[go: up one dir, main page]

JPS60242671A - heterojunction bipolar transistor - Google Patents

heterojunction bipolar transistor

Info

Publication number
JPS60242671A
JPS60242671A JP59098091A JP9809184A JPS60242671A JP S60242671 A JPS60242671 A JP S60242671A JP 59098091 A JP59098091 A JP 59098091A JP 9809184 A JP9809184 A JP 9809184A JP S60242671 A JPS60242671 A JP S60242671A
Authority
JP
Japan
Prior art keywords
semiconductor
base
type
doped
base region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59098091A
Other languages
Japanese (ja)
Other versions
JPH0543178B2 (en
Inventor
Takayuki Sugata
孝之 菅田
Tadao Ishibashi
忠夫 石橋
Hiroshi Ito
弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59098091A priority Critical patent/JPS60242671A/en
Publication of JPS60242671A publication Critical patent/JPS60242671A/en
Publication of JPH0543178B2 publication Critical patent/JPH0543178B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/80Heterojunction BJTs
    • H10D10/821Vertical heterojunction BJTs
    • H10D10/881Resonant tunnelling transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/81Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
    • H10D62/815Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW]
    • H10D62/8161Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices
    • H10D62/8162Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices having quantum effects only in the vertical direction, i.e. layered structures having quantum effects solely resulting from vertical potential variation
    • H10D62/8164Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices having quantum effects only in the vertical direction, i.e. layered structures having quantum effects solely resulting from vertical potential variation comprising only semiconductor materials 

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To realize a base region in high concentration under the state in which high mobility is maintained, and to obtain the base region having resistance extremely lower than conventional devices by using semiconductor layers, in which semiconductors, to which an impurity is doped to a high degree and which have large forbidden band width, and semiconductors not doped intentionally are superposed alternately and to which the impurity is modulation-doped, as the base region. CONSTITUTION:P type GaAs 5 and AlX2Ga1-X2As 6 having different borbidden band width are laminated as the structure of the conduction band of a base region. When x1>=0.3 holds as N-AlX1Ga1-X1As 4, the thickness d1 of P type GaAs 5 extends over 10<d1<300Angstrom , 0.1<=x2<=0.3 holds as P type AlX2Ga1-X2As 6, thickness thereof d2 extends over 10<d2<300Angstrom and P type impurity concentration is brought to 0.5-5X10<19>cm<-8>, a hetero-junction bipolar transistor having low base resistance and a high current amplification factor of 100 or more can be realized. Accordingly, base resistance can be lowered up to the limit or more of the reduction of the base resistance of conventional hetero-junction bipolar transistors, thus realizing an ultraspeed transistor more excellent than conventional devices.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ベース抵抗がきわめて小さく、超高速動作す
るヘテロ接合バイポーラトランジスタに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heterojunction bipolar transistor that has extremely low base resistance and operates at ultra high speed.

〔従来の技術〕[Conventional technology]

従来のへテロ接合バイポーラトランジスタは、第4図に
示すように、n型AA!GaA3などの禁制帯幅の大き
いエミッタ領域1とP −GaAsなどのベース領域2
とn−GaAsなどのコレクタ領域3から構成されてい
た。エミッタ領域1の禁制帯幅が大きイタメ、ベース領
域2の正孔のエミッタ側への注入量をきわめて小さくす
ることができ、ベース領域2の正孔濃度i10”am−
↑程度に太きくしても十分な電流利得が得られる特徴を
有していた。一方ベース領域2の正孔濃度が大きくなる
と、それにつれて正孔移動度は不純物散乱の影響で小さ
くなシ、正孔濃度×正孔移動度から決まるベース抵抗の
低減が制限される欠点を有していた。
The conventional heterojunction bipolar transistor is an n-type AA! transistor, as shown in FIG. An emitter region 1 such as GaA3 with a large forbidden band width and a base region 2 such as P-GaAs.
and a collector region 3 made of n-GaAs or the like. Since the forbidden band width of the emitter region 1 is large, the amount of holes injected into the emitter side of the base region 2 can be extremely small, and the hole concentration in the base region 2 i10"am-
It had the characteristic that sufficient current gain could be obtained even if the thickness was increased to ↑. On the other hand, as the hole concentration in the base region 2 increases, the hole mobility decreases due to the influence of impurity scattering, which has the disadvantage that the reduction in base resistance determined by hole concentration x hole mobility is limited. was.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来のへテロ接合バイポーラトランジスタに
おける上記ベース抵抗の低減が制限されるという問題点
を解決する。
The present invention solves the problem of limited reduction in base resistance in conventional heterojunction bipolar transistors.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、高ドープUた禁制帯幅の大きい半導体と意識
的にドープしない半導体を交互に重ねた変調ドープした
半導体層をベース領域に用いることによシ、高移動度を
維持した状態で高濃度のべ、−ス領舅を実現し、従来の
ものよシきわめて低抵抗のベース領域金得るものである
。従って従来のものよシ超高速動作するヘテロ接合バイ
ポーラトランジスタが実現できる。
The present invention achieves high mobility while maintaining high mobility by using modulation-doped semiconductor layers in the base region, in which highly doped U semiconductors with a large bandgap and intentionally undoped semiconductors are alternately stacked. This achieves a base region of high concentration and provides a base region of extremely low resistance compared to the conventional method. Therefore, it is possible to realize a heterojunction bipolar transistor that operates much faster than conventional ones.

以下に本発明について、具体的に説明するために実施例
を示す。
Examples are shown below to specifically explain the present invention.

〔実施例〕 第3図は本発明の実施例の要部であって、4はP型AJ
x、Gat−xlAsなどの大きい禁制帯幅を有する半
導体、5は低不純物濃度のP型GaA、 、 6は高不
純物濃度のP型Alx2Ga z−x2AsでS、a、
7は5と6の多層構成の領域、8はn型GaAsである
。本実施例では、4はエミッタ領域であり、Xl)0.
3が有効でアシ、−例としてxl=o、asとした。エ
ミッタ領域40層の不純物濃度はエミッタ注入効率を上
げるためある程度高い方が良く、ここでは、1−1−1
OX10 のSよ−ドープを用いた。50層は意識的に
ドープしない層、6の層はXs > L > 0の条件
が必要でおシ、4の層よシも禁制帯幅を小さくする必要
があ夛、ここでは’)C2= 0.2とし、不純物濃度
は0.5〜5 X 1019層m−”のBe−ドープを
用いた。この5と6の多層構成の7の領域がベース領域
として動作する。8の領域はコレクタ領域に相当し1〜
50 X 工0 ”em−8のn型GaABを用いた。
[Embodiment] Fig. 3 shows the main part of an embodiment of the present invention, and 4 is a P-type AJ.
x, a semiconductor with a large forbidden band width such as Gat-xlAs, 5 is P-type GaA with a low impurity concentration, 6 is P-type Alx2Ga z-x2As with a high impurity concentration, S, a,
7 is a multilayered region of 5 and 6, and 8 is n-type GaAs. In this example, 4 is the emitter region, Xl)0.
3 is valid, and as an example, xl=o, as. The impurity concentration of the emitter region 40 layer should be high to some extent in order to increase the emitter injection efficiency, and here, 1-1-1
OX10 S-doped was used. The 50th layer is a layer that is not intentionally doped, the 6th layer requires the condition of Xs > L > 0, and the 4th layer also needs to have a smaller forbidden band width. 0.2, and the impurity concentration was 0.5 to 5 x 1019 layers m-'' of Be-doped. Region 7 of this multilayer structure of 5 and 6 acts as a base region. Region 8 acts as a collector. Corresponds to the area 1~
N-type GaAB of 50 x 0'' em-8 was used.

本実施例の構造のエネルギバンド図を第1図に示す。ベ
ース領域7のP” −A7!x2Ga1−X2As /
P−GaAsの価電子帯のエネルギバンドは図示のごと
くである。P” −AA’x、Gat−x2As 6内
のアクセプタ準位Aからホールが放出されてP −Ga
As S内に蓄積され、ポールHは低不純物濃度のP 
−GaA85内を伝帳するので図面に縦方向のホールH
による移動度が従来のP+−CaAsの移動度よ多数倍
大きくなシ、ベース抵抗の低減に効果的である。一方、
エミッタから注入される電子Eは、図示のごとく、エネ
ルギの高い所から注入されることになるので、伝導帯の
凸凹に影響されることは少ない。
FIG. 1 shows an energy band diagram of the structure of this example. P''-A7!x2Ga1-X2As of base region 7 /
The energy band of the valence band of P-GaAs is as shown in the figure. Holes are released from the acceptor level A in P''-AA'x, Gat-x2As 6, and P-Ga
As is accumulated in S, and pole H is P with a low impurity concentration.
- Since the inside of GaA85 is to be transferred, there is a vertical hole H in the drawing.
The mobility of P+-CaAs is many times larger than that of conventional P+-CaAs, which is effective in reducing base resistance. on the other hand,
As shown in the figure, the electrons E injected from the emitter are injected from a place with high energy, so they are hardly affected by the unevenness of the conduction band.

本発明のような変調ドープしたベース領域の正孔の移動
度は300Kにおいて400 am”/’V’sec以
上、77Kにおいて6000 am”/V’secが得
られる。従来の10”am−’程度のP型G’aAsベ
ースでは正孔の移動度は300 Kにおいて約100〜
200Cm/v−8eC577Kにおいても1000 
am”/ V・sec 以下でお9〜変調ドープベース
領域を用いることによ)約5倍のベース抵抗の低減が達
成できる。
The hole mobility of the modulation-doped base region according to the present invention is 400 am''/'V'sec or more at 300K and 6000 am''/V'sec at 77K. In the conventional P-type G'aAs base of about 10"am-', the hole mobility is about 100 ~ at 300K.
1000 even at 200Cm/v-8eC577K
By using a modulated doped base region of less than 900 m/V·sec, a reduction in base resistance of about 5 times can be achieved.

一般にバイポーラトランジスタのスイッチ時間tはベー
ス抵抗rbとベースコレクタ間容量CBCの積に比例す
る。従ってrbがに倍に軽減された本発明のへテロ接合
バイポーラトランジスタは従来のものより5倍の高速動
作が達成できる。
Generally, the switching time t of a bipolar transistor is proportional to the product of the base resistance rb and the base-collector capacitance CBC. Therefore, the heterojunction bipolar transistor of the present invention, in which rb is reduced by 2 times, can achieve a high-speed operation 5 times that of the conventional transistor.

一方、本発明のへテロ接合パイボーラトランジため、第
1図のように不連続で凸凹した形状となる。この場合エ
ミッタ4からベース7へ注入された電子が伝導体の不連
続な部分で反射され電子速度が低減される可能性がある
。ところが、P型GaA35とA’X2Gal−X2A
B 6の各々の厚さを10〜50Aにすれば、超格子構
造に基づく連続的な伝導帯が形成され、電子速度が減速
されることのない構成が実現できる。他方、各層の厚さ
をこのように薄くした場合には、前述のベース抵抗の低
減の効果が少なくなる場合が生じ易い。従ってベース領
域の多層構造は、エミッタからペースへ注入された電子
速度を速いまま維持し、かつベース抵抗を低減させるた
めの最適構造が存在する。
On the other hand, because of the heterojunction pibora transition of the present invention, it has a discontinuous and uneven shape as shown in FIG. In this case, there is a possibility that the electrons injected from the emitter 4 to the base 7 are reflected by the discontinuous portion of the conductor, reducing the electron velocity. However, P-type GaA35 and A'X2Gal-X2A
By setting the thickness of each B6 to 10 to 50 A, a continuous conduction band based on a superlattice structure is formed, and a configuration in which the electron velocity is not slowed down can be realized. On the other hand, when the thickness of each layer is reduced in this way, the effect of reducing the base resistance described above is likely to be reduced. Therefore, the multilayer structure of the base region has an optimal structure for maintaining the high velocity of electrons injected from the emitter to the paste and reducing the base resistance.

本発明の構造を詳細に検討した結果、第3図において4
のN−AA’x、Gat−xlAsとしてX1≧0.3
.5のP型GaAsの厚さdlを10 (dl<aoo
X、 6のP型AJx2Gat−xlAsとして0.1
≦X2≦0.3、その厚さd2を10 <da (ao
o A 、P型不純物濃度を0.5〜5X10cm と
した場合に低いベース抵抗でかつ100以上の高い電流
増幅率のへテロ接合バイポーラトランジスタが実現でき
た。
As a result of a detailed study of the structure of the present invention, in FIG.
N-AA'x, Gat-xlAs, X1≧0.3
.. The thickness dl of P-type GaAs in 5 is 10 (dl<aoo
X, 6 P type AJx2Gat-xlAs as 0.1
≦X2≦0.3, and its thickness d2 is 10 <da (ao
oA, a heterojunction bipolar transistor with a low base resistance and a high current amplification factor of 100 or more was realized when the P-type impurity concentration was set to 0.5 to 5×10 cm.

本発明の主旨の範囲内において、4,5,6,8の各層
をInGaAs、 InAJAB、 InGaAsP、
 InP 等地の化合物半導体で構成することも当然可
能である。
Within the scope of the present invention, layers 4, 5, 6, and 8 are made of InGaAs, InAJAB, InGaAsP,
Of course, it is also possible to use a compound semiconductor such as InP.

本発明の構造の最も基本となる領域を第1図と第3図の
実施例によシ説明したが、実際に電圧。
Although the most basic area of the structure of the present invention has been explained using the embodiments shown in FIGS.

電流を印加して動作させる時は、第2図のととく4のエ
ミッタ領域の上に1”GaAs層4′を設けその上にA
uGe/Ni等のオーミック電極4′を付追してエミッ
タ電極を構成し、ベース7のベース電極は、ベース7の
5の領域までエミッタ4の一部の領域に窓開けして、そ
の部分にCr/Au等のオーミック電極7′を付加し、
コレクタ電極としては、8のn−GaAs領域まで、4
,7の領域の一部に窓開けして、その部分にj、、uG
e/Ni等のオーミック電極8′を付加して、それぞれ
4’、 7’ 、 8’をエミッタ、ベース。
When operating by applying a current, a 1" GaAs layer 4' is provided on the emitter region 4 in FIG.
An ohmic electrode 4' such as uGe/Ni is added to form an emitter electrode, and the base electrode of the base 7 is formed by opening a window in a part of the emitter 4 up to the area 5 of the base 7, and forming a window in that part. Adding an ohmic electrode 7' such as Cr/Au,
As a collector electrode, up to 8 n-GaAs regions, 4
A window is opened in a part of the area of ,7, and j,,uG is placed in that part.
Add ohmic electrodes 8' such as e/Ni, and use 4', 7', and 8' as emitter and base, respectively.

コレクタ端子として電源を接続して利用するものである
。なお、9は半絶縁性のGaAs基板である。
It is used as a collector terminal by connecting a power supply. Note that 9 is a semi-insulating GaAs substrate.

また、ペース電極の低抵抗化のためには、Cr/Auを
付着する前にその部分にP型の不純物たとえばBe等を
イオン注入することなども有効な手段である。これらの
本発明の基本構成部分に付属する部分は、従来のへテロ
接合バイポーラトランジスタですでに一般的に利用され
ている技術であるので、ここでの詳しい説明は省略する
Furthermore, in order to reduce the resistance of the pace electrode, it is also effective to ion-implant P-type impurities such as Be into the part before depositing Cr/Au. These parts attached to the basic constituent parts of the present invention are technologies already commonly used in conventional heterojunction bipolar transistors, so a detailed explanation will be omitted here.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、従来のへヴロ接合ノくイボーラ
トランジスタのベース抵抗の低減の限界以上にベース抵
抗を低くできるから、従来にない超高速トランジスタが
実現でき、レコ秒(1012秒)/ゲート領域の論理I
Cや記憶IC,また10GHz以上の増幅器や発振器の
構成要素として広範囲な応用分野がある。
As described above, according to the present invention, the base resistance can be lowered beyond the limit of base resistance reduction of the conventional Hevro junction Ibora transistor, and an unprecedented ultra-high speed transistor can be realized. )/gate area logic I
It has a wide range of applications as a component of C and memory ICs, as well as amplifiers and oscillators of 10 GHz or higher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のへテロ接合バイポーラトランジスタの
実施例のバンドギャップ図、 第2図は本発明のへテロ接合パイボーラド/ヲ゛/ジメ
タの実施例の断面図、 第3図は本発明のへテロ接合ノくイボーラトランジスタ
の実施例の要部断面図、 第4図は従来のへテロ接合ノくイボーラトランジスタの
断面図。 (主な符号) 1− N −AlGaAs (エミッタ領域)、2・・
4’−GaAs(ペース領域)、 a −n −GaA
s (コレクタ領域)、4 ・= N −klxlGa
l−XIAS (エミッタ領域)、5− P−GaAs
 s 6− P−A7!x2Gat−x2Aa % 7
−ペース領域、8・・・n−GaAs(コレクタ領域)
、9・・・半絶縁性GaAs基板。 特許出願人 日本電信電話公社 代理人弁理士 玉 蟲 久 五 部(外2名)第 1 
図 第2図 、 rr
FIG. 1 is a bandgap diagram of an embodiment of a heterojunction bipolar transistor of the present invention, FIG. 2 is a sectional view of an embodiment of a heterojunction bipolar transistor of the present invention, and FIG. 3 is a cross-sectional view of an embodiment of a heterojunction bipolar transistor of the present invention. FIG. 4 is a cross-sectional view of a conventional heterojunction Ibora transistor. (Main symbols) 1-N-AlGaAs (emitter region), 2...
4'-GaAs (pace region), a-n-GaA
s (collector region), 4 ・= N −klxlGa
l-XIAS (emitter region), 5-P-GaAs
s6-P-A7! x2Gat-x2Aa% 7
- Pace region, 8...n-GaAs (collector region)
, 9... Semi-insulating GaAs substrate. Patent Applicant Nippon Telegraph and Telephone Public Corporation Patent Attorney Hisashi Tamamushi Department 5 (2 others) 1st
Figure 2, rr

Claims (2)

【特許請求の範囲】[Claims] (1) 低不純物濃度の第1の半導体からなる第1の半
導体層と高不純゛物濃度で第1の半導体より大きい禁制
帯幅を有する第2の半導体からなる第2の半導体層をそ
れぞれ少なくとも1層以上有する半導体層全ベース領域
とし、エミッタ領域丘第2の半導体よりもさらに大きな
禁制帯幅を有し、第20半導体の伝導型と反対の伝導型
である第3の半導体からなる第3の半導体層とすること
e*徴とするヘテロ接合バイポーラトランジスタ。
(1) At least a first semiconductor layer made of a first semiconductor with a low impurity concentration and a second semiconductor layer made of a second semiconductor with a high impurity concentration and a bandgap larger than that of the first semiconductor. A third semiconductor layer comprising one or more semiconductor layers, the entire base region of which is an emitter region, a third semiconductor having a larger forbidden band width than the second semiconductor, and having a conductivity type opposite to that of the twentieth semiconductor. A heterojunction bipolar transistor having an e* characteristic as a semiconductor layer.
(2) 前記第1の半導体を不純物ドープしないP型G
aAs 、第2の半導体f 0.5〜5 X 1011
0l9” のP型不純物をドープしたAAx2Ga+−
x2As (0,3≧X2≧0.1)、第3の半導体を
n型のAJxIGaz−xIAs(Xl>0.3) と
し、第1.第2の半導体層の厚さを10A以上300八
以下とすることを特徴とする特許請求の範囲第1項記載
のへテロ接合バイポーラトランジスタ。
(2) P-type G in which the first semiconductor is not doped with impurities
aAs, second semiconductor f 0.5~5 x 1011
AAx2Ga+- doped with P-type impurity of 0l9”
x2As (0,3≧X2≧0.1), the third semiconductor is n-type AJxIGaz-xIAs (Xl>0.3), and the first. 2. The heterojunction bipolar transistor according to claim 1, wherein the thickness of the second semiconductor layer is 10A or more and 300A or less.
JP59098091A 1984-05-16 1984-05-16 heterojunction bipolar transistor Granted JPS60242671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098091A JPS60242671A (en) 1984-05-16 1984-05-16 heterojunction bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098091A JPS60242671A (en) 1984-05-16 1984-05-16 heterojunction bipolar transistor

Publications (2)

Publication Number Publication Date
JPS60242671A true JPS60242671A (en) 1985-12-02
JPH0543178B2 JPH0543178B2 (en) 1993-06-30

Family

ID=14210668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098091A Granted JPS60242671A (en) 1984-05-16 1984-05-16 heterojunction bipolar transistor

Country Status (1)

Country Link
JP (1) JPS60242671A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0273363A2 (en) * 1986-12-22 1988-07-06 Nec Corporation Heterojunction bipolar transistor with ballistic operation
JPS63260064A (en) * 1986-08-01 1988-10-27 テキサス インスツルメンツ インコ−ポレイテツド 3D bipolar wafer and process
US4797722A (en) * 1986-05-23 1989-01-10 U.S. Philips Corporation Hot charge-carrier transistors
US4979009A (en) * 1987-06-08 1990-12-18 Hitachi, Ltd. Heterojunction bipolar transistor
WO2004040652A1 (en) * 2002-10-30 2004-05-13 International Business Machines Corporation Bipolar transistor having a base region with a constant bandgap layer and a graded bandgap layer
WO2012102196A1 (en) * 2011-01-24 2012-08-02 Nttエレクトロニクス株式会社 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114455A (en) * 1981-12-28 1983-07-07 Nec Corp semiconductor equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114455A (en) * 1981-12-28 1983-07-07 Nec Corp semiconductor equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797722A (en) * 1986-05-23 1989-01-10 U.S. Philips Corporation Hot charge-carrier transistors
JPS63260064A (en) * 1986-08-01 1988-10-27 テキサス インスツルメンツ インコ−ポレイテツド 3D bipolar wafer and process
EP0273363A2 (en) * 1986-12-22 1988-07-06 Nec Corporation Heterojunction bipolar transistor with ballistic operation
US4929997A (en) * 1986-12-22 1990-05-29 Nec Corporation Heterojunction bipolar transistor with ballistic operation
US4979009A (en) * 1987-06-08 1990-12-18 Hitachi, Ltd. Heterojunction bipolar transistor
WO2004040652A1 (en) * 2002-10-30 2004-05-13 International Business Machines Corporation Bipolar transistor having a base region with a constant bandgap layer and a graded bandgap layer
US7170112B2 (en) 2002-10-30 2007-01-30 International Business Machines Corporation Graded-base-bandgap bipolar transistor having a constant—bandgap in the base
WO2012102196A1 (en) * 2011-01-24 2012-08-02 Nttエレクトロニクス株式会社 Semiconductor device
JP2012156206A (en) * 2011-01-24 2012-08-16 Ntt Electornics Corp Semiconductor device
CN103403848A (en) * 2011-01-24 2013-11-20 Ntt电子股份有限公司 Semiconductor device
US8754445B2 (en) 2011-01-24 2014-06-17 Ntt Electronics Corporation Semiconductor device
CN103403848B (en) * 2011-01-24 2016-02-24 Ntt电子股份有限公司 Semiconductor device

Also Published As

Publication number Publication date
JPH0543178B2 (en) 1993-06-30

Similar Documents

Publication Publication Date Title
JPH0669222A (en) Heterojunction bipolar transistor and manufacturing method thereof
JPS63140570A (en) Semiconductor device
JPS60242671A (en) heterojunction bipolar transistor
US5270225A (en) Method of making a resonant tunneling semiconductor device
US4825269A (en) Double heterojunction inversion base transistor
JPS59103389A (en) Superconducting element and its manufacturing method
JPH06188271A (en) Field effect transistor
US5349202A (en) Tunneling transistor
JP3119207B2 (en) Resonant tunnel transistor and method of manufacturing the same
JP2830167B2 (en) Semiconductor crystal
Wang et al. Minimization of the offset voltage in heterojunction dipolar transistors by using a thick spacer
JPH0656851B2 (en) Semiconductor device
US6204513B1 (en) Heterostructure interband tunneling diode
JPH07263664A (en) Semiconductor device and manufacturing method thereof
JP3149685B2 (en) Resonant tunneling diode with reduced valley current
JPH0388369A (en) Heterostructure semiconductor device
JPS6317563A (en) semiconductor equipment
KR100337942B1 (en) Double heterojunction bipolar transistor
JP2518160B2 (en) Resonant tunnel diode
US5698862A (en) Structure of the heterostructure-emitter and heterostructure-base transistor (HEHBT)
JPH01149465A (en) Heterojunction bipolar transistor
Tsai Functional AlGaAs/GaAs heterostructure-emitter bipolar transistor with a pseudomorphic InGaAs/GaAs quantum-well base
TW441123B (en) A resonant-tunneling heterostructure bipolar transistor
JPH10107274A (en) Tunnel transistor and fabrication thereof
Akazaki et al. InAs-inserted-channel InAlAs/InGaAs inverted HEMTs with superconducting electrodes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term