, Pol,
Inversely transform the coordinate values on the Caoji section including
, , , , , , , , , , , , , , , , , , , , , , , , and .
JP59105476A 1984-05-24 1984-05-24 Curved surface generation method Expired - Lifetime JPH067361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59105476A JPH067361B2 (en) 1984-05-24 1984-05-24 Curved surface generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59105476A JPH067361B2 (en) 1984-05-24 1984-05-24 Curved surface generation method

Publications (2)

Publication Number Publication Date
JPS60250403A true JPS60250403A (en) 1985-12-11
JPH067361B2 JPH067361B2 (en) 1994-01-26

Family

ID=14408644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59105476A Expired - Lifetime JPH067361B2 (en) 1984-05-24 1984-05-24 Curved surface generation method

Country Status (1)

Country Link
JP (1) JPH067361B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169814A (en) * 1981-04-10 1982-10-19 Fanuc Ltd Forming method of curved surface
JPS57211603A (en) * 1981-06-20 1982-12-25 Fanuc Ltd Nc data forming method
JPS58149507A (en) * 1982-02-26 1983-09-05 Mitsubishi Electric Corp Nc automatic programming system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169814A (en) * 1981-04-10 1982-10-19 Fanuc Ltd Forming method of curved surface
JPS57211603A (en) * 1981-06-20 1982-12-25 Fanuc Ltd Nc data forming method
JPS58149507A (en) * 1982-02-26 1983-09-05 Mitsubishi Electric Corp Nc automatic programming system

Also Published As

Publication number Publication date
JPH067361B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
JPS6367680A (en) Curved line generating method
JPH0373882B2 (en)
CN106125673A (en) Profile errors real-time estimation method based on space circular arc approximation
JPS6263307A (en) Method for producing composite curved surface
JPS61199110A (en) Generating method of composite curved surface
Zhang et al. Adaptive NC path generation from massive point data with bounded error
JPS60250403A (en) Curved surface producing method
CN113175903B (en) Face gear error detection and machining control method, device and system
JPS6219910A (en) Rounding method
CN113835397A (en) Linear NC machining path smoothing method based on B-spline curve and path integral
Lauwers et al. Five-axis rough milling strategies for complex shaped cavities based on morphing technology
KR900007163B1 (en) Method of forming composite curved surface
JPS6111809A (en) Formation of composite curved surface
CN102393680A (en) Parameter curve interpolation method based on vector interpolation of conical surface cutter
CN115408785A (en) Self-adaptive compensation method and system for three-dimensional model
CN113917887A (en) Machine tool machining track generation method based on triangular mesh model
JPH01120675A (en) Production of free curved surface
CN110826012B (en) Qualitative analysis method for vibration energy of rotor system
JP2771361B2 (en) Rough cutter path generation system
Li et al. Low-harmonic trajectory synthesis using trajectory pattern method (TPM) for high-speed and high-precision machinery
JP2866783B2 (en) Fillet surface generator
Zeng et al. Wavelet application research on tooth surface of spherical involute spiral bevel gear
Ou et al. Subdivision method to create furcating object with multibranches
JPS62157969A (en) Method of forming composite curved surface
CN114218762A (en) Method, system and medium for quickly transforming three-dimensional coordinates of simulation scene