[go: up one dir, main page]

JPS60239811A - Device for correcting travelling distance of unmanned carrier car at the time of abrasion of tire - Google Patents

Device for correcting travelling distance of unmanned carrier car at the time of abrasion of tire

Info

Publication number
JPS60239811A
JPS60239811A JP59097203A JP9720384A JPS60239811A JP S60239811 A JPS60239811 A JP S60239811A JP 59097203 A JP59097203 A JP 59097203A JP 9720384 A JP9720384 A JP 9720384A JP S60239811 A JPS60239811 A JP S60239811A
Authority
JP
Japan
Prior art keywords
correction
correction section
destination
distance
guided vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59097203A
Other languages
Japanese (ja)
Inventor
Yoshiharu Mizuno
水野 吉晴
Yoshitaka Kato
義隆 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK, Toyoda Automatic Loom Works Ltd filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP59097203A priority Critical patent/JPS60239811A/en
Publication of JPS60239811A publication Critical patent/JPS60239811A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0261Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic plots

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To omit the changing work of a set value of a travelling distance and to prevent the generation of an accident due to the unexecution of the work by calculating a correcting distance signal and comparing said signal with a distance signal up to a destination to execute processing required up to the destination. CONSTITUTION:When an unmanned carrier car is started, the number n3 of pulses obtained during travelling before correction is detected by a pulse detecting sensor 9. If marks M1, M2 are detected by a mark detecting sensor 15, a CPU11 calculates the number n4 of sectional pulses obtained when the carrier car travels a correcting section D formed by both the marks M1, M2 and stores the calculated value in a RAM12. Then, the CPU 11 reads out the mumbers n2, n1 of sectional pulses obtained in a section D and between stations S1 and S2 by an unabrased tire 3 from the RAM12, calculates the number n5=n3Xn2X n4 of pulses obtained during the travelling after correction and compares n5 with n1. When both the values concide with each other, the CPU11 stops a driving motor 6 and executes the processing at the destination, and in case of inconsistency, travels the carrier car until coincidence.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明は無人搬送車におけるタイヤ摩耗時の走行距離補
正装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a travel distance correction device for an automatic guided vehicle when tires are worn out.

(従来の技術) 一般に、無人搬送車は走行路面と該路面に敷設した誘導
線よりなる運行コースに沿って無人誘導走行されるよう
になっておム無人搬送車をあるステーションから目的と
するステーションへ移動させる場合、あらかじめ設定さ
れた目的地までの距離に比例したパルス数と、実際に走
行した距離に比例するパルス数とを比較して、設定パル
スと検出パルスとが一致した時無人搬送車の走行を停止
する方法がとられている。
(Prior Art) In general, an automated guided vehicle is guided to travel along an operating course consisting of a running road surface and a guide line laid on the road surface. When moving the automated guided vehicle to a destination, the number of pulses proportional to the distance to the preset destination is compared with the number of pulses proportional to the actual distance traveled, and when the set pulse and the detected pulse match, the automatic guided vehicle A method has been adopted to stop the running of the vehicle.

(発明が解決しようとする問題点) ところが、前記無人搬送車の走行誘導方法には、駆動輪
のタイヤが摩耗してくると、検出パルス数が設定パルス
数と一致しても、実際の走行距離に違いが生じるため、
目的のステーションに無人搬送車を正確に停止すること
ができないという問題がある。このため、タイヤが摩耗
し、ある限界を越えるたびに、設定パルス数を変更しな
ければならないが、この操作は非常に面倒であるばかシ
でなく、タイヤの摩耗に比例して連続的に補正すること
は不可能である。
(Problem to be Solved by the Invention) However, in the above-mentioned automatic guided vehicle travel guidance method, when the tires of the drive wheels wear out, even if the detected pulse number matches the set pulse number, the actual traveling Due to the difference in distance,
There is a problem in that the automatic guided vehicle cannot be accurately stopped at the target station. For this reason, each time the tire wears and exceeds a certain limit, the set pulse number must be changed, but this operation is very troublesome, and instead of being a fool, it is continuously corrected in proportion to tire wear. It is impossible to do so.

本発明は、タイヤの摩耗に比例して連続的に補正できな
かった点を解決すべき問題点としている。
The present invention addresses the problem of not being able to continuously correct tire wear in proportion to tire wear.

発明の構成 (問題点を解決するための手段) 本発明は前記問題点を解決するため、無人搬送車側に設
けられ、かつ走行距離を検出するようにした走行距離検
出手段と、路面側の運行コース上に配設された補正区間
形成手段と、無人搬送車側に設けられ、かつ前記補正区
間形成手段を検出するための補正区間検出手段と、同じ
く無人搬送車側に設けられ、かつ前記走行距離検出手段
から出力される補正前の距離信号(n3)、前記補正区
間検出手段から出力される補正区間信号、未摩耗のタイ
ヤで前記補正区間を走行したときの区間距離信号(n 
2 )、及び低摩耗のタイヤで補正区間を走行したとき
の距離信号(n4)を演算比較しn5=n8Xn2/n
4 上式で表わされる補正後の距離信号(05)′ft出力
し、該補正距離信号(n5)と、目的地までの距離信号
(nl)とを比較して目的地での処理を行わせるように
した制御装置とによシ構成しているO (作用) 本発明はタイヤの摩耗に比例して実際の検出パルス数を
自動的に補正し1無人搬送車を目的地へ正確に移動停止
させることができ、従来必要とされた設定パルス数の変
更を不要にして操作を簡単にでき、さらに変更忘れによ
る事故を防止することができる。
Structure of the Invention (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention includes a traveling distance detecting means provided on the automatic guided vehicle side and configured to detect the traveling distance, and a traveling distance detecting means on the road surface side. a correction section forming means disposed on the operation course; a correction section detecting means provided on the automatic guided vehicle side and for detecting the correction section forming means; A distance signal before correction (n3) output from the mileage detection means, a correction section signal output from the correction section detection means, and a section distance signal (n3) when traveling in the correction section with unworn tires.
2), and the distance signal (n4) when traveling in the correction section with tires with low wear are calculated and compared, n5=n8Xn2/n
4 Output the corrected distance signal (05)'ft expressed by the above formula, compare the corrected distance signal (n5) with the distance signal (nl) to the destination, and perform processing at the destination. (Operation) The present invention automatically corrects the actual number of detected pulses in proportion to tire wear, and accurately moves and stops the automated guided vehicle to its destination. This makes it possible to simplify the operation by eliminating the need to change the number of set pulses, which was conventionally required, and prevent accidents caused by forgetting to change the number of pulses.

(実施例) 以下、本発明を具体化した一実施例を図面に従って説明
する・ 第1図に示すように、走行路面孔の中央部には誘導線り
が無端環状に敷設され、該誘導線LK沿って無人搬送車
1が無人誘導走行されるようになっている・走行路面孔
の側方には第1及び第2のステーションs1.s2が配
置されている。又、前記誘導線り上には一定の間隔りを
おいて第1及び第2のマークM1.M2が配設されてい
る。
(Embodiment) An embodiment embodying the present invention will be described below with reference to the drawings. As shown in FIG. The automatic guided vehicle 1 is guided to run along the LK. There are first and second stations s1. s2 is placed. Further, first and second marks M1. M2 is installed.

第2図に示すように、無人搬送車1の車体フレーム2に
は駆動輪3及び操舵輪4が設けられ、前記駆動輪3はミ
ッション5及びドライブモータ6によフ駆動されるよう
になっている。ドライブモータ6の回転軸7には歯車状
をなすスリット板8が嵌着され、該スリッ)′i&8の
歯部8aと対応するようにパルス検出センサー9が設け
られている。
As shown in FIG. 2, a body frame 2 of the automatic guided vehicle 1 is provided with a driving wheel 3 and a steering wheel 4, and the driving wheel 3 is driven by a transmission 5 and a drive motor 6. There is. A gear-shaped slit plate 8 is fitted onto the rotating shaft 7 of the drive motor 6, and a pulse detection sensor 9 is provided so as to correspond to the teeth 8a of the slit ('i&8).

そして、該スリット板8の歯部8aをドライブモータ6
の回転数すなわち無人搬送車1の実際の走行距離に比例
したパルス数として検出するようにしている。又、無人
搬送車1にはインターフェイス1g、CPU(中央処理
装置)11及び二つのメモリ12すなわちROM(読み
出し専用メモリ)、RAM(読み出し書き込みメモリ)
等によシ構成されるマイクロコンピュータ13が搭載さ
れている。前記パルス検出センサー9からの信号はり−
ド線14を介してマイクロコンピュータ13へ入力され
るようにしている。さらに、車体フレーム2の下面には
前記第1及び第2のマークMl、M2を検出するための
マーク検出センサー15が設けられ、該センサーからの
信号がリード線16を介シテマイクロコンピュータ13
へ入力されるようにしている。
Then, the teeth 8a of the slit plate 8 are moved by the drive motor 6.
The number of pulses is detected as being proportional to the rotational speed of the automatic guided vehicle 1, that is, the actual traveling distance of the automatic guided vehicle 1. The automatic guided vehicle 1 also includes an interface 1g, a CPU (central processing unit) 11, and two memories 12, namely ROM (read-only memory) and RAM (read-write memory).
A microcomputer 13 configured by the following is installed. Signal beam from the pulse detection sensor 9
The data is input to the microcomputer 13 via a cable 14. Further, a mark detection sensor 15 for detecting the first and second marks Ml and M2 is provided on the lower surface of the vehicle body frame 2, and a signal from the sensor is transmitted via a lead wire 16 to a microcomputer 13.
I am trying to input it to .

前記マイクロコンピュータ13のROMKH1駆動側の
タイヤ3aが摩耗していない状態で無人搬送車1ft第
1ステーシヨンS1から第2ステーシヨン82(目的地
)まで走行させるのに要する理論上の設定パルス数n1
が記憶されている。同様にして第2ステーシヨンS2か
ら第1ステーシヨン81(次の目的地)まで無人搬送車
1を走行させるのに必要な理論上の設定パルス数n 1
1が記憶されている。又、摩耗していない駆動側のタイ
ヤ3aで補正区間りを走行した時の区間パルス数02が
前記ROMに記憶されている。
Theoretically set number of pulses n1 required for the automatic guided vehicle 1 ft to travel from the first station S1 to the second station 82 (destination) when the tires 3a on the driving side of the ROMKH1 of the microcomputer 13 are not worn out.
is memorized. Similarly, the theoretical set number of pulses n 1 necessary to drive the automatic guided vehicle 1 from the second station S2 to the first station 81 (next destination)
1 is stored. Further, the number of section pulses 02 when traveling in the correction section with the unworn drive side tire 3a is stored in the ROM.

次に、前記のように構成した無人搬送車1のタイヤ摩耗
時の走行距離補正装置について第3図を中心にその作用
を説明する。
Next, the operation of the traveling distance correcting device for the automatic guided vehicle 1 constructed as described above when the tires are worn out will be explained with reference to FIG. 3.

さて、第1図は無人搬送車1が第1ステーシヨンS1と
対応して停止し、駆動側のタイヤ38が所定量摩耗した
状態を示す。この状態において、ドライブモータ6を始
動させ、無人搬送車1をスタートさせると、パルス検出
センサー9にょシ補正前の走行中のパルス数n3が検出
される。そして、マーク検出センサー15にょシマーク
Ml。
Now, FIG. 1 shows a state in which the automatic guided vehicle 1 has stopped corresponding to the first station S1, and the drive-side tires 38 have worn out by a predetermined amount. In this state, when the drive motor 6 is started and the automatic guided vehicle 1 is started, the pulse detection sensor 9 detects the number n3 of pulses during traveling before correction. And mark detection sensor 15 mark Ml.

M2が順次検出されると、これらの検出信号がマイクロ
コンピュータ−13に入力され、両マークMl、M2に
よシ形成されたパルス補正区間りを走行したときの区間
パルス数n4がCPUによって演算され、該パルス数n
4がRAMに記憶される。
When M2 is sequentially detected, these detection signals are input to the microcomputer 13, and the CPU calculates the number of pulses n4 when traveling in the pulse correction section formed by both marks Ml and M2. , the number of pulses n
4 is stored in RAM.

ところで、未摩耗のタイヤ3aで補正区間りを走行した
時の区間パルス数n2と、摩耗タイヤで補正区間D(i
−走行した時のバにス数n4が決まれば、補正後の走行
中のパルス数n5は、次式で表わされる。
By the way, the number of pulses n2 in the section when traveling in the correction section with unworn tires 3a and the correction section D(i
- Once the number n4 of pulses in the bus when traveling is determined, the number n5 of pulses during travel after correction is expressed by the following equation.

n 5 = n 3 X n 2 / n 4 ・・・
・・・・・・・−・−0・・ ■従って、上記計算式に
基づいて、補正後の走行中のパルスミn5iマイクロコ
ンピユータ13のCPUによって演算し、このパルス数
05と目的地すなわち第2ステーシヨンS2までの理論
上のパルス数n1とを比較して、両パルス数nl、n5
が一致した場合にはドライブモータ6を停止させて、目
的地での処理を行い、パルス数nl、n5が一致してい
ない場合には、無人車1をパルス数n5が01に一致す
るまで走行させる。
n 5 = n 3 X n 2 / n 4...
・・・・・・・・・−・−0・・ ■Therefore, based on the above calculation formula, the CPU of the pulse mini n5i microcomputer 13 during the running after correction calculates this pulse number 05 and the destination, that is, the second Comparing the theoretical number of pulses n1 up to station S2, both pulse numbers nl and n5
If they match, the drive motor 6 is stopped and processing is performed at the destination, and if the number of pulses nl and n5 do not match, the unmanned vehicle 1 is driven until the number of pulses n5 matches 01. let

目的地での処理が完了した後、無人車1は第2ステーシ
ヨンから次の目的地すなわち第1ステーシヨンに向かっ
て走行されるが、この場合には路面RにマークMl、M
2がないので、マーク検出は行われず、補正前の走行中
のパルス数n3が検出され、該パルス数n3、先に記憶
した補正区間りのパルス数04及びROMに記憶された
区間パルス数n2により補正パルスn5が演算され、該
n5と目的地までの理論上のパルス数n (+とが比較
され、両パルス数n1”、n5が一致した時次の8的4
I)+!小hn刺ユ?仁ムシ7 無人車1が第1ステーシヨン81から第2ステーシヨン
S2へ再び移動する際、マーク検出センサー15によシ
マークMl、M2が検出され、補正区間りのパルス数n
4が新たに演算され、これがRAMに記憶され、この新
しいパルス数04により補正パルス数n5が演算される
After the processing at the destination is completed, the unmanned vehicle 1 is driven from the second station toward the next destination, that is, the first station, but in this case, marks Ml, M are placed on the road surface R.
Since there is no mark 2, mark detection is not performed, and the number n3 of pulses during running before correction is detected, and the number n3 of pulses, the number 04 of pulses in the correction section previously stored, and the number n2 of pulses in the section stored in the ROM. A correction pulse n5 is calculated, and n5 is compared with the theoretical number of pulses n (+) to reach the destination. When both pulse numbers n1" and n5 match, the next 8 out of 4
I)+! Small hun sashiyu? 7 When the unmanned vehicle 1 moves from the first station 81 to the second station S2 again, the mark detection sensor 15 detects the marks Ml and M2, and the number of pulses n in the correction interval is
4 is newly calculated and stored in the RAM, and the corrected pulse number n5 is calculated using this new pulse number 04.

このように、本発明実施例においては駆動側Iのタイヤ
3aの摩耗量に比例して補正パルス数n5を前述した計
算式■によって算出し、このパルス数15と目的地まで
の路面上のパルス数n1とを比較し、両パルス数nl、
n5が一致した時目的地での処理を行わせるようにした
ので、タイヤが摩耗しても目的地での処理を確実に行わ
せることができ、目的地までの理論上のパルス数を変更
しなければならない従来のものと比較して、保守点検作
業の手間を省くことができる。
In this way, in the embodiment of the present invention, the number of corrected pulses n5 is calculated in proportion to the wear amount of the tires 3a on the drive side I using the above-mentioned calculation formula (2), and this number of pulses 15 and the pulses on the road to the destination Compare the number n1 with both pulse numbers nl,
Since the processing at the destination is performed when n5 matches, the processing at the destination can be performed reliably even if the tires wear out, and the theoretical number of pulses to the destination can be changed. Compared to conventional products, which require maintenance and inspection, the effort required for maintenance and inspection can be reduced.

なお、本発明は次のような実施例で具体化することもで
きる。
Note that the present invention can also be embodied in the following embodiments.

(1) 前記実施例では目的地までの走行距離を理論ト
のパVス断nIJ−1イROMFr1惰寸入↑らにした
が、これに代えて駆動側のタイヤ3aが摩耗していない
状態で無人車1を目的地まで走行させ実際にカウントし
たパルス数を01としてROMに記憶するようにするこ
と。
(1) In the embodiment described above, the distance traveled to the destination was set to the theoretical path path, V speed, nIJ-1, ROMFr1, inertia, etc., but instead of this, the drive side tire 3a was set to a state where the tires 3a on the drive side were not worn out. The unmanned vehicle 1 is driven to the destination and the actually counted pulse number is stored as 01 in the ROM.

(2)前記区間パルス数n2を理論上のパルス数にする
こと。
(2) The number of interval pulses n2 is set to a theoretical number of pulses.

発明の効果 以上詳述したように、本発明はタイヤの摩耗に比例して
走行距離信号を補正することができ、この結果無人車を
目的地で確実に動作させることができるとともに、従来
必要とした目的地までの走行距離の設定値変更作業を省
略し、変更作業を忘れることによって誘発される事故を
未然に防ぐ仁とができる。
Effects of the Invention As detailed above, the present invention is capable of correcting the mileage signal in proportion to tire wear, and as a result, it is possible to operate an unmanned vehicle reliably at the destination, and it also eliminates the need for conventional methods. It is possible to omit the work of changing the set value of the travel distance to the destination that has been set, and to prevent accidents caused by forgetting the change work.

【図面の簡単な説明】[Brief explanation of the drawing]

N1図は無人車の作業システムを示す路体平面図、第2
図は無人車の拡大側面図、第3図は走行距離補正動作を
説明するためのフローチャートである。 無人車・・・1、駆動輪・・・3、タイヤ・・・3a、
ドライブモータ・・・6、回転軸・・・7、スリット板
・・8、パルス検出センサー・・・9、マイクロコンピ
ュータ・・・13、マーク検出センサー・・15、ステ
ーション・・・sl、s2、マーク・・・Ml、M2、
パルス補正区間・・・D、目的地までの理論上のパルス
数・・・n11未摩耗のタイヤで補正区間を走行したと
きの区間パlレヌ数・・・n2、摩耗タイヤで走行中の
補正前のパルス数・・・n3、摩耗タイヤで補正区間を
走行したときのパルス数・・・n4、補正後の走行中の
パルス数・・・”5゜ 特許出願人 株式会社豊田自動織機製作所代 理 人 
弁理士 恩 1)博 宣 第1図 第2図
Figure N1 is a road surface plan showing the work system of unmanned vehicles.
The figure is an enlarged side view of the unmanned vehicle, and FIG. 3 is a flowchart for explaining the mileage correction operation. Unmanned vehicle...1, Drive wheel...3, Tire...3a,
Drive motor...6, Rotating shaft...7, Slit plate...8, Pulse detection sensor...9, Microcomputer...13, Mark detection sensor...15, Station...sl, s2, Mark...Ml, M2,
Pulse correction section...D, Theoretical number of pulses to the destination...n11 Number of pulses in the section when traveling in the correction section with unworn tires...n2, Correction while driving with worn tires Number of previous pulses...n3, number of pulses when traveling in the correction section with worn tires...n4, number of pulses during running after correction..."5゜Patent applicant: Toyota Industries Corporation. person
Patent Attorney On 1) Hiroshi Nobuo Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、無人搬送車側に設けられ、かつ走行距離を検出する
よう罠した走行距離検出手段と、路面側の運行コース上
に配設された補正区間形成手段と、 無人搬送車側に設けられ、かつ前記補正区間形成手段を
検出するための補正区間検出手段と、同じく無人搬送車
側に設けられ、かつ前記走行距離検出手段から出力され
る補正前の距離信号(n8)、前記補正区間検出手段か
ら出力される補正区間信号、未摩耗のタイヤで前記補正
区間を走行したときの区間距離信号(n 2 )、及び
既摩耗のタイヤで補正区間を走行したときの距離信号(
n4)を演算比較して n5=n8Xn2/n4 上式で表わされる補正後の距離信号(n5)を出力し、
該補正距離信号(n5)と、目的地までの距離信号(n
l)とを比較して目的地での処理を行わせるようにした
制御装置と によ多構成したことを特徴とする無人搬送車におけるタ
イヤ摩耗時の走行距離補正装置。 2 走行距離検出手段は、ドライブモータの回転軸に止
着したスリット板と、該スリット板に対向配置されたパ
ルス検出センサーとによ多構成されている特許請求の範
囲第1項記載の無人搬送車におけるタイヤ摩耗時の走行
距離補正装置。 3、前記補正区間形成手段は、路面に一定間隔をおいて
配置された一対のマークである特許請求の範囲第1項記
載の無人搬送車におけるタイヤ摩耗時の走行距離補正装
置。 4 前記補正区間検出手段は、前記一対のマークを検出
するようにしたマーク検出センサーである特許請求の範
囲第1項記載の無人搬送車におけるタイヤ摩耗時の走行
距離補正装置。
[Scope of Claims] 1. Travel distance detection means provided on the automatic guided vehicle side and configured to detect travel distance; correction section forming means provided on the driving course on the road surface side; a correction section detection means provided on the vehicle side and for detecting the correction section forming means; and a distance signal (n8) before correction that is also provided on the automatic guided vehicle side and output from the travel distance detection means. , a correction section signal output from the correction section detection means, a section distance signal (n 2 ) when traveling in the correction section with unworn tires, and a distance signal when traveling in the correction section with worn tires. (
n4) and outputs the corrected distance signal (n5) expressed by the above formula n5=n8Xn2/n4,
The corrected distance signal (n5) and the distance signal to the destination (n
1) A travel distance correction device for an automatic guided vehicle when tires are worn out, characterized in that it is further configured with a control device that performs processing at a destination by comparing the above. 2. The unmanned conveyance system according to claim 1, wherein the travel distance detection means is composed of a slit plate fixed to the rotation shaft of the drive motor and a pulse detection sensor arranged opposite to the slit plate. Mileage correction device for car tires when worn. 3. The travel distance correction device for tire wear in an automatic guided vehicle according to claim 1, wherein the correction section forming means is a pair of marks arranged at a constant interval on the road surface. 4. The travel distance correction device for tire wear in an automatic guided vehicle according to claim 1, wherein the correction section detection means is a mark detection sensor configured to detect the pair of marks.
JP59097203A 1984-05-14 1984-05-14 Device for correcting travelling distance of unmanned carrier car at the time of abrasion of tire Pending JPS60239811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59097203A JPS60239811A (en) 1984-05-14 1984-05-14 Device for correcting travelling distance of unmanned carrier car at the time of abrasion of tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59097203A JPS60239811A (en) 1984-05-14 1984-05-14 Device for correcting travelling distance of unmanned carrier car at the time of abrasion of tire

Publications (1)

Publication Number Publication Date
JPS60239811A true JPS60239811A (en) 1985-11-28

Family

ID=14186050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59097203A Pending JPS60239811A (en) 1984-05-14 1984-05-14 Device for correcting travelling distance of unmanned carrier car at the time of abrasion of tire

Country Status (1)

Country Link
JP (1) JPS60239811A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736315A (en) * 1980-08-11 1982-02-27 Shinko Electric Co Ltd Traveling control system for unmanned induction cart

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736315A (en) * 1980-08-11 1982-02-27 Shinko Electric Co Ltd Traveling control system for unmanned induction cart

Similar Documents

Publication Publication Date Title
US5978724A (en) Vehicle control system
JPH11326361A (en) Detecting apparatus for yaw rate, roll rate and transverse acceleration of car body
US5487009A (en) Method for determining the course of a land vehicle by comparing signals from wheel sensors with signals of a magnetic sensor
JPS60239811A (en) Device for correcting travelling distance of unmanned carrier car at the time of abrasion of tire
JPH10171535A (en) Automated guided vehicle
GB1578000A (en) Devices for guiding the track of trackless vehicles
JP2557970B2 (en) Curve identification and lateral acceleration detection method in automobile
JP3351259B2 (en) Method and apparatus for correcting wheel speed of vehicle
JP2682114B2 (en) Driving control device for unmanned vehicles
JPH05189037A (en) Device for correcting travel distance of unmanned vehicle
JP3006485B2 (en) Travel control method for tracked bogies
JP2767043B2 (en) Body position detection method
JP2900774B2 (en) Travel control method and travel control device for tracked bogie
JPH01282617A (en) Control device for travelling at prescribed interval for unmanned vehicle in plural unmanned vehicle system
KR100199988B1 (en) Steering method and steering system of unmanned car
JP2556737B2 (en) Vehicle position detection device
JPS5965316A (en) Guiding method of unmanned truck
JPH0638684B2 (en) Travel control device for transportation trains
JPS60176114A (en) Guidance controller of carrying track
JP2847673B2 (en) Body guidance method for automatic guided vehicles
JPH09121402A (en) Controller for unmanned vehicle
JPH04257006A (en) Course out detecting method for unmanned vehicle
JPH09269830A (en) Traveling and steering controller for vehicle
JPH04165406A (en) Vehicle body guidance system for unmanned carrier vehicle
JPH09244744A (en) Speed correcting method for unmanned truck