JPS60239708A - Optical comb line filter - Google Patents
Optical comb line filterInfo
- Publication number
- JPS60239708A JPS60239708A JP9556284A JP9556284A JPS60239708A JP S60239708 A JPS60239708 A JP S60239708A JP 9556284 A JP9556284 A JP 9556284A JP 9556284 A JP9556284 A JP 9556284A JP S60239708 A JPS60239708 A JP S60239708A
- Authority
- JP
- Japan
- Prior art keywords
- birefringent plate
- rays
- optical
- refracting plate
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Color Television Image Signal Generators (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、水晶等の複屈折板を用いた光学的櫛形フィル
タに関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical comb filter using a birefringent plate such as quartz crystal.
水晶等の複屈折物質は、その厚さ、光学軸方向等によっ
て異なるが、光学的櫛形フィルタとして使用できること
が一般に知られている。その原理は以下に述べる如くで
ある。第1図に示すように、複屈折板IK垂直に入射し
た光線2は、この複屈折板の複屈折作用によって、偏光
の方向に応じて常光線L0ど14v光線LeK分離され
て射出される。It is generally known that birefringent substances such as quartz can be used as optical comb filters, although they vary depending on their thickness, optical axis direction, etc. The principle is as described below. As shown in FIG. 1, the light ray 2 incident perpendicularly to the birefringent plate IK is separated into ordinary rays L0 and 14v rays LeK according to the direction of polarization due to the birefringence effect of the birefringent plate, and is emitted.
ここで、常光11L、と異常光1i1L、の成す角aは
、複屈折板1の常光に対する屈折率′f:n0、光学軸
に垂直に入射する異常光に対する屈折率をno、光学軸
と入射光のなす角t−βとすると、以下に示す式で表わ
される。Here, the angle a formed by the ordinary light 11L and the extraordinary light 1i1L is the refractive index 'f of the birefringent plate 1 for the ordinary light; n0 is the refractive index for the extraordinary light incident perpendicularly to the optical axis; When the angle formed by the light is t-β, it is expressed by the following equation.
(1)式で示されるta@αはtanβ−n〆−の時に
最大となるが、複屈折板lが水晶の場合は、nとnの差
は小さく、通常β−藝度が選ばれる。複屈折板1から射
出した常光線L0と異常光線Leは〜だけ離れた光線と
なシ、仁の蹟はβ−6度、複屈折板の厚さ40時、以下
の式で表わされる。ta@α expressed by equation (1) is maximum when tanβ−n〆−, but when the birefringent plate l is made of quartz crystal, the difference between n and n is small, and β-degree is usually selected. The ordinary ray L0 and the extraordinary ray Le emitted from the birefringent plate 1 are rays separated by .
」ピ」L
ΔW−d・ 、 、 ・・・・・・・・・(2)xx、
+n。"Pi" L ΔW-d・ , , ・・・・・・・・・(2)xx,
+n.
第2図は上記のような特性を有する複屈折板を結像光学
系に挿入した例を示した図である。複屈折板1は表面が
レンズ3の光軸4と直交するように配置されておシ、更
に光学軸が紙面と平行となるようにその方向が定められ
ている。複屈折板1を透過した光はkだけ離れた平行な
2本の光線り。FIG. 2 is a diagram showing an example in which a birefringent plate having the above characteristics is inserted into an imaging optical system. The birefringent plate 1 is arranged so that its surface is perpendicular to the optical axis 4 of the lens 3, and its direction is determined so that the optical axis is parallel to the plane of the paper. The light transmitted through the birefringent plate 1 is two parallel rays separated by k.
ムとなるため、本来、レンズ3によって1点に結像され
るはずであった光束がんだけ離れた2点に結像すること
になる。なお、符号5は常光線Lρ結像点、符号6は異
常光線Leの結像点である。As a result, the images were originally supposed to be focused on one point by the lens 3, but instead they are focused on two points separated by the amount of light flux. Note that the reference numeral 5 indicates the imaging point of the ordinary ray Lρ, and the reference numeral 6 indicates the imaging point of the extraordinary ray Le.
このように複屈折板1を通すと結像点が軸だけ離れるこ
とを、光の分離方向KX軸をとった関数で表わすと以下
の如く示される。ここで、デルタ関数δ(x)は複屈折
板1に対する入力を示し、これに対する複屈折板1の出
力’k h (X)とするOh (x)−δ(X)十δ
(x jw ) 、、、 、=、(3)一般に、デルタ
関数入力に対する出力をフーリエ変換したものの絶対値
をとることによって、周波数応答(MTF)が得られる
ことが知られている。The fact that the image forming point is separated by the axis when passing through the birefringent plate 1 in this way is expressed as a function of the KX axis in the light separation direction as shown below. Here, the delta function δ(x) indicates the input to the birefringent plate 1, and the output of the birefringent plate 1 relative to this is 'k h (X).Oh (x)−δ(X)+δ
(x jw ) , , , =, (3) Generally, it is known that a frequency response (MTF) can be obtained by taking the absolute value of a Fourier-transformed output of a delta function input.
上記の系において、X軸方向の空間周波数efx、。In the above system, the spatial frequency efx in the X-axis direction.
複屈折板のMTFをH(fX)とすれば、MTFは以下
の式で表わされる。If the MTF of the birefringent plate is H(fX), the MTF is expressed by the following formula.
H(fX)−IF(h(x))l−1cos(rjwr
fx)l −=・+=−(4)この(4)式を図示する
と第4図の(イ)で示した特性と′&シ、複屈折板lは
水平方向忙対して櫛形の空間周波数応答を示すことが分
る。H(fX)-IF(h(x))l-1cos(rjwr
fx)l -=・+=-(4) This equation (4) can be illustrated with the characteristics shown in (a) in Figure 4 and '&c,' and the birefringent plate l has a comb-shaped spatial frequency in the horizontal direction. It can be seen that it shows a response.
単一の撮像素子を用い、特定の波長域の光を空間的に変
調して色信号を得るカラー撮像装置において、入力像に
上記の変調周波数の成分が存在すると、この成分が色信
号に混入して色偽信号が発生する。従来では、この色偽
信号の発生を抑制する方法として、上記の変調周波数に
おける応答が0となるように厚さが選定された複屈折板
を光学系に挿入することによって、上記の色偽信号を軽
減する方法が広く用いられている。′fた、CCD等の
ようなディスクリートに空間情報をとらえる撮像素子に
おいては、サンプリングの空間周波数によるナイキスト
限界を越える信号のうち、撮像素子のMTFの限界内の
信号は全てモアレとして低周波域に折シ返すことが知ら
れている。このモアレを軽減するために、上記のような
複屈折板と偏光解消板とを何組か組合わせて光学的ロー
パスフィルタとして使用する方法が用いられている。In a color imaging device that uses a single imaging device and obtains color signals by spatially modulating light in a specific wavelength range, if a component of the above modulation frequency exists in the input image, this component will be mixed into the color signal. color false signals occur. Conventionally, as a method of suppressing the generation of color false signals, a birefringent plate whose thickness is selected so that the response at the above modulation frequency is 0 is inserted into the optical system. Methods to reduce this are widely used. In addition, in an image sensor such as a CCD that captures spatial information discretely, among signals that exceed the Nyquist limit due to the sampling spatial frequency, all signals within the MTF limit of the image sensor are converted into moiré in the low frequency range. It is known to turn around. In order to reduce this moiré, a method is used in which several sets of birefringent plates and depolarization plates as described above are combined and used as an optical low-pass filter.
上記の如く、複屈折板は光学的櫛形フィルタとして用い
ることができるが、第4図のイで示したような櫛形の特
性が得られるのは、レンズ30F値(焦点距離/有効口
径)が大きい、即ち焦点ずれの影響の小さい場合におい
てのみである。従って、レンズのF値の小さい時、ある
いは櫛形フィルタの最も低い減衰周波数に対して十分高
い周波数まで正確な櫛形の応答が要求される場合等のよ
うな、焦点ずれの影響が無視できない状況に訃いては、
複屈折板1は櫛形フィルタとしての特性からかなシ異な
った特性を示すようになる。以下その理由を説明する。As mentioned above, a birefringent plate can be used as an optical comb-shaped filter, but the comb-shaped characteristics shown in Fig. 4 A can be obtained only when the lens 30F value (focal length/effective aperture) is large. , that is, only when the effect of defocus is small. Therefore, in situations where the effect of defocus cannot be ignored, such as when the F-number of the lens is small or when an accurate comb-shaped response is required up to a frequency sufficiently high for the lowest attenuation frequency of the comb-shaped filter, Then,
The birefringent plate 1 exhibits characteristics quite different from those of a comb filter. The reason will be explained below.
第3図は無限遠の光学軸上の点光源を結像する光学系を
示したものである。レンズ3によって集光された光線は
複屈折板lを通って結像する。ここで、単純化のために
ルンズ3の有効開口は紙面に平行な辺を持つ1辺が焦点
距離の172となる正方形を考える◇また、複屈折板l
は表面に対して藝度の角度を成し、紙面に対して平行な
光学軸を持ち、厚さがdの水晶とする。複屈折板1によ
って入射光は常光線Loと異常光線LeK分離される。FIG. 3 shows an optical system that images a point light source on an optical axis at infinity. The light beam focused by the lens 3 passes through the birefringent plate l and forms an image. Here, for simplicity, consider that the effective aperture of the lens 3 is a square whose sides are parallel to the plane of the paper and one side is the focal length of 172◇Also, the birefringent plate l
Assume that is a crystal of thickness d, forming an angle with the surface, having an optical axis parallel to the plane of the paper. The birefringent plate 1 separates the incident light into an ordinary ray Lo and an extraordinary ray LeK.
しかし、複屈折板Iは常光線LOと異常光IMLeに対
して屈折率が異なるため、常光線L〆よる像と異常光線
り、による像の像面が異なる。ここで、複屈折板1の常
光に対する屈折率はn、であシ、光学軸に垂直に入射す
る異常光だ対する屈折率’t=neとすると、異常光線
り、に対する複屈折板1の屈折率は線LeKよる像面の
距離ΔSは以下に示す式で表わさとの時、異常光線Le
による像面で像をとらえるとでき上がる像は、点と1辺
がΔ8/2の正方形となる。これを、像面及び紙面に平
行な軸をX軸として取シ、このX軸上の関数として表わ
すと、ら上記の光学系のMTFであるHL(fx)をめ
ると、以下の式で示される如くなる。However, since the birefringent plate I has a different refractive index for the ordinary ray LO and the extraordinary ray IMLe, the image planes of the image due to the ordinary ray L and the image due to the extraordinary ray are different. Here, if the refractive index of the birefringent plate 1 for ordinary light is n, and the refractive index for extraordinary light incident perpendicular to the optical axis is 't=ne, then the refraction of the birefringent plate 1 for the extraordinary ray is The distance ΔS of the image plane by the line LeK is expressed by the formula shown below, and when the extraordinary ray Le
When an image is captured on the image plane by If we take the axis parallel to the image plane and the paper plane as the X-axis and express it as a function on this X-axis, then if we subtract HL(fx), which is the MTF of the above optical system, we get the following equation. It will be as shown.
・・・・・・・・・(6)
上記(6)式で示した関数を図示すると第4図の口で示
した特性線が得られ、本来の櫛形の特性線イとは異なっ
たものとなる。このような現象はレンズ3の有効開口が
円形等の場合にも生じる。また、上記のMTFの値はレ
ンズ30F値の違いや像面の選び方によって変化する。・・・・・・・・・(6) When the function shown in equation (6) above is illustrated, the characteristic line indicated by the opening in Figure 4 is obtained, which is different from the original comb-shaped characteristic line A. becomes. Such a phenomenon also occurs when the effective aperture of the lens 3 is circular or the like. Furthermore, the above MTF value changes depending on the difference in lens 30F value and how the image plane is selected.
従つて、上記のように単一の複屈折板1を光学的櫛形フ
ィルタとして用いた場合、状況によっては十分な効果が
得られないという欠点があった。Therefore, when the single birefringent plate 1 is used as an optical comb filter as described above, there is a drawback that a sufficient effect cannot be obtained depending on the situation.
近年、COD等のディスクリートに空間情報をとらえる
撮像素子を用い、素子のサンプリング周波数の2倍の空
間周波数で入射光を変調して色情報を得るカラー撮像装
置が用いられている。このようなカラー撮像装置におい
ては、複屈折板による上記の変調周波数及びその奇数倍
の周波数成分が入射像に含まれると、それらの成分は色
信号に混入して色偽信号となる。複屈折板が本来の櫛形
フィルタ特性を有しておれば、最も低い減衰周波数の奇
数倍の周波数が減衰周波数となるため、上記色偽信号に
対して大きな軽減効果を持つ。しかし、上述したように
、単一の複屈折板を用いた光学的櫛形フィルタでは、状
況によってはその特性が本来の櫛形フィルタとは異なっ
た特性を示すものとなシ、更に、高い空間周波数域にお
いては、その異なった特性が本来の櫛形フィルタ特性か
ら大きくずれるため、特に高い空間周波数成分による色
偽信号に対して十分な軽減効果を得ることができないと
いう欠点があった。In recent years, color imaging devices have been used that use an imaging element such as a COD that captures spatial information discretely and modulate incident light at a spatial frequency twice the sampling frequency of the element to obtain color information. In such a color imaging device, when the above-mentioned modulation frequency by the birefringent plate and frequency components at odd multiples thereof are included in the incident image, these components are mixed into the color signal and become a color false signal. If the birefringent plate has the original comb-shaped filter characteristic, the frequency that is an odd multiple of the lowest attenuation frequency becomes the attenuation frequency, which has a great effect of reducing the color false signal. However, as mentioned above, an optical comb filter using a single birefringent plate may exhibit characteristics different from those of an original comb filter depending on the situation. However, since the different characteristics deviate greatly from the original comb filter characteristics, there was a drawback that a sufficient reduction effect could not be obtained particularly for color artifacts caused by high spatial frequency components.
本発明の目的は、上記の欠点に鑑み、レンズのF値や像
面の選択の仕方によって影響される仁となく、高い空間
周波数まで所定の特性を得ることができる光学的櫛形フ
ィルタを提供するととKある。In view of the above-mentioned drawbacks, an object of the present invention is to provide an optical comb-shaped filter that can obtain predetermined characteristics up to high spatial frequencies without being affected by the f-number of the lens or the method of selecting the image plane. There is a K.
本発明は、表面に対して垂直な第1の平面白和光学軸を
有する1枚乃至それ以上の第1の複屈折板と、表面及び
前記第1の平面の両者に垂直な第2の平面内に光学軸を
有する1枚乃至それ以上の第20W屈折板とを平行に配
設して成シ、前記第1の複屈折板を通過する常光と異常
光の光路差の総和と前記第2の複屈折板を通過する常光
と異常光の光路差の総和とを等しくするように前記第1
、第2の複屈折板の厚さ及び光学軸の方向を選択したこ
とによル、上記目的を達成するものである。The present invention includes one or more first birefringent plates having a first plane whitening optical axis perpendicular to the surface, and a second plane perpendicular to both the surface and the first plane. one or more 20W refracting plates each having an optical axis therein are disposed in parallel, and the total optical path difference between the ordinary light and the extraordinary light passing through the first birefringent plate and the second birefringent plate are arranged in parallel. said first so as to equalize the sum of optical path differences between ordinary light and extraordinary light passing through the birefringent plate.
The above object is achieved by selecting the thickness of the second birefringent plate and the direction of the optical axis.
以下本発明の実施例を図面を参照しつつ説明する。第5
図は本発明の光学的櫛形フィルタの一実施例を示した斜
視図である。光学的櫛形フィルタは複屈折板7に複屈折
板8が密着して構成されている。符号9は複屈折板7の
光学軸の各面に対する投影線でろ)、符号lOは複屈折
板8の光学軸の各面に対する投影線である。複屈折板7
と複屈折板8の光学軸が各間の投影線で示される如く、
表面に垂直な光学軸を含む平面が互いに直交するように
、複屈折板7と複屈折板8が配置されている。Embodiments of the present invention will be described below with reference to the drawings. Fifth
The figure is a perspective view showing an embodiment of the optical comb filter of the present invention. The optical comb filter is composed of a birefringent plate 7 and a birefringent plate 8 in close contact with each other. Reference numeral 9 indicates a projection line on each surface of the optical axis of the birefringent plate 7), and reference symbol 10 indicates a projection line on each surface of the optical axis of the birefringent plate 8. Birefringent plate 7
As shown by the projection line between and the optical axis of the birefringent plate 8,
Birefringent plate 7 and birefringent plate 8 are arranged so that planes including optical axes perpendicular to the surfaces thereof are orthogonal to each other.
また、屈折板8の厚さへは屈折板7の厚さへに対して以
下の式を満たすように選ばれている。Further, the thickness of the refracting plate 8 is selected so that the thickness of the refracting plate 7 satisfies the following formula.
但し、へは複屈折板7.8における常光に対する屈折率
を示し、meは光学軸に垂直に入射する異常光に対する
屈折率を示している。However, to indicates the refractive index for ordinary light in the birefringent plate 7.8, and me indicates the refractive index for extraordinary light incident perpendicularly to the optical axis.
第6図は上記第5図に示した本実施例の光学的櫛形フィ
ルタを用いた結像光学系を示した図である。レンズ11
の後方に、複屈折板7.8から成る光学的櫛形フィルタ
が複屈折板γの光学軸が紙面と平行となるように配置さ
れている。FIG. 6 is a diagram showing an imaging optical system using the optical comb filter of this embodiment shown in FIG. 5 above. Lens 11
An optical comb filter consisting of a birefringent plate 7.8 is arranged behind the birefringent plate 7.8 in such a way that the optical axis of the birefringent plate γ is parallel to the plane of the paper.
複屈折板7に入射した光束は常光線L1と異常光線り、
に分離される。常光線ζ課び異常光線Lt2が複屈折板
7を通過する間の両者の光路差I11は以下で示す式で
与えられる・
ところで、表面に垂直な光学軸を含む平面が複屈折板7
と複屈折板8とで互いに直交するように複屈折板7と複
層折板8が配置されているため複屈折板8をLlは異常
光としてL−は常光として通過する。Ll及びり、が複
屈折板8を通過する間の両者の光路差4は以下の式で与
えられる。The light beam incident on the birefringent plate 7 has an ordinary ray L1 and an extraordinary ray,
separated into The optical path difference I11 between the ordinary ray ζ and the extraordinary ray Lt2 when they pass through the birefringent plate 7 is given by the formula shown below. By the way, the plane containing the optical axis perpendicular to the surface of the birefringent plate 7
Since the birefringent plate 7 and the birefringent plate 8 are arranged so that they are perpendicular to each other, Ll passes through the birefringent plate 8 as extraordinary light and L- passes as ordinary light. The optical path difference 4 between Ll and L when they pass through the birefringent plate 8 is given by the following equation.
従って、複屈折板7と複屈折板80両方を透過した後の
り、とり、の光路差lはト=Jj+m、−・9となる。Therefore, after passing through both the birefringent plate 7 and the birefringent plate 80, the optical path difference l between the two ends is t=Jj+m, -.9.
従って、本実施例の櫛形フィルタを通過したLlとり。Therefore, the Ll portion that has passed through the comb filter of this embodiment.
は同一の像面上12で、hだけ離れた点に−それぞれ結
像することになる。are respectively formed on the same image plane 12 at points separated by h.
本実施例によれば、光学的櫛形フィルタ1!−2個の複
屈折板7ミ8で構成し、表面に垂直な光学軸を含む平面
が複屈折板7と複屈折板8とで互いに直交するように、
これら複屈折板7.8を配設し、且つ、複屈折板7の厚
さdlと複屈折板8の厚さへとが前記(7)式を満足す
るように選択されているため、常光線L0と異常光線L
e73(結像する像面を一致させることができ、レンズ
11のF値や像面の選択の仕方によって光学的櫛形フィ
ルタの特性が影響されることなく、高い空間周波数まで
所定の特性を得ることができる。従って、本実施例の光
学的櫛形フィルタを、カラー撮像装置における色偽信号
の軽減及び固体撮像装置のモアレの軽減等に用いると、
状況に影響されず、高い効果を発揮することができる。According to this embodiment, optical comb filter 1! - Consisting of two birefringent plates 7 and 8, so that the plane containing the optical axis perpendicular to the surface of the birefringent plates 7 and 8 is orthogonal to each other;
Since these birefringent plates 7.8 are arranged and the thickness dl of the birefringent plate 7 and the thickness of the birefringent plate 8 are selected so as to satisfy the above formula (7), Ray L0 and extraordinary ray L
e73 (It is possible to match the image planes for image formation, and to obtain the specified characteristics up to high spatial frequencies without affecting the characteristics of the optical comb filter depending on the F value of the lens 11 or the way the image plane is selected. Therefore, if the optical comb filter of this embodiment is used to reduce color false signals in color imaging devices and moiré in solid-state imaging devices,
It can be highly effective regardless of the situation.
第7図は本発明の光学的櫛形フィルタの他の実施例を示
した斜視図である。光学的櫛形フィルタは、2個の複屈
折板13.14を密着して構成してあシ、各複屈折板1
3.14の厚さへ、4及び光学軸と表面の成す角度は両
者共等しいが、複屈折板13に対して複屈折板14は9
度だけ回転して配設されている。なお、符号15.16
は複屈折板13.14の光学軸各面への投影線である。FIG. 7 is a perspective view showing another embodiment of the optical comb filter of the present invention. The optical comb filter is composed of two birefringent plates 13 and 14 in close contact with each other.
3. To the thickness of 14, the angles formed between the surface and the optical axis are both the same, but the birefringent plate 14 is 9 compared to the birefringent plate 13.
It is rotated by a degree. In addition, the code 15.16
are projection lines onto each plane of the optical axis of the birefringent plates 13 and 14.
このため、複屈折板13を常光線として透過した光は、
複屈折板14を異常光線として透過し、また複屈折板1
3’に異常光線として透過した光は複屈折板14ヲ常光
線として透過する。従って、とれら2枚の複屈折板13
.14によ)分離された2光束は、同一像面上の2点に
結像゛し、前実施例と同様の効果がある。Therefore, the light that passes through the birefringent plate 13 as an ordinary ray is
The birefringent plate 14 is transmitted as an extraordinary ray, and the birefringent plate 1
The light transmitted through the birefringence plate 14 as an extraordinary ray passes through the birefringent plate 14 as an ordinary ray. Therefore, the two birefringent plates 13
.. The two light beams separated (by step 14) form images at two points on the same image plane, and have the same effect as the previous embodiment.
なお、複屈折板の厚さ及び光学軸の角度あるいは複屈折
板の枚数等積々の変形が考えられ、本発明は上記2つの
実施例に限定されることがなく、要するに光学的櫛形フ
ィルタを通過した異常光線と常光線の結像点が同一像面
上にあるように複屈折板を組合せて光学的櫛形フィルタ
を形成すれば良い。また、本発明による光学的櫛形フィ
ルタは単独に用いられるのみでなく、偏光解消板等と併
用して種々の特定の空間周波数フィルタを構成すること
が可能である。Incidentally, there may be various variations in the thickness of the birefringent plate, the angle of the optical axis, the number of birefringent plates, etc., and the present invention is not limited to the above two embodiments. An optical comb-shaped filter may be formed by combining birefringent plates so that the imaging points of the passed extraordinary ray and ordinary ray are on the same image plane. Furthermore, the optical comb filter according to the present invention can be used not only alone, but also in combination with a depolarizing plate or the like to construct various specific spatial frequency filters.
以上記述した如く本発明の光学的櫛形フィルタによれば
、常光線による結像点と異常光線による結像点とが同一
像面上にくるように複数の複屈折板を組合せて光学的櫛
形フィルタを構成しである〜ため、レンズのF値や像面
の選択の仕方によって影゛響されることなく、高い空間
周波数まで所定の櫛形特性を得る効果がある。As described above, according to the optical comb filter of the present invention, a plurality of birefringent plates are combined so that the imaging point of the ordinary ray and the imaging point of the extraordinary ray are on the same image plane. As a result, it is possible to obtain a predetermined comb-shaped characteristic up to a high spatial frequency without being affected by the F-number of the lens or how the image plane is selected.
第1図は複屈折板による光の分1ift示した図、第2
図は従来の単一複屈折板から成る光学的櫛形フィルタを
含む光学系の一例を示した図、第3図は従来の光学的櫛
形フィルタを含む光学系による結像状態を示した図、第
4図は第3図に示した光学系における従来の光学的櫛形
フィルタの空間周波数レスポンスを示した特性図、第5
図は本発明の光学的櫛形フィルタの一実施例を示した斜
視図、第6図は第5図に示した光学的櫛形フィルタを含
む光学系の一例を示した図、第7図は本発明の光学的櫛
形フィルタの他の実施例を示した斜視図である。
7.8.13.14・・・複屈折板
9.10.15.16・・・光学軸の投影線11・・・
レンズ
12・・・像面
代理人 弁理士 則 近 憲 佑
第1図
第3図
第4図
第5図Figure 1 shows the amount of light emitted by the birefringent plate, Figure 2
The figure shows an example of an optical system including a conventional optical comb filter made of a single birefringent plate. Figure 4 is a characteristic diagram showing the spatial frequency response of the conventional optical comb filter in the optical system shown in Figure 3.
The figure is a perspective view showing one embodiment of the optical comb filter of the present invention, FIG. 6 is a diagram showing an example of an optical system including the optical comb filter shown in FIG. 5, and FIG. FIG. 3 is a perspective view showing another embodiment of the optical comb filter of FIG. 7.8.13.14...Birefringence plate 9.10.15.16...Projection line of optical axis 11...
Lens 12... Image surface agent Patent attorney Noriyuki Chika Figure 1 Figure 3 Figure 4 Figure 5
Claims (1)
乃至それ以上の第1の複屈折板と、表面及び前記第1の
平面の両者に垂直″&fa2の平面白和光学軸を有する
1枚乃至それ以上の第2の複屈折板とを平行に配設して
成シ、前記第1の複屈折板を通過する常光と異常光の光
路差の総和と、前記第2の複屈折板を通過する常光と異
常光の光路差の総和とを等しくするように前記第1、第
2の複屈折板の厚さ及び光学軸の方向を選択したことを
特徴とする光学的櫛形フィルタ。one or more first birefringent plates having an optical axis in a first plane perpendicular to the surface, and a plane white optical axis perpendicular to both the surface and the first plane; and one or more second birefringent plates arranged in parallel, the total optical path difference between the ordinary light and the extraordinary light passing through the first birefringent plate and the second birefringent plate are arranged in parallel. An optical comb filter characterized in that the thicknesses and directions of the optical axes of the first and second birefringent plates are selected so that the sum of the optical path differences between ordinary light and extraordinary light passing through the refracting plates is equal. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9556284A JPH0677114B2 (en) | 1984-05-15 | 1984-05-15 | Optical comb filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9556284A JPH0677114B2 (en) | 1984-05-15 | 1984-05-15 | Optical comb filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60239708A true JPS60239708A (en) | 1985-11-28 |
JPH0677114B2 JPH0677114B2 (en) | 1994-09-28 |
Family
ID=14141025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9556284A Expired - Lifetime JPH0677114B2 (en) | 1984-05-15 | 1984-05-15 | Optical comb filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0677114B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6704143B1 (en) | 2000-10-23 | 2004-03-09 | Adc Telecommunications, Inc. | Method and apparatus for adjusting an optical element to achieve a precise length |
-
1984
- 1984-05-15 JP JP9556284A patent/JPH0677114B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6704143B1 (en) | 2000-10-23 | 2004-03-09 | Adc Telecommunications, Inc. | Method and apparatus for adjusting an optical element to achieve a precise length |
Also Published As
Publication number | Publication date |
---|---|
JPH0677114B2 (en) | 1994-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5237446A (en) | Optical low-pass filter | |
US4227208A (en) | Optical comb filter | |
US2106752A (en) | Field divider | |
US4575193A (en) | Optical spatial frequency filter | |
US5280388A (en) | Wavelength selective phase grating optical low-pass filter | |
DE212017000261U1 (en) | Optical system with compact collimator image projector | |
JPH0322961B2 (en) | ||
US5321251A (en) | Angled optical fiber filter for reducing artifacts in imaging apparatus | |
US5434709A (en) | Wavelength-selective phase grating type optical low-pass filter comprising adhesive layer between transparent layers | |
US6724531B2 (en) | Optical low-pass filter | |
US5309239A (en) | Image pick-up device | |
JPH0833527B2 (en) | Imaging system with optical low-pass filter | |
JP7207883B2 (en) | Optical low-pass filter and imager | |
JPS60239708A (en) | Optical comb line filter | |
US20060262208A1 (en) | Optical low pass filter and image pickup apparatus having the same | |
US20060132641A1 (en) | Optical filter and image pickup apparatus having the same | |
JP2005062524A (en) | Optical filter and optical apparatus | |
JPH10148754A (en) | Digital still camera | |
US3606521A (en) | Apparatus for compensating for angular variation of dichroic mirror characteristics | |
JPH06214115A (en) | Image pickup device | |
JPH07119901B2 (en) | Optical low pass filter | |
JP2002303824A (en) | Optical crystal low-pass filer unit and video camera using the same | |
JPH0444727B2 (en) | ||
JPH0145275B2 (en) | ||
JPH03158089A (en) | Multi-plate type video camera |