[go: up one dir, main page]

JPS60243959A - scanning electron microscope - Google Patents

scanning electron microscope

Info

Publication number
JPS60243959A
JPS60243959A JP59098723A JP9872384A JPS60243959A JP S60243959 A JPS60243959 A JP S60243959A JP 59098723 A JP59098723 A JP 59098723A JP 9872384 A JP9872384 A JP 9872384A JP S60243959 A JPS60243959 A JP S60243959A
Authority
JP
Japan
Prior art keywords
objective lens
scanning
electron
electron beam
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59098723A
Other languages
Japanese (ja)
Other versions
JP2748956B2 (en
Inventor
Hideo Todokoro
秀男 戸所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59098723A priority Critical patent/JP2748956B2/en
Publication of JPS60243959A publication Critical patent/JPS60243959A/en
Application granted granted Critical
Publication of JP2748956B2 publication Critical patent/JP2748956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は走査形電子顕微鏡に係り、特に電子ビームを探
針として、LSIの機能検査を行うのに好適な走査形電
子顕微鏡(EBテスタ)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a scanning electron microscope, and more particularly to a scanning electron microscope (EB tester) suitable for functionally testing LSI using an electron beam as a probe. .

〔発明の背景〕[Background of the invention]

電子ビームでLSI内の電位を測定する走査形電子顕微
鏡(EBテスタと呼ばれる)では電位測定のために2次
電子のエネルギー分析器を設置する必要がある。一般に
は、最終的に電子ビームを細く絞る対物レンズと試料と
の間に2次電子エネルギー分析器を設置している。とこ
ろが、この構成では2次電子エネルギー分析器を設置す
るため、対物レンズと試料との間の距離が長くなる結果
、対物レンズの収差が大きくなり、細く、強力な電子ビ
ームを得ることは困難であった。
In a scanning electron microscope (referred to as an EB tester) that measures the potential within an LSI using an electron beam, it is necessary to install a secondary electron energy analyzer to measure the potential. Generally, a secondary electron energy analyzer is installed between the objective lens that narrows the electron beam and the sample. However, in this configuration, a secondary electron energy analyzer is installed, which increases the distance between the objective lens and the sample, which increases the aberration of the objective lens, making it difficult to obtain a narrow and powerful electron beam. there were.

この問題の解決策の1つとして、特開昭58−6885
3に示されるような2次電子分析器を対物レンズの上に
移し、対物レンズを短い焦点距離で動作させる考案がな
された。図1 (a)に特開昭5B −68853に示
さ九た考案の走査形電子顕微鏡の光学系を示す(特開昭
58−68853ではコンデンサ・レンズを採用しない
ものを提示しているが、図1にはコンデンサレンズを用
いた例を示した)。
As one solution to this problem, Japanese Patent Application Laid-Open No. 58-6885
An idea was devised to move a secondary electron analyzer as shown in Figure 3 above the objective lens and operate the objective lens at a short focal length. Figure 1 (a) shows the optical system of a scanning electron microscope devised in JP-A-58-68853 (JP-A-58-68853 proposes an optical system that does not use a condenser lens; 1 shows an example using a condenser lens).

電子銃1から放射された電子ビーム10はまずコンデン
サレンズ2でA点に焦点を結ぶ。この電子ビーム10は
絞り3で開口角を制限され、対物レンズ6で試料7上に
再び集められる。対物レンズ6の上には、2次電子分析
器5、電子ビームの走査コイル(静電偏向であってもよ
い)4が配置されている。この構成では、対物レンズ6
内に設置されるべき絞り3が、走査コイル4の上にある
An electron beam 10 emitted from an electron gun 1 is first focused on a point A by a condenser lens 2. The aperture angle of this electron beam 10 is limited by an aperture 3, and the electron beam 10 is again focused onto a sample 7 by an objective lens 6. A secondary electron analyzer 5 and an electron beam scanning coil (which may be an electrostatic deflector) 4 are arranged above the objective lens 6. In this configuration, the objective lens 6
Above the scanning coil 4 is an aperture 3 to be placed within.

これは2次電子エネルギー分析器5が対物レンズ6上に
あるために生じたやむを得ない処理である。
This is an unavoidable process that occurs because the secondary electron energy analyzer 5 is located above the objective lens 6.

この結果、対物レンズ6内であればり。mmφでよいも
のが、D。×−の大きさになる(a、a’は図1 (a
)内に示されている)、、対物レンズ6が短焦点である
ため、Doが小さい上にさらに小さくなってしまう。例
えば、対物レンズ6と試料7との間の距離を5mとする
と最も細い電子ビームを得るり。は20μmである。特
開昭58−68853を実施したときの絞り3の開口は
7μmになってしまう (a=150nn、a’ =5
0naとした)。
As a result, the inside of the objective lens 6 becomes free. D is suitable for mmφ. ×- (a, a' are Fig. 1 (a
), Since the objective lens 6 has a short focus, Do is small and becomes even smaller. For example, if the distance between the objective lens 6 and the sample 7 is 5 m, the narrowest electron beam will be obtained. is 20 μm. When implementing JP-A-58-68853, the aperture of the diaphragm 3 becomes 7 μm (a=150nn, a'=5
0na).

このように小さい絞りを用いると、■絞りの製作、■軸
調整機構、■温度ドリフト、■絞りの汚れ(コンタミネ
イション)の点で問題を生じる。
When such a small aperture is used, problems arise in terms of (1) manufacturing of the aperture, (2) axis adjustment mechanism, (2) temperature drift, and (2) contamination of the aperture.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述の絞り位置の問題点を解決した新
規な走査形電子顕微鏡を提供することにある。
An object of the present invention is to provide a novel scanning electron microscope that solves the above-mentioned problem of aperture position.

〔発明の概要〕[Summary of the invention]

本発明の骨子を、第1図(b)を用いて説明する。本発
明では、2次電子エネルギー分析器5と走査コイル4の
上下に第1対物レンズ8と第2対物レンズ9を設ける。
The gist of the present invention will be explained using FIG. 1(b). In the present invention, a first objective lens 8 and a second objective lens 9 are provided above and below the secondary electron energy analyzer 5 and the scanning coil 4.

第1対物レンズ8では入射電子ビームを平行にする。第
2対物レンズ9では平行電子ビームを試料7上に集束す
る。すなわち、第1対物レンズ8と第2対物レンズ9で
一つの対物としての作用をする。このような構成にする
と絞り3の開口径はり。でよい。しかも、第1対物レン
ズ8と第2対物レンズ9との間の距離Cを任意にとるこ
とができ、2次電子エネルギー分析器5、走査コイル4
の設計が自由にできる利点がある。
The first objective lens 8 makes the incident electron beam parallel. A second objective lens 9 focuses the parallel electron beam onto the sample 7. That is, the first objective lens 8 and the second objective lens 9 function as one objective. With this configuration, the aperture diameter of the diaphragm 3 will increase. That's fine. Moreover, the distance C between the first objective lens 8 and the second objective lens 9 can be set arbitrarily, and the secondary electron energy analyzer 5 and the scanning coil 4 can be set arbitrarily.
It has the advantage of being able to design freely.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第2図に示す。同一・形状の磁路1
1と励磁コイル12とからなる第1対物レンズ8および
第2対物レンズ9の間に上走査コイル13、下走査コイ
ル14.2次電子検出器22a。
An embodiment of the present invention is shown in FIG. Magnetic path 1 with the same shape
An upper scanning coil 13, a lower scanning coil 14, and a secondary electron detector 22a are located between a first objective lens 8 and a second objective lens 9, which are composed of a first objective lens 8 and an excitation coil 12.

22b、吸引グリッド15.フィルタグリッド16が設
置されている。吸引グリッド15とフイるタグリッド1
6および2次電子検出器22a。
22b, suction grid 15. A filter grid 16 is installed. Suction grid 15 and fill tag grid 1
6 and a secondary electron detector 22a.

22bで2次電子エネルギー分析器を構成する。22b constitutes a secondary electron energy analyzer.

試料7から1次電子ビーム1oの照射で発生した2次電
子25は吸引グリッド15で吸引され、第2対物レンズ
9の磁場内を通る。この2次電子25のうちフィルタグ
リッド16で作られるエネルギー障壁をこえるエネルギ
ーをもつ2次電子のみが2次電子検出器22a、22b
で検出される。
Secondary electrons 25 generated from the sample 7 by irradiation with the primary electron beam 1o are attracted by the attraction grid 15 and pass through the magnetic field of the second objective lens 9. Of these secondary electrons 25, only secondary electrons with energy exceeding the energy barrier created by the filter grid 16 are detected by secondary electron detectors 22a and 22b.
Detected in

吸引グリッド15とフィルタグリッド16に与える電位
は例えば1oovと一5vである。フィルタグリッド1
6をこの例のように負電圧にしておくと試料7の電位の
変化が2次電子検出器22a。
The potentials applied to the suction grid 15 and the filter grid 16 are, for example, 10V and -5V. filter grid 1
6 is set to a negative voltage as in this example, a change in the potential of the sample 7 is detected by the secondary electron detector 22a.

22bの出力変化としてあられれる。電位変化を強調し
て表示するのではなく、試料7の形状のみを表示する場
合には、フィルタグリッド16を正電位、例えば100
vにすればよし)。どちらの場合も、フィルタグリッド
16を通過した2次電子はシンチレータ17a、17b
に印加されたポスト高電圧(〜10KV) 21 a、
 21 bで吸引、加速され、シンチレータ17a、1
7bを衝撃し光を発する。この光はライトガイド18a
、18bを通り、ホトマル19a、19bで電気信号に
変換、増幅され、さらにヘッドアンプ20a、20bで
増幅される。増幅された信号は走査形電子顕微鏡を構成
するディスプレー装置(第2図では省略)の輝度信号あ
るいは電位測定の信号となる。
This appears as a change in the output of 22b. If you want to display only the shape of the sample 7 instead of emphasizing potential changes, set the filter grid 16 to a positive potential, for example 100
You can change it to v). In either case, the secondary electrons that have passed through the filter grid 16 are sent to scintillators 17a and 17b.
Post high voltage (~10KV) applied to 21a,
21b, the scintillators 17a, 1
Impacts 7b and emits light. This light is the light guide 18a
, 18b, and is converted into an electrical signal and amplified by photomultipliers 19a and 19b, and further amplified by head amplifiers 20a and 20b. The amplified signal becomes a luminance signal of a display device (not shown in FIG. 2) constituting the scanning electron microscope or a signal for potential measurement.

主走査コイル13と不走査コイル14とで電子ビーl、
10を試料7上に走査する。主走査コイル13と下走査
コイル14は逆方向に偏向するように作られ、その偏向
支点が第2対物レンズ9のレンズ中心と一致するように
両者の偏向量が調整されている(第3図a参照)。
Electronic beer l by main scanning coil 13 and non-scanning coil 14,
10 onto the sample 7. The main scanning coil 13 and the lower scanning coil 14 are made to deflect in opposite directions, and the amount of deflection of both is adjusted so that the deflection fulcrum coincides with the lens center of the second objective lens 9 (see Fig. 3). (see a).

絞り3は第2対物レンズ8の中心に設けられている。こ
の位置で電子ビームは最も太くなってしするため、絞り
3の開口径は従来(特開昭58−68853) のよう
に小さいものではない6電子ビームは絞り3で開口角を
制限され、第1対物レンズ8で平行にされ、第2対物レ
ンズ9で試料7に集束される。第1対物レンズ8の励磁
コイル11と第2対物レンズ9の励磁コイル11に流す
電流は一定の関係に保たれ、加速電圧が変化しても両者
の光学条件が変化しないようになっている。
The aperture 3 is provided at the center of the second objective lens 8. Since the electron beam becomes the thickest at this position, the aperture diameter of the aperture 3 is not as small as in the conventional case (Japanese Patent Application Laid-Open No. 58-68853).6 The aperture angle of the electron beam is limited by the aperture 3, and The first objective lens 8 makes the light parallel, and the second objective lens 9 focuses the light onto the sample 7. The currents flowing through the excitation coil 11 of the first objective lens 8 and the excitation coil 11 of the second objective lens 9 are maintained in a constant relationship, so that the optical conditions of both do not change even if the accelerating voltage changes.

第1対物レンズ8の物面Aの位置に主偏向板23が設置
されている。電子ビームをパルス化するストロボ観察に
用いるもので、一般には非常t″−−立上速い矩形波電
圧を与える。矩形波電圧が接地電位をよぎるときにのみ
電子ビームが絞り3を通過するので、電子ビームはIn
s前後にパルス化される。副偏向板24は、主偏向板2
3とは直交(図面では同一方向)している。この副別向
板24には主偏向板23に与えた矩形波とは90゜位相
の異なった矩形波を与え、矩形波の1周期にパルス電子
ビームが1つだけになるようにしている。
A main deflection plate 23 is installed at the object plane A of the first objective lens 8 . It is used for strobe observation that pulses the electron beam, and generally provides a rectangular wave voltage that rises very quickly at t''.The electron beam passes through the aperture 3 only when the rectangular wave voltage crosses the ground potential. The electron beam is In
It is pulsed around s. The sub deflection plate 24 is the main deflection plate 2
3 (in the same direction in the drawing). A rectangular wave having a phase difference of 90° from the rectangular wave applied to the main deflection plate 23 is applied to the sub-direction plate 24 so that only one pulsed electron beam is generated in one period of the rectangular wave.

以上の説明は主に電子ビームを細く絞ることを主目的と
した対物レンズの短焦点動作であった。
The above explanation was mainly about the short focus operation of the objective lens, whose main purpose is to narrow down the electron beam.

このように短い焦点距離で対物レンズを動作させると電
子ビームを試料7上で広い範囲に走査させることが困難
になる。例えば、第2対物レンズ9と試料7との距離が
5側であれば、試料7上の走査範囲は1m角が限界とな
る。ところが、LSIのチップは51m角〜101m角
もあるため、全体を一回の走査で観察することはできな
い。これが短焦点動作(特開昭58−68853 )の
大きな欠点となっている。
If the objective lens is operated at such a short focal length, it becomes difficult to scan the electron beam over a wide range on the sample 7. For example, if the distance between the second objective lens 9 and the sample 7 is on the 5 side, the scanning range on the sample 7 is limited to 1 m square. However, since an LSI chip is 51 m square to 101 m square, it is not possible to observe the entire chip in one scan. This is a major drawback of short focus operation (Japanese Patent Laid-Open No. 58-68853).

本発明では、上記の重大な欠点をも克服することができ
る。本発明の構成では、(1)第2対物レンズ9をOF
F、(2)第1対物レンズ8のみで試料7に焦点させる
、(3)走査コイルを上あるいは下のみとする、ことで
走査範囲を5〜20倍にも拡大することができる。第1
対物レンズ8のみによる焦点では電子ビームは太くなる
が広範囲走査なので像の解像度を落す等の問題はない。
With the present invention, the above-mentioned serious drawbacks can also be overcome. In the configuration of the present invention, (1) the second objective lens 9 is OF
F. By (2) focusing on the sample 7 using only the first objective lens 8 and (3) using only the upper or lower scanning coil, the scanning range can be expanded by 5 to 20 times. 1st
If the electron beam is focused only by the objective lens 8, it will become thicker, but since it scans over a wide range, there will be no problems such as a drop in image resolution.

以下、第1対物レンズ8、第2対物レンズ9、走査コイ
ル13.14の動作と組合せについて第3図を用いて詳
述する。
The operations and combinations of the first objective lens 8, second objective lens 9, and scanning coils 13, 14 will be described in detail below with reference to FIG.

第1対物レンズ8と第2対物レンズ9は全く同一の構造
のものを用いた場合で説明する。まず第3図aを用いて
短焦点動作を示す第1対物レンズ8と第2対物レンズ9
は同一の駆動電源26aと26bで動かす。この駆動電
源26a、26bは駆動電圧を入力するとこれに応じた
電流が流れるように作られている。駆動電圧発生回路2
7の出力は2つに分岐され、一方は比例係数回路28と
スイッチ29aを通って第1対物レンズ8の駆動電源2
6aに入力され、他方はスイッチ29bを通ってそのま
ま第2対物レンズ9用の駆動電源26bに入力される。
The description will be made assuming that the first objective lens 8 and the second objective lens 9 have exactly the same structure. First, the first objective lens 8 and the second objective lens 9 showing short focus operation using FIG. 3a.
are driven by the same drive power supplies 26a and 26b. These drive power supplies 26a and 26b are made so that when a drive voltage is input, a current flows in accordance with the drive voltage. Drive voltage generation circuit 2
The output of 7 is branched into two parts, one of which passes through a proportional coefficient circuit 28 and a switch 29a to the drive power supply 2 of the first objective lens 8.
6a, and the other one passes through the switch 29b and is inputted directly to the drive power source 26b for the second objective lens 9.

比例係数回路28の係数は(b/a) 2に作られてい
る。上走査コイル13の巻数は下走査コイル140巻数
の半分とし、偏向方向を逆とし、同一の電流を走査電源
31で流す(走査コイルの配置は第3図に示されている
)。
The coefficient of the proportional coefficient circuit 28 is set to (b/a)2. The number of turns of the upper scanning coil 13 is half the number of turns of the lower scanning coil 140, the direction of deflection is reversed, and the same current is applied by the scanning power supply 31 (the arrangement of the scanning coils is shown in FIG. 3).

このときの電子ビームの軌道を第3図aに示した。The trajectory of the electron beam at this time is shown in Figure 3a.

この方式の最大走査範囲は約1何角である。The maximum scanning range of this method is about 1 square.

広い範囲を走査させるにはスイッチ29a。Switch 29a to scan a wide range.

29b、29cを動作させる(第3図b)。スイッチ2
9aの動作で、第1対物レンズ8の駆動電圧径路に補正
係数回路30が入る。補正係数回路るので、第1対物レ
ンズ8は電子ビームを試料7に焦点を結ぶようになる。
29b and 29c are operated (Fig. 3b). switch 2
By the operation 9a, the correction coefficient circuit 30 enters the drive voltage path of the first objective lens 8. Since the correction coefficient circuit is provided, the first objective lens 8 focuses the electron beam on the sample 7.

一方、第2対物レンズ9はスイッチ29bでOFFとな
る。また下走査コイル14がスイッチ29cで短絡され
るので、電子ビーム走査範囲がb==5n+m、d+=
40inとすれば、拡大比は17倍にもなる。
On the other hand, the second objective lens 9 is turned off by the switch 29b. Further, since the lower scanning coil 14 is short-circuited by the switch 29c, the electron beam scanning range is b==5n+m, d+=
If it is 40 inches, the magnification ratio will be 17 times.

以上詳述した本実施例で得られる性能例を第1表に示す
。電子源は単結晶タングステンを用いた電界放射形とし
、加速電圧はIKVとした。
Table 1 shows examples of performance obtained in this embodiment described in detail above. The electron source was a field emission type using single crystal tungsten, and the acceleration voltage was IKV.

第1表 尚、本発明では、同一の構造の第1対物レンズと第2対
物レンズを用いたが構造が異なっても、焦点の比を一定
にしておけばよいことは言うまでもない。また本実施例
では、第1対物レンズと第2対物レンズの励磁電流の比
を駆動電圧比で行ったが、第1対物レンズの励磁コイル
を2系統とし、一系統の励磁コイルに第2対物レンズと
同一励磁電流を流して両者の焦点距離の比を所定の関係
に保つようにしてもよい。
Table 1 Note that in the present invention, the first objective lens and the second objective lens of the same structure are used, but it goes without saying that even if the structures are different, it is sufficient to keep the focal ratio constant. In addition, in this embodiment, the ratio of the excitation currents of the first objective lens and the second objective lens was determined by the drive voltage ratio, but the excitation coil of the first objective lens is two systems, and the excitation coil of one system is connected to the excitation current of the second objective lens. The same excitation current as that of the lens may be applied to maintain the ratio of the focal lengths of the two in a predetermined relationship.

〔発明の効果〕〔Effect of the invention〕

以上詳述したごとく、本発明によれば、(1)2次電子
分析器を対物レンズの上方に設置して電子ビームの開口
角を制限する絞りの開口径を大の大きさでしかも適正な
位置に置くことがでる、(2)2次電子エネルギー分析
器、走査コルの設置の位置や大きさに制限がない、(3
)い電子ビームを得ることと、広範囲走査とが両できる
等の利点がある。この結果、電子顕微鏡工事への応用が
促進される。
As detailed above, according to the present invention, (1) the secondary electron analyzer is installed above the objective lens, and the aperture diameter of the diaphragm that limits the aperture angle of the electron beam is made large and appropriate; (2) There are no restrictions on the location or size of the secondary electron energy analyzer or scanning col, (3)
) It has the advantage of being able to both obtain a high electron beam and scan a wide range. As a result, application to electron microscope construction will be promoted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは従来装置、同図すは本発明のそれれ原理的構
成を示す電子顕微鏡の模式図、第2は本発明の一実施例
になる電子顕微鏡の縦断面第3図a、bは本発明の一実
施例になる装置の施態様を示すブロック図である。 代理人 弁理士 高橋明 も 第 1 口 過 き イ 細 立 の ぞ 図 図、 実 ←
Fig. 1a is a schematic diagram of an electron microscope showing a conventional device, the same figure is a schematic diagram of an electron microscope showing the basic configuration of the present invention, and Fig. 2 is a longitudinal cross-sectional view of an electron microscope according to an embodiment of the present invention.Figs. 3a and b 1 is a block diagram showing an embodiment of an apparatus according to an embodiment of the present invention. FIG. The agent and patent attorney Akira Takahashi is also the 1st person who has spoken a lot.

Claims (1)

【特許請求の範囲】 1、電子を放射する電子源と該電子源から放射された電
子を集束するレンズ系と、集束電子を試料上に走査する
走査電源と、2次電子検出器を含む像表示系とからなる
走査形電子顕微鏡において、電子ビームを集束する対物
レンズが連動して動作する第1対物レンズと第1対物レ
ンズとで構成され、かつ第1対物レンズと第2対物レン
ズの間に2次電子検出器と走査コイルあるいは走査偏向
板を設置したことを特徴とする走査形電子顕微鏡。 2、試料に近接して配置された第2対物レンズの上方で
、かつ2次電子検出器の下方に2次電子のエネルギー分
析器を設けたことを特徴とする特許請求の範囲第1項記
載の走査形電子顕微鏡。 3、第1対物レンズで電子ビームを平行にし、第2対物
レンズで該平行電子ビームを試料上に請求の範囲第1項
および第2項記載の走査形電子顕微鏡。 4、第1対物レンズのレンズ中心に電子ビームの開口角
を制限する絞りを設けたことを特徴とする特許請求の範
囲第1乃至第3項記載の走査形電子顕微鏡。 5、第2対物レンズの励磁電流をしゃ断すると同時に、
第1対物レンズで試料に電子ビーム焦点を結ぶように第
1対物レンズの励磁電流を一定の比で増加させることを
特徴とする特許請求の範囲第1乃至第4項記載の走査形
電子顕微鏡。 66第2対物レンズの励磁電流のしゃ断と同時に走査コ
イルに流す電流あるいは複数個で構成される走査コイル
あるいは走査偏向器の組合せを変えることを特徴とする
特許請求の範囲第5項記載の走査形電子顕微鏡。 7、第1対物レンズの物面位置に電子ビームをパルス化
する静電形の偏向器を設けたことを特徴とする特許請求
の範囲第1項、第2項記載の走大xK/、#)マーw4
IvlI越
[Claims] 1. An image including an electron source that emits electrons, a lens system that focuses the electrons emitted from the electron source, a scanning power source that scans the focused electrons onto a sample, and a secondary electron detector. In a scanning electron microscope consisting of a display system, an objective lens for focusing an electron beam is composed of a first objective lens and a first objective lens that operate in conjunction with each other, and between the first objective lens and the second objective lens. A scanning electron microscope characterized in that a secondary electron detector and a scanning coil or a scanning deflection plate are installed in the main body. 2. Claim 1, characterized in that a secondary electron energy analyzer is provided above the second objective lens disposed close to the sample and below the secondary electron detector. scanning electron microscope. 3. A scanning electron microscope according to claims 1 and 2, wherein the first objective lens makes the electron beam parallel, and the second objective lens directs the parallel electron beam onto the sample. 4. A scanning electron microscope according to any one of claims 1 to 3, characterized in that a diaphragm for limiting the aperture angle of the electron beam is provided at the center of the first objective lens. 5. At the same time as cutting off the excitation current of the second objective lens,
5. The scanning electron microscope according to claim 1, wherein the excitation current of the first objective lens is increased at a constant ratio so that the first objective lens focuses the electron beam on the sample. 66 The scanning type according to claim 5, characterized in that the current flowing through the scanning coil or the combination of a plurality of scanning coils or scanning deflectors is changed at the same time as the excitation current of the second objective lens is cut off. electronic microscope. 7. An electrostatic deflector for pulsing the electron beam is provided at the object plane position of the first objective lens. ) Mar w4
IvlI
JP59098723A 1984-05-18 1984-05-18 Scanning electron microscope Expired - Lifetime JP2748956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098723A JP2748956B2 (en) 1984-05-18 1984-05-18 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098723A JP2748956B2 (en) 1984-05-18 1984-05-18 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JPS60243959A true JPS60243959A (en) 1985-12-03
JP2748956B2 JP2748956B2 (en) 1998-05-13

Family

ID=14227435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098723A Expired - Lifetime JP2748956B2 (en) 1984-05-18 1984-05-18 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JP2748956B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872358A (en) * 1995-10-19 1999-02-16 Hitachi, Ltd. Scanning electron microscope
WO2017018432A1 (en) * 2015-07-29 2017-02-02 株式会社 日立ハイテクノロジーズ Charged particle beam device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839164A (en) * 1971-09-21 1973-06-08
JPS5291361A (en) * 1976-01-27 1977-08-01 Jeol Ltd Scanning electron microscope
JPS5868853A (en) * 1981-09-30 1983-04-23 シ−メンス・アクチエンゲゼルシヤフト Electronic optical device for high resolution electron beam measuring technique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839164A (en) * 1971-09-21 1973-06-08
JPS5291361A (en) * 1976-01-27 1977-08-01 Jeol Ltd Scanning electron microscope
JPS5868853A (en) * 1981-09-30 1983-04-23 シ−メンス・アクチエンゲゼルシヤフト Electronic optical device for high resolution electron beam measuring technique

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872358A (en) * 1995-10-19 1999-02-16 Hitachi, Ltd. Scanning electron microscope
US5900629A (en) * 1995-10-19 1999-05-04 Hitachi, Ltd. Scanning electron microscope
US6084238A (en) * 1995-10-19 2000-07-04 Hitachi, Ltd. Scanning electron microscope
WO2017018432A1 (en) * 2015-07-29 2017-02-02 株式会社 日立ハイテクノロジーズ Charged particle beam device
US10304654B2 (en) 2015-07-29 2019-05-28 Hitachi High-Technologies Corporation Charged particle beam device

Also Published As

Publication number Publication date
JP2748956B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
JP2919170B2 (en) Scanning electron microscope
US7294834B2 (en) Scanning electron microscope
US3474245A (en) Scanning electron microscope
JP2875940B2 (en) Electron beam device equipped with sample height measuring means
JPH1196957A (en) Particle beam device
US5008537A (en) Composite apparatus with secondary ion mass spectrometry instrument and scanning electron microscope
JPH09171791A (en) Scanning electron microscope
EP0113746B1 (en) An elektrode system of a retarding-field spectrometer for a voltage measuring electron beam apparatus
US4292519A (en) Device for contact-free potential measurements
JPS6298544A (en) Charged particle beam device
JPH0736321B2 (en) Spectrometer-objective lens system for quantitative potential measurement
US20070181805A1 (en) Scanning electron microscope having a monochromator
US2372422A (en) Electron microanalyzer
KR20170009972A (en) Electron beam imaging with dual wien-filter monochromator
JP2632808B2 (en) Spectrometer objective lens device for quantitative potential measurement
US3717761A (en) Scanning electron microscope
US4922097A (en) Potential measurement device
US10446360B2 (en) Particle source for producing a particle beam and particle-optical apparatus
JPS60243959A (en) scanning electron microscope
JP2006093161A (en) Scanning electron microscope
US6897441B2 (en) Reducing chromatic aberration in images formed by emmission electrons
US8957372B2 (en) Scanning electron microscope
KR100711198B1 (en) Scanning electron microscope
JPS58197644A (en) Electron microscope and its similar device
JP3014369B2 (en) Electron beam device equipped with sample height measuring means

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term