JPS60246545A - Pickup tube - Google Patents
Pickup tubeInfo
- Publication number
- JPS60246545A JPS60246545A JP10168684A JP10168684A JPS60246545A JP S60246545 A JPS60246545 A JP S60246545A JP 10168684 A JP10168684 A JP 10168684A JP 10168684 A JP10168684 A JP 10168684A JP S60246545 A JPS60246545 A JP S60246545A
- Authority
- JP
- Japan
- Prior art keywords
- conductive film
- photoconductive
- film
- transparent conductive
- dark current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
- H01J29/10—Screens on or from which an image or pattern is formed, picked up, converted or stored
- H01J29/36—Photoelectric screens; Charge-storage screens
- H01J29/39—Charge-storage screens
- H01J29/45—Charge-storage screens exhibiting internal electric effects caused by electromagnetic radiation, e.g. photoconductive screen, photodielectric screen, photovoltaic screen
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は高速度電子ビーム走査方式の光導型彫撮像管に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a high-speed electron beam scanning type light guide imaging tube.
撮像管は従来はとんど低速度の電子ビームで走査する方
式(以下LP方式と記す)を用いているため、走査電子
ビーム抵抗に伴う8敏性残像が大きく、周辺解像度が、
悲<、またビームベンゾインクによる画像の歪みが生し
やすいなどの欠点を有していた。上記問題点を改善する
方法として、高速度の電子ビームで走査する方式(以下
HN方式と記す)が提案されている(例えば特開昭54
−44487号)。第4図はHN方式の動作原理の説明
図であって透光性導電膜1にカソード電極2より高い正
の電圧を印加し、光導電ターゲットの2次電子放出比δ
が1以上になるようにして使用する。Conventionally, image pickup tubes use a scanning method using a low-speed electron beam (hereinafter referred to as the LP method), so the 8-sensitivity afterimage caused by the scanning electron beam resistance is large, and the peripheral resolution is
Unfortunately, the beam benzo ink also had the disadvantage of easily distorting images. As a method to improve the above-mentioned problems, a scanning method using a high-speed electron beam (hereinafter referred to as the HN method) has been proposed (for example, Japanese Patent Laid-Open No. 54
-44487). FIG. 4 is an explanatory diagram of the operating principle of the HN method, in which a positive voltage higher than that of the cathode electrode 2 is applied to the transparent conductive film 1, and the secondary electron emission ratio δ of the photoconductive target is
Use it so that it is 1 or more.
この状態で高速度電子ビームを走査すると、光導電ター
ゲット表面は2次電子3を放出してコレクタ電極4の電
位に平衡し、透光性絶縁基板5および透光性導電膜lを
通った光は光導電膜6て吸収され、電子−正孔対を発生
するが、電子が走査側へ流れて走査側電位を負の方向に
上陸させ、この下降分が信号として取出される。なお第
4図において、7は負荷抵抗、8はターゲット電圧であ
る。When a high-speed electron beam is scanned in this state, the surface of the photoconductive target emits secondary electrons 3 and is balanced with the potential of the collector electrode 4, allowing light to pass through the transparent insulating substrate 5 and the transparent conductive film l. is absorbed by the photoconductive film 6 and generates electron-hole pairs, but the electrons flow to the scanning side and land the scanning side potential in a negative direction, and this drop is taken out as a signal. In FIG. 4, 7 is a load resistance, and 8 is a target voltage.
このような)i N方式撮像管では、従来のL I)方
式に較べて(1)容量性残像が少ない、(2)周辺解像
度が良い、(3)画像歪みが少ない、などの利点がある
。Compared to the conventional LI) type image pickup tube, the iN type image pickup tube has the following advantages: (1) less capacitive afterimage, (2) better peripheral resolution, and (3) less image distortion. .
一般に光導型彫撮像管では、光による信号電流以外の電
流が信号として検出されるといわゆる暗電流となって、
S/N比、残像特性、色再現性等の劣化をひきおこす。Generally, in a light-guide type imaging tube, when a current other than the signal current caused by light is detected as a signal, it becomes a so-called dark current.
This causes deterioration of the S/N ratio, afterimage characteristics, color reproducibility, etc.
HN方式撮像管においても上記のような暗電流をできる
だけ低く押えることが望ましい。そのためHN方式撮像
管に関して、光導電膜の透光性導電膜側に電子の注入を
阻止するだめの層を、また上記光導電膜のビーム走査側
に正孔の注入を阻止するための層を設けることが考えら
れるが、これによって暗電流が減少してもなお十分では
なく、さらに走査電子ビームの量が増加すると暗電流が
その増加につれて増すという問題があった。It is desirable to keep the dark current as low as possible in the HN type image pickup tube as well. Therefore, regarding the HN type image pickup tube, a layer to prevent injection of electrons is provided on the transparent conductive film side of the photoconductive film, and a layer to prevent injection of holes is provided on the beam scanning side of the photoconductive film. However, even if the dark current is reduced by this method, it is still not sufficient, and there is a problem that when the amount of the scanning electron beam increases, the dark current increases as the amount of the scanning electron beam increases.
本発明による撮像管は、HN方式の撮像管において、従
来より暗電流が小さく、かつ走査電子ビーム量が変って
も暗電流が増さないような撮像管を得ることを目的とす
る。It is an object of the present invention to provide an image pickup tube of the HN type, which has a smaller dark current than the conventional one and which does not increase even if the amount of scanning electron beam changes.
発明者らはHN方式撮像管の暗電流に関して、光導電膜
内に注入された電子または正孔に起因する暗電流以外に
、透光性導電膜の光導電膜に覆われていない部分、およ
び透光性導電膜から信号電流を取出すための電極部分に
、走査電子ビームまたは2次電子が直接入射し、そこか
らさらに2次電子が放出されることによる暗電流成分が
あること、さらにそのような暗電流成分が走査電子ビー
ム量の変化によって暗電流が増えることの主要原因にな
っていることを発見した。第5図は発明者らが発見した
暗電流発生の機構を示す図で、リング状のインジウム9
を透光性導電膜1からの信号電流の取出し電極として用
いた場合のHN方式撮像管の要部を示している。走査電
子ビーム10で衝撃されることによって光導電ターゲッ
トから放出された2次電子11およびメツシュ電極12
から放出された2次電子、さらに撮像管内の他の部分か
ら放出された2次電子、あるいは走査軌道を外れた走査
電子が走査領域外にあるインジウムリング9や透光性導
電膜1の光導電膜6により覆われていない部分に入射し
、そこから2次電子13が放出されてメツシュ電極12
に入るために、負荷抵抗7に電流が流れて暗電流になる
。第6図は上記第5図に示す構造から透光性導電膜1を
除いた構造の撮像管における信号電流と走査ビーム量と
の関係を示している。同図は横軸に走査′准子ビーム電
流をとり縦軸にターゲット電圧20Vにおける信号電流
をとっている。透光性導電膜1がない場合であるから、
光導電ターゲラ1−を通して流れる電流は検出されず、
第6図に示した信号電流は全てインジウムリング9に電
子が入射して2次電子を放出させることにより生しる電
流で、上記の機構に基づいて流れる電流であることが明
らかである。このような機構にもとづく電流は、透光性
導電膜1が存在する場合も全く同様に検出され、入射光
とは無関係な暗電流となっている。また透光性導電膜が
存在する場合には、インジウムリングだけでなく、透光
性導電膜の光導電膜に覆われていない部分に電子が入射
することによっても、同様の暗電流が生じることは明ら
かである。Regarding the dark current of the HN image pickup tube, the inventors found that in addition to the dark current caused by electrons or holes injected into the photoconductive film, there are A scanning electron beam or secondary electrons are directly incident on an electrode portion for extracting a signal current from a transparent conductive film, and there is a dark current component due to further secondary electrons being emitted from there. We discovered that the dark current component is the main cause of the increase in dark current due to changes in the amount of scanning electron beam. Figure 5 is a diagram showing the mechanism of dark current generation discovered by the inventors.
1 shows the main parts of an HN type image pickup tube when used as an electrode for extracting a signal current from a transparent conductive film 1. Secondary electrons 11 and mesh electrodes 12 emitted from the photoconductive target by being bombarded with a scanning electron beam 10
Secondary electrons emitted from the image pickup tube, secondary electrons emitted from other parts of the image pickup tube, or scanning electrons that have deviated from the scanning orbit may cause photoconductivity of the indium ring 9 or the transparent conductive film 1 outside the scanning area. The secondary electrons 13 are incident on the part not covered by the film 6 and are emitted from there, and the mesh electrode 12
Therefore, current flows through the load resistor 7 and becomes a dark current. FIG. 6 shows the relationship between the signal current and the scanning beam amount in an image pickup tube having the structure shown in FIG. 5, except that the transparent conductive film 1 is removed. In this figure, the horizontal axis represents the scanning beam current, and the vertical axis represents the signal current at a target voltage of 20V. Since this is the case where there is no transparent conductive film 1,
No current flowing through the photoconductive targeter 1- is detected;
It is clear that all the signal currents shown in FIG. 6 are generated when electrons are incident on the indium ring 9 and secondary electrons are emitted, and the currents flow based on the above mechanism. The current based on such a mechanism is detected in exactly the same way even when the transparent conductive film 1 is present, and becomes a dark current unrelated to the incident light. In addition, when a transparent conductive film is present, a similar dark current may be generated not only by the indium ring but also by electrons entering the part of the transparent conductive film that is not covered by the photoconductive film. is clear.
以上はインジウムリングによって透光性導電膜からの信
号電流を取出す方式の場合について記したが、それ以外
の方法による場合であっても、透光性導電膜およびそれ
から信号を取出すための電極部分や、それらと電気的に
接触している導電体に電子が直接入射しうる場合には、
前記機構に基づいて暗電流が生じることは言うまでもな
い。The above describes the case where the signal current is extracted from the transparent conductive film using an indium ring, but even if other methods are used, the transparent conductive film and the electrode part for extracting the signal from it can be used. , if electrons can be directly incident on a conductor that is in electrical contact with them, then
Needless to say, dark current is generated based on the above mechanism.
本発明による撮像管は、所定の透光性絶縁基板上に、少
なくとも透光性導電膜と光導電膜とを具備し、上記透光
性導電膜を光入射側に配置した光導電ターゲットを有す
る高速度電子ビーム走査形負帯電方式撮像管において、
走査電子あるいは2次電子が直接入射しないように、上
記透光性導電膜およびそれから信号を取出すための電極
部分を遮蔽したことにより、暗電流を大幅に減少させ、
しかも走査電子ビーム量を変えても暗電流が変化しない
ようにしたものである。The image pickup tube according to the present invention has a photoconductive target that is provided with at least a transparent conductive film and a photoconductive film on a predetermined transparent insulating substrate, and the transparent conductive film is disposed on the light incident side. In a high-speed electron beam scanning negative charging type image pickup tube,
By shielding the transparent conductive film and the electrode portion for extracting signals from it to prevent direct incidence of scanning electrons or secondary electrons, dark current can be significantly reduced.
Furthermore, the dark current does not change even if the amount of scanning electron beam is changed.
つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明による撮像管における第1の実施例の光
導電ターゲットおよびその周辺部を示す断面図である。FIG. 1 is a sectional view showing a photoconductive target and its surrounding area in a first embodiment of an image pickup tube according to the present invention.
上記第1の実施例は透光性導電膜1からの信号を、上記
透光性導電膜1と接触している真空シール用インジウム
リング9を介してターゲットリング14から取出せるよ
うになっている。In the first embodiment, the signal from the transparent conductive film 1 can be taken out from the target ring 14 via the vacuum sealing indium ring 9 that is in contact with the transparent conductive film 1. .
セラミックスよりなる絶縁性遮蔽リング15をメツシュ
電極12と光導電ターゲットとの間に設けることによっ
て、透光性導電膜1およびインジウムリング9に電子が
直接入射しないようになっている。By providing an insulating shielding ring 15 made of ceramic between the mesh electrode 12 and the photoconductive target, electrons are prevented from directly entering the transparent conductive film 1 and the indium ring 9.
本実施例における光導電ターゲットは透光性ガラス基板
5上に酸化錫よりなる透光性導電膜l、5102よりな
る電子注入阻止層16を形成し、つぎに高周波スパッタ
装置においてターゲットに高純度Siを使用し、それと
相対して上記基板を設置する。上記スパッタ装置内をI
X 10−”rorr以下の高真空に排気したのち、
アルゴンおよび水素の混合ガスを導入して上記装置内を
5xlo−’〜5×IQ−3Torrの圧力にする。混
合ガス中の水素の濃度は30〜65%とする。」1記基
板温度を150〜300°Cに設定したのち反応性スパ
ッタを行い、透光性導電膜1および電子注入阻止層16
が形成された−1−起居板上に膜厚的0.5−4tのa
−8j:H膜6を堆積して光導電膜を形成する。つぎに
別の高周波スパッタ装置でターゲットに高純度Mg○を
使用し、それと相対してa−8iニド■膜6を堆積した
L起居板を設置する。スパッタ装置内をI X 10−
’ Torr以下の高真空にしアルゴンを導入して5X
10−4〜5 X 1O−3Torrの圧力にし、基板
温度を50−150℃に設定しスパッタを行う。このよ
うにしてMgOからなる層を約5〜30nmの厚さまで
a−8i:I−1膜6の上に堆積し、これを2次電子放
出層17とする。In the photoconductive target in this example, a transparent conductive film 1 made of tin oxide and an electron injection blocking layer 16 made of 5102 are formed on a transparent glass substrate 5, and then the target is made of high-purity Si in a high frequency sputtering device. and place the above board opposite it. Inside the sputtering equipment
After evacuating to a high vacuum of less than X 10-”rorr,
A mixed gas of argon and hydrogen is introduced to bring the pressure in the apparatus to 5xlo-' to 5xIQ-3 Torr. The concentration of hydrogen in the mixed gas is 30 to 65%. 1. After setting the substrate temperature to 150 to 300°C, reactive sputtering is performed to form the transparent conductive film 1 and the electron injection blocking layer 16.
A of 0.5-4t in film thickness was formed on the -1-originated plate.
-8j: Deposit H film 6 to form a photoconductive film. Next, using another high-frequency sputtering device, high-purity Mg○ is used as a target, and an L-shaped plate on which an a-8i nide ■ film 6 is deposited is placed opposite to it. Inside the sputtering equipment I
' Create a high vacuum below Torr and introduce argon to 5X
Sputtering is performed at a pressure of 10-4 to 5 x 1O-3 Torr and a substrate temperature of 50 to 150°C. In this way, a layer made of MgO is deposited on the a-8i:I-1 film 6 to a thickness of about 5 to 30 nm, and this is used as the secondary electron emitting layer 17.
上記のようにして作られた光導電ターゲットを前記遮蔽
リング15を設置した電子銃と結合させ、管内咎真空排
気ののち封止しI−■N方式の光導室形撮像管を得た。The photoconductive target produced as described above was combined with an electron gun equipped with the shielding ring 15, and the tube was evacuated and sealed to obtain an I-N type optical guide chamber type imaging tube.
第2図は」−記第1の実施例で得られた撮像管の暗電流
18と遮蔽リング15がない場合の撮像管における暗電
流19との電子ビーム量依存性を比較したものである。FIG. 2 compares the electron beam amount dependence of the dark current 18 of the image pickup tube obtained in the first embodiment and the dark current 19 of the image pickup tube without the shielding ring 15.
図の横軸は走査電子ビーム量1(、縦軸は暗電流の対数
表示である。曲線18と曲線i9との比較から、本発明
による撮像管では、暗電流か大幅に低減し、走査型Tビ
ーム量を増しても暗電流の増加がなくなるという効果は
明らかである。The horizontal axis of the figure is the amount of scanning electron beam (1), and the vertical axis is the logarithmic representation of the dark current.A comparison between curve 18 and curve i9 shows that the image pickup tube according to the present invention significantly reduces the dark current, and the scanning type It is clear that even if the amount of T beam is increased, the dark current does not increase.
第3図は本発明による撮像管における第2の実施例の光
導電ターゲットを示す断面図である。第3図の第2の実
施例は、透光性導電膜1からの信号の取出しをガラス基
板5を貫通する金属性ピン電極20によって行い、上記
ピン電極20および透光性導電膜1を誘電体21で蔽う
ことにより、ピン電極20および透光性導電膜1に電子
が直接入射することがないような構造にしたものである
。すなオ)ち、ガラス井板5上にSn○、を主成分とす
る透光性導電膜1を一形成し、その一端に円形状のCr
層22とAu層23とをそれぞれ真空蒸着により市ねて
形成し、これらCr、Au層22.23のほぼ中央にガ
ラス基板5まて貫通ずる穴をあける。つぎに■二記円板
−LCr、Au層22.23を除いた部分に電子注入μ
封止層16、a−8i:H光導電膜6および2次組f・
放出層17を上記第1の実施例と同様の方法て堆積する
。a−5i:)i光導電膜6は多結晶S」を板を用いて
Ar+○、、カス中で反応1′1スパツタ法により形成
するか、S −i )■、ガス中のタロー放電CV I
−、)法によっても形成することかてき、光電変換曇′
がよい材料である。その後信号取出し用のピン電+函2
aを上記穴に挿入し、CrJfi22およびAu層z;
3とにはんだ付けし、その上部に5in2のような誘電
体層21を堆積してピン電極20の上部ならびにその周
辺の導電部分を完全にカバーする。上記のようにして得
られた撮像管を第4図に述べた方法でHN動作させたと
ころ、透光性導電膜の一部や信号取出しのための電極部
分が遮蔽されていない従来の撮像管に較べて暗電流が大
幅に減少し、しかも走査ビーム量を増しても暗電流が増
さないという顕著な効果が見られた。FIG. 3 is a sectional view showing a second embodiment of a photoconductive target in an image pickup tube according to the present invention. In the second embodiment shown in FIG. 3, a signal is extracted from the transparent conductive film 1 by a metal pin electrode 20 penetrating the glass substrate 5, and the pin electrode 20 and the transparent conductive film 1 are connected to a dielectric. By covering with the body 21, the structure is such that electrons are not directly incident on the pin electrode 20 and the transparent conductive film 1. In other words, a transparent conductive film 1 mainly composed of Sn○ is formed on a glass plate 5, and a circular Cr
A layer 22 and an Au layer 23 are formed one after the other by vacuum evaporation, and a hole is made through the glass substrate 5 approximately in the center of these Cr and Au layers 22 and 23. Next, electrons are injected into the second disk - LCr, except for the Au layer 22 and 23.
Sealing layer 16, a-8i: H photoconductive film 6 and secondary set f.
The emissive layer 17 is deposited in a manner similar to that of the first embodiment described above. a-5i:)i The photoconductive film 6 is formed by using a plate of polycrystalline S'' in Ar+○, dregs, by reaction 1'1 sputtering method, or S-i)■, tallow discharge CV in gas. I
−,) can also be formed by the photoelectric conversion cloud′
is a good material. After that, pin wire + box 2 for signal extraction
Insert CrJfi22 and Au layer z into the above hole;
3, and a dielectric layer 21 such as 5 in 2 is deposited on top of the pin electrode 20 to completely cover the top of the pin electrode 20 and the conductive portion around it. When the image pickup tube obtained as described above was subjected to HN operation in the method described in Fig. 4, it was found that a conventional image pickup tube in which part of the transparent conductive film and the electrode part for signal extraction are not shielded. The dark current was significantly reduced compared to the conventional method, and a remarkable effect was observed in that the dark current did not increase even when the scanning beam amount was increased.
上記第1の実施例および第2の実施例ではいずれもメツ
シュ電極12がある場合を示したが、メツシュ電極がな
い場合にも全く同様な効果か得られることは実験的に確
認された。また上記実施例では光導電ターゲツトの材料
がa−3i:H膜の場合について述へたが、上記材料以
外の材料を用いたH N方式撮像管でも適用できること
はいうまでもない。また第2の実施例では透光性導電膜
1およびピン電極20を他の誘電体WI(SiO2)で
カバーする方法について述べたが、電子注入阻止層、光
導電膜、または2次電子放出層で覆っても同様な効果が
得られる。In both the first and second embodiments, the mesh electrode 12 is shown, but it has been experimentally confirmed that the same effect can be obtained even when there is no mesh electrode. Further, in the above embodiments, the case where the material of the photoconductive target is an a-3i:H film has been described, but it goes without saying that the present invention can also be applied to an HN type image pickup tube using a material other than the above-mentioned material. Furthermore, in the second embodiment, a method was described in which the transparent conductive film 1 and the pin electrode 20 were covered with another dielectric material WI (SiO2). A similar effect can be obtained by covering it with
〔発明の効果〕
上記のように本発明による撮像管は、所定の透光性絶縁
基板上に、少なくとも透光性導電膜と光導電膜とを具備
し、上記透光性導電膜を光入射側に配置した光導電ター
ゲットを有する高速度電子ビーム走査形負帯電方式撮像
管において、走査電子あるいは2次電子が直接入射しな
いように、上記透光性導電膜およびそれから信号を取出
すための電極部分を遮蔽したことにより、走査電子ビー
ムにより光導電ターゲットおよびメツシュ電極から放出
された2次電子、撮像管内の他の部分から放出された2
次電子、あるいは走査軌道を外れた走査電子が走査領域
外にあるインジウムリングや透光性導電膜が光導電膜に
覆われていない部分に入射して2次電子を放出すること
がなくなり、暗電流を大幅に減少させ、かつ走査電子ビ
ーム量を増しても暗電流が増加しないという効果が得ら
れ、したがってS/N比がよく、色再現性がよい撮像管
を得ることができる。[Effects of the Invention] As described above, the image pickup tube according to the present invention includes at least a light-transmitting conductive film and a photoconductive film on a predetermined light-transmitting insulating substrate, and the light-transmitting conductive film is exposed to light. In a high-speed electron beam scanning type negatively charged image pickup tube having a photoconductive target disposed on the side, the above-mentioned transparent conductive film and an electrode portion for extracting signals from the transparent conductive film are used to prevent direct incidence of scanning electrons or secondary electrons. By shielding the secondary electrons emitted from the photoconductive target and mesh electrode by the scanning electron beam, the secondary electrons emitted from other parts of the imaging tube are
Secondary electrons or scanning electrons that have deviated from the scanning orbit will not enter the indium ring outside the scanning area or the part of the transparent conductive film that is not covered with the photoconductive film and will not emit secondary electrons. It is possible to obtain an effect that the dark current does not increase even if the current is significantly reduced and the amount of scanning electron beam is increased. Therefore, an image pickup tube with a good S/N ratio and good color reproducibility can be obtained.
第1図は本発明による撮像管における第1の実施例の光
導電ターゲットおよびその周辺部を示す断面図、第2図
は上記第1の実施例に示す撮像管における暗電流と遮蔽
リングがない撮像管しこおける暗電流との電子ビーム量
依存性を比較した図、第3図は本発明による撮像管にお
ける第2の実施例の光導電ターゲットを示す断面図、第
4図はHN方式の動作原理の説明図、第5図は暗電流発
生の機構を示す図、第6図は上記第5図の構造から透光
性導電膜を除いた撮像管の走査電子ビーム量と信号電流
密度との関係を示す図である。
1・・透光性導電膜 5 透光性絶縁基板6 ・光導電
膜 12・メツシュ電極
15・遮蔽リング 20 ピン電極
、21・誘電体層
代理人弁理士 中 村 純之助
十 1 図
走1ビーム量休A)
矛5図
走査ビーを電夕友しA)
第1頁の続き
0発 明 者 平 井 忠 明 国分寺市東凡央研究所
内FIG. 1 is a sectional view showing a photoconductive target and its surrounding area in a first embodiment of an image pickup tube according to the present invention, and FIG. 2 is a sectional view showing the photoconductive target and its surrounding area in the first embodiment of the image pickup tube according to the present invention, which has no dark current and no shielding ring. Figure 3 is a cross-sectional view showing a second embodiment of the photoconductive target in the image pickup tube according to the present invention, and Figure 4 is a diagram comparing the dependence of the dark current on the electron beam amount in the image pickup tube. An explanatory diagram of the operating principle, Figure 5 is a diagram showing the mechanism of dark current generation, and Figure 6 is a diagram showing the scanning electron beam amount and signal current density of the image pickup tube with the structure shown in Figure 5 except for the transparent conductive film. FIG. 1... Transparent conductive film 5 Transparent insulating substrate 6 - Photoconductive film 12 - Mesh electrode 15 - Shielding ring 20 Pin electrode, 21 - Dielectric layer Attorney Junnosuke Nakamura 1 Diagram 1 Beam amount Rest A) Transmit the 5-figure scanning bee to the computer A) Continued from page 1 0 Inventor Tadaaki Hirai Kokubunji City Higashibono Research Institute
Claims (4)
電膜と光導電膜とを具備し、上記透光性導電膜を光入射
側に配置した光導電ターゲットを有する高速度電子ビー
ム走査形負帯電方式撮像管において、走査電子あるいは
2次電子が直接入射しないように、上記透光性導電膜お
よびそれから(lj号を取出すための電極部分を遮蔽し
たことを特徴とする撮像管。(1) A high-speed electron beam having a photoconductive target on a predetermined translucent insulating substrate, comprising at least a translucent conductive film and a photoconductive film, with the translucent conductive film disposed on the light incident side. An image pickup tube of a scanning type negatively charging type, characterized in that the transparent conductive film and an electrode portion for extracting (lj) from it are shielded so that scanning electrons or secondary electrons do not directly enter the image pickup tube.
シュ電極の間に設けた絶縁性遮蔽リングであることを特
徴とする特許請求の範囲第1項記載の撮像管。(2) The imaging tube according to claim 1, wherein the shielding of the electrode portion is an insulating shielding ring provided between the photoconductive target and the mesh electrode.
と接触している露出した導電部分を誘電体層で覆ったこ
とを特徴とする特許請求の範囲第1項記載の撮像管。(3) The imaging tube according to claim 1, wherein the electrode portion is shielded by covering the exposed conductive portion in contact with the pin electrode and the bottle electrode with a dielectric layer.
らなることを特徴とする特許請求の範囲第1項〜第3項
のいずれかに記載した撮像管。(4) The image pickup tube according to any one of claims 1 to 3, wherein the photoconductive film is made of amorphous silicon containing hydrogen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10168684A JPS60246545A (en) | 1984-05-22 | 1984-05-22 | Pickup tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10168684A JPS60246545A (en) | 1984-05-22 | 1984-05-22 | Pickup tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60246545A true JPS60246545A (en) | 1985-12-06 |
Family
ID=14307219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10168684A Pending JPS60246545A (en) | 1984-05-22 | 1984-05-22 | Pickup tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60246545A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008027776A (en) * | 2006-07-21 | 2008-02-07 | Hamamatsu Photonics Kk | Photoelectric tube |
JP2009123423A (en) * | 2007-11-13 | 2009-06-04 | Nippon Hoso Kyokai <Nhk> | Imaging device |
-
1984
- 1984-05-22 JP JP10168684A patent/JPS60246545A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008027776A (en) * | 2006-07-21 | 2008-02-07 | Hamamatsu Photonics Kk | Photoelectric tube |
JP2009123423A (en) * | 2007-11-13 | 2009-06-04 | Nippon Hoso Kyokai <Nhk> | Imaging device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3546515A (en) | Photocathode control of electron flow through lead monoxide,bombardment-induced conductivity layer | |
US4419604A (en) | Light sensitive screen | |
US4556817A (en) | Photoelectric conversion apparatus | |
JP4054168B2 (en) | Imaging device and operation method thereof | |
US2212923A (en) | Picture transmitter | |
JPS60246545A (en) | Pickup tube | |
JP3384840B2 (en) | Image pickup tube and operation method thereof | |
JP2793618B2 (en) | Imaging tube | |
JP2753264B2 (en) | Imaging tube | |
JPS58194231A (en) | Image tube | |
US3278782A (en) | Electron emitter comprising photoconductive and low work function layers | |
JP2002260524A (en) | Cold cathode electron source, imaging device and display device configured using the same | |
US2158450A (en) | Electron discharge device | |
JPH08106869A (en) | Image element and its operating method | |
JPS6286652A (en) | How the image tube works | |
JP4172881B2 (en) | Imaging device and operation method thereof | |
JP3161746B2 (en) | Image pickup tube and operation method thereof | |
EP0248426B1 (en) | TV pick-up tube | |
CN118899211A (en) | EBAPS structure and EBAPS device with electron alignment structure | |
JPH05343016A (en) | Image tube and operation thereof | |
US6084346A (en) | Reduction of smearing in cold cathode displays | |
JP2780933B2 (en) | Infrared vidicon target | |
JPS59119650A (en) | High speed electron beam scanning type camera tube | |
JPS628433A (en) | Image pickup tube target | |
JPS58225548A (en) | Approach type image tube and its manufacturing method |