[go: up one dir, main page]

JPS60239909A - magnetic head - Google Patents

magnetic head

Info

Publication number
JPS60239909A
JPS60239909A JP9519184A JP9519184A JPS60239909A JP S60239909 A JPS60239909 A JP S60239909A JP 9519184 A JP9519184 A JP 9519184A JP 9519184 A JP9519184 A JP 9519184A JP S60239909 A JPS60239909 A JP S60239909A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
head
magnetic head
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9519184A
Other languages
Japanese (ja)
Inventor
Yoshio Koshikawa
越川 誉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9519184A priority Critical patent/JPS60239909A/en
Publication of JPS60239909A publication Critical patent/JPS60239909A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3113Details for improving the magnetic domain structure or avoiding the formation or displacement of undesirable magnetic domains

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To prescribe an axis of easy magnetization in the breadthwise direction of a magnetic pole to and improve the response speed of magnetization inversion by sticking a thin film magnetic head part to a floating slider and forming the sticking face into a curved surface and applying a strain to the magnetic pole of the thin film magnetic head part stuck to this face. CONSTITUTION:A floating slider 21 has two side rails 22, and a head sticking face 23 of the slider 21 is formed into a transversely curved surface. A thin film magnetic head part 24 which has a thin film magnetic head 26 formed and has the surface coated with a protective film is stuck to the head sticking face 23 formed into the curved surfce. In this structure, a tensile stress A is aplied in the breadthwise direction of a magnetic pole 27 of the stuck thin film magnetic head 26, and a strain is applied there; and if the magnetic pole 27 consists of, for example, magnetic materials such as an Ni-Fe alloy or the like, the axis of easy magnetization is prescribed easily in the breadthwise direction of the magnetic pole 27 because the direction of the applied strain and the direction of the axis of easy magnetization coincide with each other, and the response speed of magnetization inversion is improved.

Description

【発明の詳細な説明】 +a+ 発明の技術分野 本発明は磁気ヘッドに係り、特に浮動スライダ、又はヘ
ッド基台の所定面に固着した薄膜磁気ヘッド部の磁極幅
方向に、磁化容易軸を容易に規定することを可能にした
磁気ヘッドの構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION +a+ Technical Field of the Invention The present invention relates to a magnetic head, and in particular to a method for easily aligning the axis of easy magnetization in the magnetic pole width direction of a floating slider or a thin film magnetic head portion fixed to a predetermined surface of a head base. The present invention relates to a configuration of a magnetic head that makes it possible to specify the specifications.

(bl 技術の背景 近年、電子計算機などの代表的なファイル装置として用
いられている磁気ディスク記憶装置の磁気ヘッドは、磁
気記録の高密度化に伴って微小化が進められている。こ
のため近来、小型化、高密度記録化が可能であり、しか
も一括住産による特性の均一化と低価格化を図ることが
できる薄膜により構成される薄膜磁気ヘッドが開発され
、実用化されつつある。
(bl) Background of the Technology In recent years, the magnetic heads of magnetic disk storage devices used as typical file devices in computers and other devices have been miniaturized in line with the increasing density of magnetic recording. Thin-film magnetic heads have been developed and are being put into practical use, and are capable of miniaturization and high-density recording, as well as uniform characteristics and low cost.

しかし、高密度記録化に伴う薄膜磁気ヘッドの磁極幅の
減少によって該磁極の幅方向への磁化容易軸の規定が困
難になることがら、かがる問題点の解決が要望されてい
る。
However, as the magnetic pole width of thin-film magnetic heads decreases due to higher density recording, it becomes difficult to define the axis of easy magnetization in the width direction of the magnetic pole, and there is a need for a solution to this problem.

Tel 従来技術と問題点 第1図は従来の磁気ヘッドを説明するための斜視図であ
り、同図において1は2つのサイトレール2を有する浮
動スライダ、3は保護層で表面が被覆された引出し端子
付き薄膜磁気ヘッド部である。
Tel Prior Art and Problems Figure 1 is a perspective view for explaining a conventional magnetic head. In the figure, 1 is a floating slider having two sight rails 2, and 3 is a drawer whose surface is covered with a protective layer. This is a thin film magnetic head with terminals.

かかる構造の磁気ヘッドは、一般にスライダとなるべき
基板上に直接、多数個の引出し端子付き薄膜磁気ヘッド
部3を一括形成し、保護層を被覆して、その後に個々の
磁気へソドスライダに切り出す一体形成法、或いは浮動
スライダ1と薄膜磁気ヘッド部3とを個別にそれぞれ形
成し、その後、浮動スライダ1の所定面に薄膜磁気ヘッ
ド部3の基板5を接合剤等により固着して一体化する方
法等によって得られている。
Generally, a magnetic head with such a structure is produced by forming a large number of thin film magnetic head parts 3 with lead-out terminals directly on a substrate to be a slider, covering them with a protective layer, and then cutting them into individual magnetic sliders. A method of forming the floating slider 1 and the thin-film magnetic head section 3 separately, and then fixing the substrate 5 of the thin-film magnetic head section 3 on a predetermined surface of the floating slider 1 with a bonding agent or the like to integrate them. etc. are obtained.

この薄膜磁気ヘッド部3は磁極4がパーマロイ(Ni−
Fe)などの金属磁性材料で形成されているため、飽和
磁束密度が高く、このため断面積の小さい薄膜構造であ
って磁気記録に寄与するヘッド磁界が急峻で高分解能の
記録ができる優れた特性を持っている。
This thin film magnetic head section 3 has a magnetic pole 4 made of permalloy (Ni-
Because it is made of metallic magnetic materials such as Fe), it has a high saturation magnetic flux density, and because of this, it has a thin film structure with a small cross-sectional area, and the head magnetic field that contributes to magnetic recording is steep, making it an excellent property that allows high-resolution recording. have.

ところで上記薄膜磁気ヘッド部3の磁極4への磁気異方
性の付与方法としては、従来より磁場中での磁極形成、
或いは磁場中での熱処理等の方法により行っていたが、
近来、N膜磁気ヘッドの高記録密度化に伴う磁極幅の減
少によって上記した何れの付与方法によっても磁極幅の
垂直方向に磁区の形状異方性が大きくなり、磁極の幅方
向への磁化容易軸の規定が困難になると共に、高密度記
録に対する磁化反転の応答速度特性が劣下するといった
欠点があった。
By the way, conventional methods for imparting magnetic anisotropy to the magnetic pole 4 of the thin film magnetic head section 3 include forming the magnetic pole in a magnetic field,
Alternatively, this was done by methods such as heat treatment in a magnetic field, but
In recent years, as the magnetic pole width has decreased due to the increase in recording density of N-film magnetic heads, the shape anisotropy of the magnetic domain in the direction perpendicular to the magnetic pole width has increased regardless of the above-mentioned application methods, making it easier to magnetize the magnetic pole in the width direction. This method has disadvantages in that it becomes difficult to define the axis and the response speed characteristics of magnetization reversal for high-density recording deteriorate.

(dl 発明の目的 本発明は上記従来の欠点を解消するため、磁性体におい
て磁気異方性と歪が密接な関係を持つことに着目して、
薄膜磁気ヘッド部を浮動スライダ、又はスライダ基台の
所定面に、その磁極に常に歪が印加された状態で固着し
た構成とし、磁極の幅方向に磁化容易軸を容易に規定す
るようにして、磁化反転の高速応答を可能にした新規な
磁気ヘッドを提供することを目的とするものである。
(dl Purpose of the Invention In order to eliminate the above-mentioned conventional drawbacks, the present invention focuses on the fact that magnetic anisotropy and strain have a close relationship in magnetic materials.
The thin-film magnetic head portion is fixed to a predetermined surface of a floating slider or a slider base with strain always applied to its magnetic pole, and an axis of easy magnetization is easily defined in the width direction of the magnetic pole, The object of the present invention is to provide a novel magnetic head that enables high-speed response of magnetization reversal.

(el 発明の構成 そしてこの目的は本発明によれば、浮動スライダ、又は
ヘッド基台の所定面に個別に形成された薄膜磁気ヘッド
部を固着して成る磁気ヘッドであって、上記所定面を曲
面状とし、そこに固着した該薄H’J6f4気ヘッド部
の磁極に歪を印加した状態にすることにより、該磁極の
幅方向に磁化容易軸を規定したことを特徴とする磁気ヘ
ッドを提供することによって達成される。
According to the present invention, the structure and object of the invention is to provide a magnetic head comprising a floating slider or a thin film magnetic head section individually formed on a predetermined surface of a head base, the predetermined surface being fixed to a floating slider or a head base. Provided is a magnetic head characterized in that an axis of easy magnetization is defined in the width direction of the magnetic pole by applying strain to the magnetic pole of the thin H'J6F4 magnetic head part which has a curved surface and is fixed thereto. This is achieved by

(fl 発明の実施例 以下図面を用いて本発明の実施例について詳細に説明す
る。
(fl Embodiments of the Invention Below, embodiments of the present invention will be described in detail with reference to the drawings.

第2図は本発明に係る磁気ヘッドの一実施例を示す概略
斜視図である。
FIG. 2 is a schematic perspective view showing an embodiment of the magnetic head according to the present invention.

図において21は2つの号イドレール22を有する浮動
スライダであり、該スライダ21のヘッド固着面23が
本実施例では横方向に曲面状となっている。
In the figure, reference numeral 21 denotes a floating slider having two idle rails 22, and the head fixing surface 23 of the slider 21 is laterally curved in this embodiment.

かかる該ス)イダ21の曲面状ヘッド固着面23には、
図示のように薄い基板25上に引出し端子付き薄膜磁気
ヘッド26が形成され保護膜で表面が被覆された薄膜磁
気ヘッド部24が固着された構造がとられている。
The curved head fixing surface 23 of the slider 21 has a
As shown in the figure, a thin film magnetic head 26 with lead-out terminals is formed on a thin substrate 25, and a thin film magnetic head portion 24 whose surface is covered with a protective film is fixed.

上記のような構造にすると、第3図の部分拡大図に示す
ように固着された薄膜磁気ヘッド26の磁極27の幅方
向に引張り応力Aが付加されて歪が印加された状態とな
り、該磁極27が、例えばNiを81wet%以上含み
磁歪常数が正のNi−Fe合金からなる磁性材料によっ
て形成されている場合、上記印加子の方向と磁化容易軸
の方向が一致することから、該磁極27の幅方向に矢印
Bで示すように磁化容易軸を容易に規定することが可能
となる。
With the above structure, tensile stress A is applied in the width direction of the magnetic pole 27 of the fixed thin film magnetic head 26 as shown in the partially enlarged view of FIG. If the magnetic pole 27 is made of a magnetic material made of a Ni-Fe alloy that contains 81% or more of Ni and has a positive magnetostriction constant, for example, the direction of the impressor and the direction of the axis of easy magnetization coincide, so that the magnetic pole 27 It becomes possible to easily define the axis of easy magnetization as shown by arrow B in the width direction of the magnet.

尚、上記磁極27が負の磁歪常数を有する磁性材料によ
り形成されている場合には、前記浮動スライダ21のヘ
ッド固着面23を縦方向に曲面化し、かかる曲面状ヘッ
ド固着面に前記負の磁歪常数を有する磁極が構成された
薄膜磁気ヘッド部を固着した構造にすれば、上記実施例
と同様に固着された薄膜磁気ヘッドの磁極幅に対して垂
直方向に引張り応力が付加されて歪が印加された状態と
なり、該磁極の幅方向に磁化容易軸を容易に規定するこ
とが可能となる。
When the magnetic pole 27 is formed of a magnetic material having a negative magnetostriction constant, the head fixing surface 23 of the floating slider 21 is curved in the vertical direction, and the negative magnetostriction is applied to the curved head fixing surface. If the thin-film magnetic head part, which has magnetic poles having a constant number, is fixed, tensile stress is applied in the direction perpendicular to the magnetic pole width of the fixed thin-film magnetic head as in the above embodiment, and strain is applied. This makes it possible to easily define the axis of easy magnetization in the width direction of the magnetic pole.

又、上記した実施例においては、正圧型浮動スライダを
用いた場合の例について説明したが、本発明はこの例に
限定されるものではなく、例えば負圧を利用したスライ
ダ等にも通用可能なことは云うまでもない。
Further, in the above-mentioned embodiments, an example in which a positive pressure type floating slider was used was described, but the present invention is not limited to this example, and can also be applied to a slider using negative pressure, etc. Needless to say.

更に第4図に示すように薄い基板上に多数の薄膜磁気ヘ
ッドが並列配置されたマルチ薄膜磁気ヘッド部32を摺
動型ヘッド基台31のヘッド固着面33に固着した構造
のマルチトラック磁気ヘッドにも適用できることは勿論
であり、同様の効果が得られる。
Furthermore, as shown in FIG. 4, a multi-track magnetic head has a structure in which a multi-thin-film magnetic head section 32 in which a large number of thin-film magnetic heads are arranged in parallel on a thin substrate is fixed to a head fixing surface 33 of a sliding head base 31. Of course, it can also be applied to other systems, and similar effects can be obtained.

(gl 発明の効果 以上の説明から明らかなように、本発明に係る磁気ヘソ
Fの構造によれば、高記録密度化に伴って磁極の幅を減
少させた構成を採用しても、磁極の幅方向に磁化容易軸
を容易に規定することが可能となり、磁化反転の高速応
答化が実現できる等優れた効果を有する。従って薄膜形
成技術により形成される各種高記録密度用磁気ヘッドに
適用して極めて有利である。
(gl Effects of the Invention As is clear from the above explanation, according to the structure of the magnetic belly button F according to the present invention, even if a configuration in which the width of the magnetic pole is reduced due to the increase in recording density is adopted, the width of the magnetic pole is It has excellent effects such as making it possible to easily define the axis of easy magnetization in the width direction and achieving high-speed response of magnetization reversal.Therefore, it can be applied to various high-density magnetic heads formed by thin film formation technology. This is extremely advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気ヘッドを説明するための概略斜視図
、第2図は本発明に係る磁気ヘッドの一実施例を示す概
略斜視図、第3図は本発明に係る磁気ヘッドの部分拡大
平面図、第4図は本発明の他の実施例を示す概略斜視図
である。 図面において、21は浮動スライダ、22はサイトレー
ル、23は曲面状ヘッド固着面、24は薄膜磁気ヘッド
部、25は薄い基板、26は薄膜磁気ヘッド、27は磁
極、31は摺動型ヘッド基台、32はマルチ薄膜磁気ヘ
ッド部、33はヘッド固着面を示す。 は、同じ硬度のものを1μm薄JiQ形成する。つぎに
、再び形成した薄j換の厚みプラス、イム性薄膜のダレ
の厚み分だけ、再度研摩加工を行う。 この2工程を追加することにより、(■磁性薄膜のダレ
による広がりを少なくすることができる。 ■基板と磁性薄j貼との段差を少なくすることができる
。)(磁気9、磁性の向上を狙ったことを特徴とする。 (実施例) 以下本発明について、実施例に基づき詳細に説明する。 第1図は、垂直磁気記録用の単磁極ヘッド先昂1研摩加
工上りの新田1図であり、第2図はヘッド先端研摩加工
上りの製品の研摩1川へ薄膜をか111rn形成した時
点での断聞図である。第3図は薄j夙形成した後、再び
ヘッド先端研摩加工を行った製品の断面図である。 第11ンIQこおいて1は磁性薄膜付基板である。3は
磁性薄IF12は値性博j関3を保護するための基板で
ある。4は蝉性ft&膜付基板1と基板2を接着する時
点で生じる接着層である。5はヘッド先端研摩…1と磁
性薄膜6の先端との段差であり、6は磁性薄膜のダレに
よる広がりbtである。 第2図において、7はヘッド先端研摩tfIIsへ薄膜
を1μ情形成した厚みである。9は、カ、i)換を11
1 m形成した後、再び研摩する時の研摩代である。こ
の時の研摩代とは、薄膜を形成した厚みとヘッド先!I
M研摩面8から4Fm性A(τ膜6のダレによる広がり
がなくなった時点までの長さを加えた距m1tをいう。 第3図においては、ヘッド先Yfm研摩加工後に薄膜を
111rn形成し、再び研〃加工した後の断]困図であ
る。第1図において、磁性薄膜の広がり6があったが、
薄膜を111m形成して再び研摩をすることにより、そ
れが第3図のようになくなっていることがわかった。ま
たヘッド先端研M[川8と磁性薄膜6の先端との段差5
についても同様に段差5がなくなっていることがゎがっ
た。 〔効果〕 以上述べたように不発明によれば、ヘッド先端研摩向に
薄膜を1μm形成して、その厚みとヘッド先端研摩間か
ら磁性薄膜のダレがなくなるまでの長さを加えた距離だ
け、再び研摩を実施することにより、磁性薄膜のダレに
よる広がりと、基板との段差がなくなる。このことによ
りメディアとのへラドタッチが向上し、また磁性薄膜の
ダレによる広がりによる磁気特性の劣化が防げた。また
1リングタイプの薄膜ヘッドや、MRヘッドにも同様の
効果が期待できる。以上Gこより本発明は、効果大であ
る。 4、図1川のF111単な説明 第i図、第2図、第3図ともに、球囲タイプの#膜磁気
ヘッドを例にして描いた。第1図、第2図、第3図とも
Gこ薄膜修気ヘッドの側聞からみた断面図である。 1・・・・・・薄膜磁性付基板 2・・・・・・基 板 5・・・・・・(磁性薄膜 4・・・・・・接着層 5・・・・・・ヘッド先端研摩間と磁性薄膜との段差6
・・・・・・磁性薄膜のダレによる広が、り幅7・・・
・・・薄膜形成厚み 8・・・・・・ヘッド先端研摩向 9・・・・・・再び研摩する時の研摩代以 上 出願人 株式会社諏訪精工舎 代理人 弁理士 最上 務
FIG. 1 is a schematic perspective view for explaining a conventional magnetic head, FIG. 2 is a schematic perspective view showing an embodiment of the magnetic head according to the present invention, and FIG. 3 is a partially enlarged view of the magnetic head according to the present invention. The plan view and FIG. 4 are schematic perspective views showing another embodiment of the present invention. In the drawing, 21 is a floating slider, 22 is a sight rail, 23 is a curved head fixing surface, 24 is a thin film magnetic head section, 25 is a thin substrate, 26 is a thin film magnetic head, 27 is a magnetic pole, and 31 is a sliding head base. 32 is a multi-thin film magnetic head section, and 33 is a head fixing surface. A 1 μm thin JiQ material with the same hardness is formed. Next, polishing is performed again by the thickness of the newly formed thin film plus the thickness of the sag of the immuthic thin film. By adding these two steps, (■ It is possible to reduce the spread of the magnetic thin film due to sagging. ■ It is possible to reduce the level difference between the substrate and the magnetic thin J-adhesive.) (Magnetic 9, improved magnetic properties) (Example) The present invention will be described in detail below based on an example. Fig. 1 is a diagram of a single-pole head for perpendicular magnetic recording after polishing. Figure 2 is a cross-sectional view of the product after polishing the head tip and forming a thin film on the polished surface. Figure 3 shows the head tip being polished again after forming a thin film. This is a cross-sectional view of the product in which the 11th IQ is carried out. In the 11th IQ, 1 is a substrate with a magnetic thin film. 3 is a magnetic thin IF 12 is a substrate for protecting the value sensor 3. 4 is a cicada. This is an adhesive layer formed when bonding the substrate 1 with the film and the substrate 2. 5 is the level difference between the head tip polished... 1 and the tip of the magnetic thin film 6, and 6 is the spread bt due to sagging of the magnetic thin film. In Fig. 2, 7 is the thickness of a 1 μm thin film formed on the head tip polished tfIIs.
This is the polishing allowance when polishing again after forming 1 m. The polishing allowance at this time is the thickness of the thin film formed and the tip of the head! I
The distance m1t from the M-polished surface 8 to the point where the 4Fm property A (τ film 6 no longer spreads due to sag) is added. In FIG. The cross section after being polished again is difficult to see. In Figure 1, there was a spread 6 of the magnetic thin film;
By forming a thin film of 111 m and polishing it again, it was found that the thin film had disappeared as shown in Figure 3. In addition, the head tip grinding M [step 5 between the river 8 and the tip of the magnetic thin film 6]
Similarly, I was pleased to see that the step 5 had disappeared. [Effect] As described above, according to the invention, a thin film of 1 μm is formed in the direction of polishing the head tip, and the distance equal to the sum of its thickness and the length from where the head tip is polished until the magnetic thin film no longer sag, By performing polishing again, the spread due to sag of the magnetic thin film and the level difference with the substrate are eliminated. This improved the contact with the media and also prevented deterioration of magnetic properties due to spread due to sagging of the magnetic thin film. Similar effects can also be expected for one-ring type thin film heads and MR heads. From the above, the present invention is highly effective. 4. Fig. 1 Simple explanation of F111 Fig. i, Fig. 2, and Fig. 3 are all drawn using a spherical type #film magnetic head as an example. FIGS. 1, 2, and 3 are cross-sectional views of the thin film repair head viewed from the side. 1...Substrate with thin film magnetism 2...Substrate 5...(Magnetic thin film 4...Adhesive layer 5...Between head tip polishing Step 6 between and magnetic thin film
・・・・・・Expansion due to sagging of the magnetic thin film, width 7...
... Thin film formation thickness 8 ... Head tip polishing direction 9 ... More than the polishing cost when polishing again Applicant Suwa Seikosha Co., Ltd. Agent Patent attorney Tsutomu Mogami

Claims (1)

【特許請求の範囲】[Claims] 浮動スライダ、又はヘッド基台の所定面に個別に形成さ
れたm膜磁気ヘッド部を固着して成る磁気ヘッドであっ
て、上記所定面を曲面状とし、そこに固着した薄膜磁気
ヘッド部の磁極に歪を印加した状態にすることにより、
該磁極の幅方向に磁化容易軸を規定したことを特徴とす
る磁気ヘッド。
A magnetic head consisting of a floating slider or a head base having individually formed m-film magnetic head sections fixed to a predetermined surface, the predetermined surface having a curved shape, and a magnetic pole of a thin-film magnetic head section fixed thereto. By applying strain to
A magnetic head characterized in that an axis of easy magnetization is defined in the width direction of the magnetic pole.
JP9519184A 1984-05-11 1984-05-11 magnetic head Pending JPS60239909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9519184A JPS60239909A (en) 1984-05-11 1984-05-11 magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9519184A JPS60239909A (en) 1984-05-11 1984-05-11 magnetic head

Publications (1)

Publication Number Publication Date
JPS60239909A true JPS60239909A (en) 1985-11-28

Family

ID=14130859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9519184A Pending JPS60239909A (en) 1984-05-11 1984-05-11 magnetic head

Country Status (1)

Country Link
JP (1) JPS60239909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587314B1 (en) 2000-05-16 2003-07-01 International Business Machines Corporation Enhanced silicon and ceramic magnetoresistive read/write head and a method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587314B1 (en) 2000-05-16 2003-07-01 International Business Machines Corporation Enhanced silicon and ceramic magnetoresistive read/write head and a method for producing the same

Similar Documents

Publication Publication Date Title
US5920449A (en) Recording head for single layer magnetic film perpendicular magnetization medium
JPS5877018A (en) Thin film induction transducer
JPS63255809A (en) Reading magnetic head for narrow track and manufacture thereof
JPS6332709A (en) Magnetic conversion head
JPS60239909A (en) magnetic head
JPH022207B2 (en)
US5508863A (en) Flying-type magnetic head comprising a slider/gimbal connection which suppresses slider height differences
KR20030076179A (en) Magnetic head for recording and magnetic memory apparatus
US4894736A (en) Bendable E-shaped transducer
Lazzari Integrated magnetic recording heads applications
EP0508471B1 (en) Flying-type magnetic heads
JPS6057520A (en) magnetic head
JPS5835713A (en) Magnetic head for vertical magnetization recording
JPH0319119A (en) Floating magnetic head
Dugas et al. A new composite-core hybrid thin film ring head
JPS59231717A (en) Vertical recording head
JPH0115927B2 (en)
JPS5979402A (en) magnetic recording device
JPH08273111A (en) Magnetic head core and method of manufacturing the same
Kim Magnetic tape recording
JP2002074619A (en) Magnetic head
JPH02240818A (en) Production of floating type magnetic head
JPH0346109A (en) thin film magnetic head
JPS60119610A (en) Single magnetic pole type magnetic head for vertical recording
JPS6245605B2 (en)