JPS6025007B2 - Soldering method for oxide nonlinear resistor - Google Patents
Soldering method for oxide nonlinear resistorInfo
- Publication number
- JPS6025007B2 JPS6025007B2 JP55015856A JP1585680A JPS6025007B2 JP S6025007 B2 JPS6025007 B2 JP S6025007B2 JP 55015856 A JP55015856 A JP 55015856A JP 1585680 A JP1585680 A JP 1585680A JP S6025007 B2 JPS6025007 B2 JP S6025007B2
- Authority
- JP
- Japan
- Prior art keywords
- solder
- oxide nonlinear
- oxide
- bonding strength
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 7
- 238000005476 soldering Methods 0.000 title claims description 7
- 229910000679 solder Inorganic materials 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 8
- 238000003825 pressing Methods 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- -1 antimony aluminum Chemical compound 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Thermistors And Varistors (AREA)
Description
【発明の詳細な説明】
本発明は、単位としての酸化物非直線抵抗体をハンダに
より接合強度大にして複数積層接合する酸化物非直線抵
抗体のハンダ接合方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for soldering oxide nonlinear resistors in which a plurality of unit oxide nonlinear resistors are laminated and bonded by increasing the bonding strength with solder.
従来の技術一般に、例えば避電器において用いられる酸
化物非直線抵抗体は、単位としての酸化物非直線抵抗体
が複数積層接合されて形成されている。2. Description of the Related Art In general, an oxide nonlinear resistor used, for example, in an earth arrester is formed by laminating and bonding a plurality of oxide nonlinear resistors as a unit.
従来、複数の単位の酸化物非直線抵抗体を積層接合する
には、例えば特開昭48−10154計号公報に開示さ
れるように、各単位の酸化物非直線抵抗体間にハンダを
介在し、加圧および加熱することにより行なっていた。
ここに、通常、固相温度と液相温度との差が大きいハン
ダにおいては、液相温度に近い温度にて接合すれば、接
合強度を増大し得ると信じられている。Conventionally, in order to stack and bond a plurality of units of oxide nonlinear resistors, solder was interposed between each unit of oxide nonlinear resistors, as disclosed in, for example, Japanese Patent Application Laid-open No. 10154/1983. This was done by applying pressure and heating.
Here, it is generally believed that in the case of solder having a large difference between the solidus temperature and the liquidus temperature, the bonding strength can be increased by bonding at a temperature close to the liquidus temperature.
したがって、従来は、例えばハンダの固相温度が約25
0℃、液相温度が約297q0程度の場合、加熱条件は
285〜29500に設定され、適当な加圧条件下にお
いてハンダ接合が行なわれていた。発明が解決しようと
する問題点しかしながら、上記従来のハンダ接合方法に
おける加熱条件では、その許容温度範囲が極めて狭く、
温度制御が困難であるうえに、許容温度範囲を逸脱した
ときは極端に接合強度が低下し、各単位の酸化物非直線
抵抗体間の接合強度のバラッキが大きくなって歩留りが
悪くなった。Therefore, conventionally, for example, the solidus temperature of solder is about 25
When the temperature was 0° C. and the liquidus temperature was about 297q0, the heating conditions were set at 285 to 29500, and soldering was performed under appropriate pressure conditions. Problems to be Solved by the Invention However, the heating conditions in the conventional soldering method described above have an extremely narrow allowable temperature range;
In addition to being difficult to control the temperature, when the temperature exceeds the allowable temperature range, the bonding strength decreases extremely, and the variation in bonding strength between the oxide nonlinear resistors in each unit increases, resulting in poor yield.
一方、前記接合強度が小さいと、押圧力大の固定機構が
複雑となって避雷器等が大形化し、また避雷器に雷など
によるィンパルス電流が印加された場合には接合強度の
小さな積重ね境界面においてスパークが発生し、この結
果絶縁油が劣化されて酸化物非直線抵抗体表面が汚損さ
れ、閃絡を生じる虜れがあつた。問題点を解決するため
の手段と作用
かかる問題点を解決するために、本発明は、複数の単位
の酸化物非直線抵抗体を積層すべく、前記各単位の酸化
物非直線抵抗体間にハンダを介在し、加圧および加熱す
る酸化物非直線抵抗体のハンダ接合方法において、前記
ハンダ鉛91〜9a重量%、錫4.5〜5.の重量%お
よび残部3〜4.5重量%が亜鉛、アンチモン、アルミ
ニウム、チタン、シリコンのうち少なくとも1種以上か
らなる組成とした。On the other hand, if the bonding strength is low, the fixing mechanism with a large pressing force becomes complicated and the lightning arrester becomes large, and when an impulse current due to lightning is applied to the lightning arrester, the stacking boundary surface with a small bonding strength becomes Sparks were generated, and as a result, the insulating oil deteriorated and the surface of the oxide nonlinear resistor was contaminated, resulting in flashover. Means and Effects for Solving the Problems In order to solve the problems, the present invention provides a structure in which a plurality of units of oxide nonlinear resistors are laminated, and a layer is formed between the oxide nonlinear resistors in each unit. In a method for soldering oxide nonlinear resistors using solder and applying pressure and heating, the solder contains 91 to 9a of lead and 4.5 to 5.5% of tin by weight. % by weight and the balance 3 to 4.5% by weight was composed of at least one of zinc, antimony, aluminum, titanium, and silicon.
また、この場合の加圧条件を50〜300k9/地とし
、加熱条件を315〜46000とした。以上のように
、ハンダの組成、加圧および加熱の条件を設定すれば、
各酸化物非直線抵抗体は相互に接合強大にして接合され
る。実施例
以下、本発明を図に示す一実施例に基づき詳細に説明す
る。Further, the pressurizing conditions in this case were 50 to 300k9/ground, and the heating conditions were 315 to 46,000. As described above, if you set the solder composition, pressure and heating conditions,
The respective oxide nonlinear resistors are bonded to each other with strong bonding strength. EXAMPLE Hereinafter, the present invention will be explained in detail based on an example shown in the drawings.
第1図に示すように、例えば酸化亜鉛を主成分とする単
位の酸化物非直線抵抗体1を3個積層するとともに、こ
れら各酸化物非直線抵抗体1間に薄板状ハンダ2を介在
し、これら全体の最上下端に介物3を配設し、矢印方向
(軸方向に相対向する方向)に介物3を介して積層した
酸化物非直線抵抗体1全体を外部からの圧力で圧縮する
ように加圧するとともに、加熱した。As shown in FIG. 1, for example, three unit oxide nonlinear resistors 1 containing zinc oxide as a main component are laminated, and a thin plate-shaped solder 2 is interposed between each of these oxide nonlinear resistors 1. , inserts 3 are arranged at the top and bottom ends of the whole, and the entire oxide nonlinear resistor 1 stacked in the direction of the arrow (direction facing each other in the axial direction) with the inserts 3 interposed is compressed by external pressure. It was pressurized and heated to
ここに、薄板状ハンダ2の組成は、鉛91〜9公重量%
、錫4.5〜5.0重量%および残部3〜4.5重量%
が亜鉛、アンチモンアルミニウム、チタン、シリコンの
うち少なくとも1種以上よりなる、例えばセルソルザ(
商品名、旭硝子(株)製)を用いた、また加圧条件は、
50〜300k9/地とし、加熱条件は315〜460
00として行なった。次に、加熱条件(接合温度)に対
する接合強度を実測したところ、第2図に示すような結
果を得た。Here, the composition of the thin plate solder 2 is 91 to 9% by weight of lead.
, tin 4.5-5.0% by weight and balance 3-4.5% by weight
is made of at least one of zinc, antimony aluminum, titanium, and silicon, such as Cellsolza (
The product name (manufactured by Asahi Glass Co., Ltd.) was used, and the pressurizing conditions were as follows.
50-300k9/ground, heating conditions 315-460
This was done as 00. Next, we actually measured the bonding strength with respect to the heating conditions (bonding temperature), and the results shown in FIG. 2 were obtained.
第2図は、縦軸に接合強度、横軸に接合温度をとったも
ので、前記組成のハンダ2を用いた場合には、加熱条件
が315〜46000に設定されたときに接合強度が最
適な大きさに維持されることが判る。温度が315oo
未満のときには反応が不完全となって良好に接合されず
、46000を越えるとハンダ2自体が酸化されて却っ
て接合強度が低下してしまうと考えられる。また、加圧
条件に対する接合強度を実測したところ、第3図に示す
ような結果を得た。In Figure 2, the vertical axis shows the bonding strength and the horizontal axis shows the bonding temperature. When using Solder 2 with the above composition, the bonding strength is optimal when the heating condition is set to 315 to 46,000. It can be seen that the size is maintained. Temperature is 315oo
If it is less than 46,000, the reaction will be incomplete and the bond will not be good, and if it exceeds 46,000, the solder 2 itself will be oxidized and the bonding strength will actually decrease. Furthermore, when the bonding strength under pressure conditions was actually measured, the results shown in FIG. 3 were obtained.
第3図は、縦軸に接合強度、機軸に加圧力をとったもの
で、前記組成のハンダ2を用いた場合には、加圧条件が
50〜300k9/係に設定されたときに接合強度が最
も好ましい状態にあることが判る。加圧力が50k9ノ
の未満のときには反応が不完全となって良好に接合され
ず、300k9/仇を越えると溶融したハンダ2が酸化
物非直線抵抗体1間より外部に押し流されてしまうから
である。発明の効果
以上のように本発明によれば、特定の組成からなるハン
ダを用いて加圧および加熱条件をそれぞれ50〜300
k9/地および315〜46000に限定したことによ
り、酸化物非直線抵抗体の接合強度が向上し、耐振性が
向上される結果、固定機構が簡素化されて避雷器等がづ
・形化される。In Figure 3, the vertical axis shows the bonding strength and the machine axis shows the pressure force. When using solder 2 with the above composition, the bonding strength is is found to be in the most favorable condition. If the pressure is less than 50k9, the reaction will be incomplete and a good bond will not be formed, and if it exceeds 300k9, the molten solder 2 will be swept away from between the oxide nonlinear resistors 1. be. Effects of the Invention As described above, according to the present invention, using solder having a specific composition, the pressure and heating conditions are set to 50 to 300, respectively.
By limiting the resistance to k9/earth and 315 to 46,000, the bonding strength of the oxide nonlinear resistor is improved and the vibration resistance is improved. As a result, the fixing mechanism is simplified and lightning arresters etc. can be shaped. .
また、雷等によってィンパルス電流が印加された場合に
おいてもスパークの発生が有効に防止され、絶縁油の劣
化や酸化物非直線抵抗体表面の汚損がなくなる。Further, even when an impulse current is applied due to lightning or the like, generation of sparks is effectively prevented, and deterioration of the insulating oil and contamination of the surface of the oxide nonlinear resistor are eliminated.
第1図は本発明の酸化物非直線抵抗体のハンダ接合方法
の一実施例を示す正面図、第2図は特定組成のハンダ使
用時における接合温度−接合強度特性図、第3図は特定
組成のハンダ使用時における加圧カー接合強度特性図で
ある。
1・・・・・・単位の酸化物非直線抵抗体、2・・・・
・・簿板状ハンダ。
第1図
第2図
第3図Fig. 1 is a front view showing an embodiment of the solder bonding method for oxide nonlinear resistors of the present invention, Fig. 2 is a bonding temperature-bonding strength characteristic diagram when using solder of a specific composition, and Fig. 3 is a graph of the bonding strength characteristic of a specific composition. FIG. 3 is a graph showing pressure Kerr bonding strength characteristics when using solder of the same composition. 1... Unit of oxide nonlinear resistor, 2...
...Solder plate shape. Figure 1 Figure 2 Figure 3
Claims (1)
、前記各単位の酸化物非直線抵抗体間にハンダを介在し
、加圧および加熱する酸化物非直線抵抗体のハンダ接合
方法において、前記ハンダを鉛91〜92重量%、錫4
.5〜5.0重量%および残部3〜4.5重量%が亜鉛
、アンチモン、アルミニウム、チタン、シリコンのうち
少なくとも1種以上からなる組成とし、前記加圧条件を
50〜300kg/cm^2、前記加熱条件を315〜
460℃としたことを特徴とする酸化物非直線抵抗体の
ハンダ接合方法。1. In a method for soldering oxide non-linear resistors in which a plurality of units of oxide non-linear resistors are laminated and bonded, a solder is interposed between the oxide non-linear resistors in each unit, and the oxide non-linear resistors are pressurized and heated. , the solder contains 91 to 92% by weight of lead and 4% by weight of tin.
.. 5 to 5.0% by weight and the remaining 3 to 4.5% by weight are composed of at least one of zinc, antimony, aluminum, titanium, and silicon, and the pressure conditions are 50 to 300 kg/cm^2, The heating conditions are 315~
A method for soldering an oxide nonlinear resistor, characterized in that the temperature is 460°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55015856A JPS6025007B2 (en) | 1980-02-12 | 1980-02-12 | Soldering method for oxide nonlinear resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55015856A JPS6025007B2 (en) | 1980-02-12 | 1980-02-12 | Soldering method for oxide nonlinear resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56112701A JPS56112701A (en) | 1981-09-05 |
JPS6025007B2 true JPS6025007B2 (en) | 1985-06-15 |
Family
ID=11900437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55015856A Expired JPS6025007B2 (en) | 1980-02-12 | 1980-02-12 | Soldering method for oxide nonlinear resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6025007B2 (en) |
-
1980
- 1980-02-12 JP JP55015856A patent/JPS6025007B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56112701A (en) | 1981-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1072687A (en) | Thermistor with leads and method of making | |
DE2913772B2 (en) | Semiconductor pressure transducer | |
JPS61176142A (en) | Substrate structure | |
JPH0457373A (en) | Electrostrictive effect element | |
JPS6025007B2 (en) | Soldering method for oxide nonlinear resistor | |
JPS6035804B2 (en) | Soldering method between oxide nonlinear resistor and electrode plate | |
JPH11121820A (en) | Multilayer piezoelectric actuator | |
US5006953A (en) | Lead type chip capacitor and process for producing the same | |
EP0049908A1 (en) | Aerial power transmission system | |
JP3155941U (en) | Surge absorber | |
JPS6015276Y2 (en) | Composite thick film varistor | |
JPH0219925Y2 (en) | ||
KR102040819B1 (en) | electrode unit and manufacturing the same | |
JPS6015275Y2 (en) | Composite thick film varistor | |
JPS5916304A (en) | Nonlinear resistor | |
JP2560518B2 (en) | Method for manufacturing semiconductor device | |
JP2800896B2 (en) | Voltage non-linear resistor | |
KR970705151A (en) | A degaussing unit comprising one or two thermistors, | |
JPH067506B2 (en) | Chip type surge absorber | |
US4148056A (en) | Glass-encapsulated semiconductor device containing cylindrical stack of semiconductor pellets | |
JPH0419750Y2 (en) | ||
JP4123717B2 (en) | Manufacturing method of chip type semiconductor device | |
JPH0733352Y2 (en) | Fuse resistor | |
JP3586523B2 (en) | Lightning arrester unit | |
JPS6180783A (en) | Airtight sealing for surge absorbing element |