JPS60242561A - Manufacture of negative pressure type magnetic head slider - Google Patents
Manufacture of negative pressure type magnetic head sliderInfo
- Publication number
- JPS60242561A JPS60242561A JP9832584A JP9832584A JPS60242561A JP S60242561 A JPS60242561 A JP S60242561A JP 9832584 A JP9832584 A JP 9832584A JP 9832584 A JP9832584 A JP 9832584A JP S60242561 A JPS60242561 A JP S60242561A
- Authority
- JP
- Japan
- Prior art keywords
- negative pressure
- slider
- pressure generating
- mask
- mask material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 239000010408 film Substances 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 31
- 239000010409 thin film Substances 0.000 claims abstract description 15
- 238000005530 etching Methods 0.000 claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 29
- 238000009713 electroplating Methods 0.000 claims description 8
- 230000001681 protective effect Effects 0.000 claims description 4
- 230000007547 defect Effects 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 238000007733 ion plating Methods 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000000992 sputter etching Methods 0.000 description 11
- 239000011651 chromium Substances 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000005498 polishing Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000005422 blasting Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- WHOPEPSOPUIRQQ-UHFFFAOYSA-N oxoaluminum Chemical compound O1[Al]O[Al]1 WHOPEPSOPUIRQQ-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3163—Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3103—Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
Abstract
Description
【発明の詳細な説明】
fat 発明の技術分野
本発明は磁気ディスク装置に用いる浮上式負圧型磁気へ
ラドスライダの製造方法に係り、特に磁気ヘントスライ
ダの負圧発生凹部をエツチング形成する際に、そのスラ
イダ面周辺のエツジ部分のエツチング欠損を防止して精
度の良い負圧発生凹部を有する磁気ヘントスライダを得
ることを可能にした製造方法に関するものである。Detailed Description of the Invention: fat Technical Field of the Invention The present invention relates to a method for manufacturing a floating negative pressure type magnetic heald slider used in a magnetic disk drive, and in particular to a method for manufacturing a negative pressure generating recess of a magnetic hent slider by etching. The present invention relates to a manufacturing method that makes it possible to prevent etching defects in edge portions around the slider surface and to obtain a magnetic hent slider having highly accurate negative pressure generating recesses.
山〕 技術の背景
磁気ディスク装置用の磁気ヘッドスライダは周知のよう
に、正圧のみを利用したテーパ・フラットタイプの正圧
型磁気ヘッドスライダがその主流となっている。しかし
この正圧型磁気ヘッドスライダの空気膜剛性は、該スラ
イダに負荷する押圧力に略比例するため、一定荷重ヘッ
ドではその剛性を高めることにもある程度の限度がある
。特にCS S (Contact 5tart 5t
op)方式を採用した装置においては、耐摩耗性の点か
ら荷重を大きく出来ない為、空気膜剛性を高くした浮上
量追従特性の良い磁気ヘントスライダの実現を困難にし
ている。Background of the Technology As is well known, the mainstream of magnetic head sliders for magnetic disk devices is a tapered/flat type positive pressure magnetic head slider that uses only positive pressure. However, since the air film rigidity of this positive pressure type magnetic head slider is approximately proportional to the pressing force applied to the slider, there is a certain limit to increasing the rigidity in a constant load head. Especially CS S (Contact 5tart 5t
In devices adopting the op) method, the load cannot be increased in terms of wear resistance, making it difficult to realize a magnetic hent slider with high air film rigidity and good flying height tracking characteristics.
このような観点から近来、磁気へソドスライダの浮動に
正圧のみによらず、該スライダのスライド面内に逆段差
面を設けて負圧を発生させ、その負圧吸引力を浮動磁気
ヘントスライダに対する負荷荷重として作用させて浮上
量追従特性の改善を−図った、所謂負圧型磁気ヘントス
ライダの開発が盛んに進められている。From this point of view, in recent years, instead of relying only on positive pressure to float a magnetic slider, negative pressure has been generated by providing a reverse stepped surface within the sliding surface of the slider, and the suction force of the negative pressure has been applied to the floating magnetic slider. The development of so-called negative pressure magnetic hent sliders, which are designed to improve the flying height tracking characteristics by acting as a load, are actively underway.
(C1従来技術と問題点
ところで上記した負圧型磁気ヘントスライダを得る従来
の方法としては、まずスライダ基材となるホトセラム、
或いはアルミナ・チタンカーバイト(八Q203・Ti
c )等からなる非磁性ブロック体上に、薄膜形成技法
及びフォトリソグラフィ技法を用いてSjO’2、又は
Al2O2等の高硬度で非磁性な保護膜が厚く被覆され
た多数個の薄膜磁気ヘッド素子を形成した後、上記ヘッ
ド素子構成ブロック体を切断加工手段により所定の薄膜
磁気ヘッド素子数単位に平板状に切断し、該切断面を平
面研磨仕上げを行う。(C1 Prior Art and Problems By the way, the conventional method for obtaining the negative pressure type magnetic hent slider described above is to first use photoceram as the slider base material,
Or alumina/titanium carbide (8Q203/Ti
c) A large number of thin-film magnetic head elements in which a non-magnetic block body consisting of the above is coated with a thick protective film of high hardness and non-magnetic material such as SjO'2 or Al2O2 using a thin-film formation technique and a photolithography technique. After forming the head element component block, the head element constituting block is cut into flat plates by a cutting means in units of a predetermined number of thin film magnetic head elements, and the cut surfaces are polished to a flat surface finish.
次に平面fffff上仕上行った複数ヘッド素子構成体
21のスライダ面となるべき面に、イオンエツチング用
のマスク材となるクロム(Cr)、或いはチタン(Tj
)等からなるマスク材膜をスパッタリング法等により被
着し、該マスク材膜をパターニングして負圧発生凹部形
成用マスクを形成する。次に該マスクを介してイオンミ
ーリングにより前記スライド面となるべき面を所定深さ
にエツチングして負圧発生凹部を形成する。Next, chromium (Cr) or titanium (Tj
) or the like is deposited by sputtering or the like, and the mask material film is patterned to form a mask for forming negative pressure generating recesses. Next, the surface to be the slide surface is etched to a predetermined depth by ion milling through the mask to form a negative pressure generating recess.
次に前記負圧発生凹部形成用マスクを例えば研磨除去し
、更にスライダ面となるべき面を平坦に研磨した後、そ
の複数ヘッド素子構成体を各単位へノド素子構成体に切
断分離して、所望とする負圧型磁気ヘントスライダを完
成するようにしている。Next, the mask for forming the negative pressure generating recesses is removed by, for example, polishing, and the surface that is to become the slider surface is polished flat, and then the multiple head element structure is cut and separated into each unit into gutter element structures. The desired negative pressure type magnetic hent slider is completed.
しかしながら、上記した製造方法においては、第1図に
示すように複数個の薄膜磁気へ・ノド素子2が形成され
た複数ヘッド素子構成体1のスライダ面となるべき面3
に、イオンミーリング用のマスク材となるクロム(Cr
)、或いはチタン(Ti)からなるマスク材膜4を被着
形成するのに真空蒸着法、又はスパッタリング法等を用
いているため、前記スライダ面となるべき面3に被着形
成されたマスク材膜4の端縁部分の膜厚が他の部分より
も薄く形成され、その結果、該マスク材膜4の膜厚が不
均一となる。However, in the above-mentioned manufacturing method, as shown in FIG.
In addition, chromium (Cr) is used as a mask material for ion milling.
), or because a vacuum evaporation method, a sputtering method, etc. is used to deposit the mask material film 4 made of titanium (Ti), the mask material deposited on the surface 3 that is to become the slider surface. The edge portion of the film 4 is formed thinner than the other portions, and as a result, the thickness of the mask material film 4 becomes non-uniform.
従ってその後、該マスク材膜4をバターニングして負圧
発生凹部形成用マスク5を形成し、前記スライダ面とな
るべき面3に該負圧発生凹部形成用マスク5を介してイ
オンミーリング法によりエツチングして負圧発生凹部6
を形成した際に、第2図に示すように前記複数ヘッド素
子構成体1のスライダサイトレール面の一部となる薄膜
磁気ヘッド素子2の先端ギヤツブ部を含むエツジ部Aが
、不必要にエツチングされる欠点があった。Therefore, after that, the mask material film 4 is patterned to form a negative pressure generating recess forming mask 5, and the surface 3 which is to become the slider surface is subjected to ion milling through the negative pressure generating recess forming mask 5. Etched negative pressure generating recess 6
As shown in FIG. 2, the edge portion A including the tip gear portion of the thin film magnetic head element 2, which becomes a part of the slider site rail surface of the multiple head element assembly 1, is unnecessarily etched. There were some drawbacks.
この現象はイオンミーリング法によるエツチングが、本
来目的とする被エツチング面は勿論のことイオンミーリ
ング用のマスク材膜4も僅かにエツチングされ、更にエ
ツジ部分でのエツチング速度が増加する特性に起因する
ものである。This phenomenon is due to the fact that when etching is performed using the ion milling method, not only the intended surface to be etched but also the mask material film 4 for ion milling is slightly etched, and the etching rate increases at the edge portions. It is.
(dl 発明の目的
本発明は上記従来の実情に鑑み、複数ヘッド素子構成体
のスライダ面となるべき面に、イオンミーリング用のマ
スク材膜を形成する際に、該スライダ面となるべき面の
端縁部分の膜厚を、他の部分よりも選択的に厚く形成し
得る特性を有する形成手段を用いてイオンミーリング用
のマスク材膜を形成し、負圧発生凹部形成時にエツジ部
のエツチング欠損を防止して負圧発生凹部を有するスラ
イダ面を精度よく形成し、もって製造歩留りの向上を図
った負圧型磁気ヘッドスライダの製造方法を提供するこ
とを目的とするものである。(dl Purpose of the Invention The present invention has been made in view of the above-mentioned conventional situation, when forming a mask material film for ion milling on the surface that is to become the slider surface of a multiple head element structure. A mask material film for ion milling is formed using a forming method that allows the film to be selectively thicker at the edge than at other parts, thereby eliminating etching defects at the edge when forming the negative pressure generating recess. It is an object of the present invention to provide a method for manufacturing a negative pressure type magnetic head slider in which a slider surface having a negative pressure generating recess is formed with high precision while preventing the above problems, thereby improving the manufacturing yield.
(81発明の構成
そしてこの目的は本発明によれば、保護膜で被覆された
薄膜磁気へ・ノドを形成した非磁性のスライダ形成基板
のスライド面となるべき面に、負圧発生凹部形成用のマ
スク材膜を被着形成し、該マスク材層を所定パターンに
バターニングした後、該マスクパターンをマスクにして
工・ノチンク゛手段により負圧発生凹部を形成する負圧
型磁気へ・ンlコスライダの製造方法において、上記ス
ライダ形成基板のスライド面となるべき面に被着する負
圧発生凹部形成用マスク材膜をイオンブレーティング法
、又は電気メツキ法、或いはイオンブレーティング法と
電気メッキ法を併用した方法により形成することを特徴
とする負圧型磁気ヘントスライダの製造方法を提供する
ことによって達成される。(According to the present invention, the structure and purpose of the present invention is to form a negative pressure generating recess on the surface of the non-magnetic slider forming substrate on which a thin film coated with a protective film is formed. A negative pressure type magnetic slider in which a mask material film is deposited, the mask material layer is patterned into a predetermined pattern, and then a negative pressure generating recess is formed by machining/notching means using the mask pattern as a mask. In the manufacturing method, the mask material film for forming the negative pressure generating recesses, which is applied to the surface of the slider forming substrate that is to become the sliding surface, is formed by ion blating, electroplating, or ion blating and electroplating. This is achieved by providing a method for manufacturing a negative pressure magnetic hent slider, which is characterized in that it is formed by a combined method.
(fl 発明の実施例
以下図面を用いて本発明の実施例について詳細に説明す
る。(fl Embodiments of the Invention Below, embodiments of the present invention will be described in detail with reference to the drawings.
第3図乃至第6図は本発明に係る負圧型磁気ヘッドスラ
イダの製造方法の一実施例を工程順に示す斜視図である
。3 to 6 are perspective views showing one embodiment of a method for manufacturing a negative pressure magnetic head slider according to the present invention in the order of steps.
先ず第3図に示すように、例えばスライダ基材となるホ
トセラム、或いはアルミナ・チタンカーバイト(八Q2
03・TiC)等からなる非磁性ブロック体21上に、
薄膜形成技法及びフォトリソグラフィ技法を用いてSi
O2、又はAP203等の高硬度で非磁性な保護膜が厚
く被覆された多数個の薄膜磁気ヘッド素子22を形成し
た後、上記ヘッド素子構成ブロック体21を切断加工手
段により平板状の所定の薄膜磁気ヘッド素子数単位に切
断し、該切断面を平面研磨仕上げを行う。First, as shown in Fig. 3, for example, photoceram, which becomes the slider base material, or alumina titanium carbide (8Q2
On the non-magnetic block body 21 made of
Si using thin film formation techniques and photolithography techniques
After forming a large number of thin film magnetic head elements 22 thickly coated with a highly hard and non-magnetic protective film such as O2 or AP203, the head element constituent block body 21 is cut into a predetermined flat thin film by cutting means. It is cut into units of the number of magnetic head elements, and the cut surfaces are polished and finished.
次に第4図に示すように平面研磨仕上げを行った複数ヘ
ッド素子構成体23のスライダ面となるべき面24に、
負圧発生凹部形成用(イオンミーリング用)のマスク材
となるクロム(Cr)、或いはチタン(Ti >等から
なるマスク材膜25をイオンブレーティング法、又は電
気メツキ法(蒸着法、又はスパッタリング法と併用)に
より所定の膜厚に被着する。このイオンブレーティング
法及び電気メツキ法は、真空中、又はガス雰囲気中での
成膜と、電解溶液中での成膜と操作内容は異なるものの
、何れも電界中での成膜であるため、基板との密着性、
均一性が良く、付き回りが良好であり、加えて、基板エ
ツジ部Aに電界が集中して該エツジ部へに第7図に示す
ようにマスク材It!J25が部分的に盛り上がるよう
に厚く被着形成される。Next, as shown in FIG. 4, on the surface 24 that is to become the slider surface of the multiple head element assembly 23, which has been subjected to surface polishing,
A mask material film 25 made of chromium (Cr) or titanium (Ti), which is a mask material for forming negative pressure generating recesses (for ion milling), is formed using an ion blasting method, an electroplating method (vapor deposition method, or a sputtering method). The ion blating method and electroplating method are different in terms of operation from forming a film in a vacuum or gas atmosphere, and forming a film in an electrolytic solution. , since both films are formed in an electric field, the adhesion to the substrate,
The mask material It! has good uniformity and good coverage, and in addition, the electric field is concentrated on the edge A of the substrate, and the mask material It! J25 is formed thickly so that it partially bulges.
その後該マスク材膜25をパターニングして負圧発生凹
部形成用マスク26を形成し、次に該マスク26を介し
てイオンミーリングにより前記スライド面となるべき面
24を所定深さにエツチングすれば、たとえ前記エツジ
部分Aに対するエツチング速度が増加することがあって
も従来の如きエツチング欠損が生じることはなくなる。After that, the mask material film 25 is patterned to form a mask 26 for forming a negative pressure generating recess, and then the surface 24 to be the slide surface is etched to a predetermined depth by ion milling through the mask 26. Even if the etching rate for the edge portion A increases, etching defects as in the prior art will not occur.
しかる後マスク26を例えば研磨除去して第5図に示す
ように負圧発生凹部27を形成する。Thereafter, the mask 26 is removed by polishing, for example, to form a negative pressure generating recess 27 as shown in FIG.
次にスライダ面となるべき面24を平坦に研磨し、更に
該負圧発生四部27が形成された複数ヘッド素子構成体
23を各単位ヘッド素子構成体に切断分離することによ
り、第6図に示すようにスライダサイトレール面の一部
となる薄膜磁気へンド素子22の先端ギヤ・7プ部を含
むエツジ部にエツチング欠損がなく、かつ加工精度の良
い負圧発生凹部27を有する所望の負圧型磁気ヘントス
ライダ28を得ることができる。Next, the surface 24 that is to become the slider surface is polished flat, and the multiple head element structure 23 on which the four negative pressure generating parts 27 are formed is cut and separated into each unit head element structure, as shown in FIG. As shown in the figure, there is no etching defect in the edge portion including the tip gear 7 of the thin film magnetic hand element 22 which becomes a part of the slider site rail surface, and a desired negative pressure generating recess 27 with good machining accuracy is obtained. A pressure-type magnetic hent slider 28 can be obtained.
尚、上記した実施例においては、複数ヘッド素子構成体
23のスライダ面となるべき面24に、負圧発生凹部形
成用(イオンミーリング用)のマスク材となるクロム(
Cr)、或いはチタン(Ti)等からなるマスク材膜2
5をイオンブレーティング法、又は電気メ・7キ法によ
り所定の膜厚に被着する例について説明したが、前記複
数ヘッド素子構成体23のスライダ面となるべき面24
が非電導性である場合には、電気メツキ法によりマスク
材膜25を直接被着することは出来ないので、従来蒸着
法、又はスパッタリング法を併用しているが、イオンブ
レーティング法と併用して実施すれば、極めて効果的で
ある。In the above-mentioned embodiment, chromium (for ion milling) is applied to the surface 24 of the multiple head element structure 23 which is to become the slider surface.
Mask material film 2 made of Cr), titanium (Ti), etc.
5 is deposited to a predetermined thickness by the ion blating method or the electroplating method.
If the mask material film 25 is non-conductive, it is not possible to directly apply the mask material film 25 by electroplating, so conventionally vapor deposition or sputtering is used in combination, but it is also possible to use it in combination with ion blating. If implemented properly, it will be extremely effective.
(a 発明の効果
以上の説明から明らかなように、本発明に係る負圧型磁
気ヘントスライダの製造方法によれば、イオンミーリン
グによって負圧発生凹部を形成する際に、スライダ面と
なるべき面のサイトレール面の一部となる薄膜磁気ヘッ
ド素子の、先端ギャップ部近傍のエツジ部分のエツチン
グ欠損が確実に排除でき、精度の良い薄膜磁気ヘッドの
先端ギャップ長及び負圧発生凹部を有する所望の負圧型
磁気ヘントスライダを容易に得ることができる利点を有
し、この種の負圧型磁気ヘントスライダの製造に適用し
て優れた効果を奏する。(a) Effects of the Invention As is clear from the above explanation, according to the method for manufacturing a negative pressure type magnetic hent slider according to the present invention, when forming a negative pressure generating recess by ion milling, the surface that is to become the slider surface is Etching defects on the edge near the tip gap of the thin film magnetic head element, which becomes part of the site rail surface, can be reliably eliminated, and the tip gap length of the thin film magnetic head with high precision and the desired negative pressure generating recess can be achieved. It has the advantage that a pressure-type magnetic hent slider can be easily obtained, and when applied to the production of this type of negative-pressure type magnetic hent slider, excellent effects can be achieved.
第1図乃至第2図は従来の負圧型磁気ヘントスライダの
製造方法を説明するための要部斜視図、第3図乃至第6
図は本発明に係る負圧型磁気ヘントスライダの製造方法
の一実施例を工程順に示す斜視図、第7図は本発明の方
法による負圧発生四部形成用マスク材膜の被着形成状態
を説明するだめの要部断面図である。
図面において、21は非磁性ブロック体、22は多数個
の薄膜磁気ヘッド素子、24はスライダ面となるべき面
、25は負圧発生凹部形成用マスク材膜、26は負圧発
生凹部形成用マスク、27は負圧発生凹部、28は負圧
型磁気へラドスライダを示す。
第1図
第2図
第3図
第4図
第6!XI
第7図1 to 2 are perspective views of main parts for explaining a conventional negative pressure type magnetic hent slider manufacturing method, and FIGS. 3 to 6
The figure is a perspective view showing an example of the method for manufacturing a negative pressure type magnetic hent slider according to the present invention in the order of steps, and FIG. FIG. In the drawing, 21 is a non-magnetic block, 22 is a large number of thin film magnetic head elements, 24 is a surface to be a slider surface, 25 is a mask material film for forming negative pressure generating recesses, and 26 is a mask for forming negative pressure generating recesses. , 27 is a negative pressure generating recess, and 28 is a negative pressure type magnetic rad slider. Figure 1 Figure 2 Figure 3 Figure 4 Figure 6! XI Figure 7
Claims (1)
スライダ形成基板のスライド面となるべき面に、負圧発
生凹部形成用のマスク材膜を被着形成し、該マスク材層
を所定パターンにバターニングした後、該マスクパター
ンをマスクにしてエツチング手段により負圧発生凹部を
形成する負圧型磁気ヘントスライダの製造方法において
、上記スライダ形成基板のスライド面となるべき面に被
着する負圧発生凹部形成用マスク材膜を、イオンブレー
ティング法、又は電気メツキ法、或いはイオンブレーテ
ィング法と電気メンキ法を併用した方法により形成する
ことを特徴とする負圧型磁気ヘントスライダの製造方法
。A mask material film for forming negative pressure generating recesses is deposited on the surface of the non-magnetic slider forming substrate on which a thin film magnetic head covered with a protective film is formed, and the mask material layer is formed in a predetermined pattern. In the method for manufacturing a negative pressure type magnetic hent slider, in which a negative pressure generating recess is formed by etching using the mask pattern as a mask, the negative pressure applied to the surface of the slider forming substrate that is to become the sliding surface. A method for manufacturing a negative pressure magnetic hent slider, characterized in that a mask material film for forming the generated recesses is formed by an ion blating method, an electroplating method, or a method using a combination of an ion blating method and an electroplating method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9832584A JPS60242561A (en) | 1984-05-15 | 1984-05-15 | Manufacture of negative pressure type magnetic head slider |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9832584A JPS60242561A (en) | 1984-05-15 | 1984-05-15 | Manufacture of negative pressure type magnetic head slider |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60242561A true JPS60242561A (en) | 1985-12-02 |
Family
ID=14216748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9832584A Pending JPS60242561A (en) | 1984-05-15 | 1984-05-15 | Manufacture of negative pressure type magnetic head slider |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60242561A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0640957A1 (en) * | 1993-08-31 | 1995-03-01 | Sony Corporation | Method of manufacturing floating magnetic head device |
US5567864A (en) * | 1993-02-04 | 1996-10-22 | Sunward Technologies, Inc. | Method and apparatus for calibration of a transducer flying height measurement instrument |
-
1984
- 1984-05-15 JP JP9832584A patent/JPS60242561A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5567864A (en) * | 1993-02-04 | 1996-10-22 | Sunward Technologies, Inc. | Method and apparatus for calibration of a transducer flying height measurement instrument |
EP0640957A1 (en) * | 1993-08-31 | 1995-03-01 | Sony Corporation | Method of manufacturing floating magnetic head device |
US5548886A (en) * | 1993-08-31 | 1996-08-27 | Sony Corporation | Method of manufacturing floating magnetic head device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4624048A (en) | Method of making magnetic head sliders | |
US5779923A (en) | Simplified method of making merged MR head | |
EP0013363B1 (en) | Method of making read/write transducer heads and heads so made | |
US4402801A (en) | Method for manufacturing thin film magnetic head | |
JPH022313B2 (en) | ||
JPS60242561A (en) | Manufacture of negative pressure type magnetic head slider | |
US6385011B1 (en) | Air bearing slider and manufacturing method therefor | |
US20070031705A1 (en) | Magnetic recording medium and process for producing the same | |
JPH08102014A (en) | Method for forming magnetic core of thin film magnetic head | |
JPS61151818A (en) | thin film magnetic head | |
JPS61120329A (en) | Manufacture of head slider | |
JPH0554326A (en) | Pattern forming method and production of plane thin-film magnetic head using the same | |
US5279026A (en) | Process for producing a thin-film magnetic tape head | |
JPS5817521A (en) | Thin film magnetic head | |
JPH0550044B2 (en) | ||
JPS5931770B2 (en) | Manufacturing method of magnetic head core | |
JPS60229217A (en) | Manufacture for thin film magnetic head | |
JPH05151736A (en) | Thin-film magnetic head slider | |
JPH08180323A (en) | Thin film magnetic head and its manufacture | |
US20050089725A1 (en) | Substrate for magnetic recording medium, magnetic recording medium, and method of manufacturing the same | |
JPS629572A (en) | Manufacture of negative pressure type floating head slider | |
JPH0612620A (en) | Method of manufacturing magnetic head | |
JPS62214507A (en) | Thin film magnetic head | |
JPH09147321A (en) | Thin-film magnetic head and its production | |
JPS6214386A (en) | Production of negative pressure type floating head slider |