[go: up one dir, main page]

JPS6023879B2 - Chemical-free advanced denitrification and dephosphorization method - Google Patents

Chemical-free advanced denitrification and dephosphorization method

Info

Publication number
JPS6023879B2
JPS6023879B2 JP5373282A JP5373282A JPS6023879B2 JP S6023879 B2 JPS6023879 B2 JP S6023879B2 JP 5373282 A JP5373282 A JP 5373282A JP 5373282 A JP5373282 A JP 5373282A JP S6023879 B2 JPS6023879 B2 JP S6023879B2
Authority
JP
Japan
Prior art keywords
tank
denitrification
sludge
concentration
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5373282A
Other languages
Japanese (ja)
Other versions
JPS58174294A (en
Inventor
弘毅 水野
幸徳 松尾
吉左衛門 佐治
一郎 藤沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA KAKO
Original Assignee
KYOWA KAKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA KAKO filed Critical KYOWA KAKO
Priority to JP5373282A priority Critical patent/JPS6023879B2/en
Publication of JPS58174294A publication Critical patent/JPS58174294A/en
Publication of JPS6023879B2 publication Critical patent/JPS6023879B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は無薬注による廃水中の窒素及び燐を除去する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing nitrogen and phosphorus from wastewater without chemical injection.

今まで生物学的硝化脱窒素方法として主に第1図に示す
如く3糟式生物汚泥脱窒素法と、第2図に示す如き2段
脱窒素循環方式が行われている。
Until now, biological nitrification and denitrification methods have mainly been carried out, such as the three-pot biological sludge denitrification method as shown in FIG. 1, and the two-stage denitrification circulation method as shown in FIG.

3槽式生物汚泥脱窒素法には硝化行程においてアルカリ
度補充のため多量のアルカリ液を必要とし、脱窒素工程
においては、炭素源(メタノールなど)の供v給が必要
である。
The three-tank biological sludge denitrification method requires a large amount of alkaline solution to replenish alkalinity in the nitrification process, and the denitrification process requires the supply of a carbon source (such as methanol).

又2段脱窒素循環方式には、硝化工程においてアルカリ
液の補充は必要ないが、脱窒素行程において、特に高度
脱窒素効果を要求する場合、例えばと畜場廃水の全窒素
20■血を5脚以下まで処理するためには第2脱窒槽に
炭素源の供給が必要とされる。すなわち本発明は脱窒槽
、第1曝気槽、第1濃縮槽、第2曝気槽、第2濃縮槽の
順に配置し、該第1曝気槽を複数のセクションに分け、
第1セクション、第2セクション、第3セクションの順
に順次段階的にDQ農度を低くすることにより、、脱窒
、脱燐に対して顕著な効果を与えると共に第1曝気槽の
混液及び各濃縮槽の濃縮汚泥を全て脱窒槽に返送するこ
とにより、活性汚泥を高濃度にかつ安定的に維持するこ
とが可能であることを特徴とする無薬注による有機廃水
の高度脱窒素.脱燐方法に関するものである。
In addition, the two-stage denitrification circulation system does not require replenishment of alkaline solution during the nitrification process, but when a particularly high degree of denitrification effect is required in the denitrification process, for example, when the total nitrogen of slaughterhouse wastewater is In order to process up to 100% of carbon dioxide, it is necessary to supply a carbon source to the second denitrification tank. That is, the present invention arranges a denitrification tank, a first aeration tank, a first concentration tank, a second aeration tank, and a second concentration tank in this order, and divides the first aeration tank into a plurality of sections.
By lowering the DQ rate in stages in the order of the first section, second section, and third section, a remarkable effect is achieved on denitrification and dephosphorization, and the mixed liquid and each concentration in the first aeration tank are Advanced denitrification of organic wastewater using chemical-free injection, characterized by the ability to maintain activated sludge at a high concentration and stably by returning all the concentrated sludge in the tank to the denitrification tank. This relates to a dephosphorization method.

次に本発明について図面を示して更に詳細に説明する。Next, the present invention will be explained in more detail with reference to the drawings.

第3図において流入原水1は脱窒槽2に流入し、同時に
第1曝気槽3の中間セクション17からの循環汚泥混液
11、第1濃縮槽4の第1返送汚泥12及び第2濃縮槽
6の第2返送汚泥13はこの脱窒槽2に適量注入する。
縄梓機22約15比pmの回転速度により混合し、D○
(溶存酸素)1胸以下の嫌気性状態において、大部分N
○k−N(硝酸性窒素+亜硝酸性窒素)が除去され、初
期脱窒素効果が得られる。つづいて第1爆気槽3の先端
セクション16に移行し、この糟においては、送風機1
9により、硝化反応が進むような空気量を調整し、DO
約1脚心〆上で、大部分硝化反応が進むと同時に顕著な
脱燐効果が得られる。
In FIG. 3, the inflow raw water 1 flows into the denitrification tank 2, and at the same time, the circulating sludge mixture 11 from the intermediate section 17 of the first aeration tank 3, the first return sludge 12 of the first thickening tank 4, and the second thickening tank 6. An appropriate amount of the second return sludge 13 is injected into this denitrification tank 2.
Rope Azusa machine 22 is mixed at a rotation speed of about 15 ratio pm, and D○
(Dissolved oxygen) In anaerobic conditions below 1 chest, most of the N
○k-N (nitrate nitrogen + nitrite nitrogen) is removed and an initial denitrification effect is obtained. Next, the process moves to the tip section 16 of the first explosion tank 3, in which the blower 1
9, adjust the amount of air so that the nitrification reaction progresses, and
At about 1 foot, most of the nitrification reaction progresses and at the same time a remarkable dephosphorization effect is obtained.

前記脱窒槽2で脱窒と同時に増加したアルカリ度はこの
糟に連続供給し、継続して硝化反応が行われる。残存有
機性窒素及びアンモニア性窒素は中間セクション17に
おいて、適量の空気量を調整することにより、完全に硝
化反応が進む。ここで中間セクションのDOは先端セク
ションより低く維持する。すなわち、禾端セクションの
DOを0.1脚以下に安定的に維持するためには、中間
セクションでのDOを先端セクションよりは低下させて
おくのが有利であり、また中間セクションは残存有機性
窒素及びアンモニア性窒素の硝酸化を行うことから先端
セクションと同程度またはそれ以上のDOである必要は
なく、かつDOを順次低下させ、中間セクションで暖気
量の微調整を行なうことが運転管理上安定し、さらに、
従来の活性汚泥循環脱窒方式では計算上の脱窒効率を上
げることを目的として、硝化槽から脱窒槽への循環量を
増加しても、循環液が高DOであることから脱窒槽へ移
行するDO量が多くなり、結果として脱窒槽での脱窒反
応に対するDO阻害を生じるため、循環液量が制限され
るという問題に対して解決を与えることを目的とするも
のである。
The alkalinity increased at the same time as denitrification in the denitrification tank 2 is continuously supplied to this tank, and the nitrification reaction continues. The nitrification reaction of the remaining organic nitrogen and ammonia nitrogen proceeds completely in the intermediate section 17 by adjusting an appropriate amount of air. Here, the DO of the middle section is kept lower than that of the tip section. That is, in order to stably maintain the DO in the end section at 0.1 or less, it is advantageous to lower the DO in the middle section than in the tip section, and the middle section is Since nitrification of nitrogen and ammonia nitrogen is carried out, it is not necessary for the DO to be the same as or higher than that of the tip section, and it is important for operation management to gradually lower the DO and finely adjust the amount of warm air in the middle section. stable, and
In the conventional activated sludge circulation denitrification method, even if the amount of circulation from the nitrification tank to the denitrification tank is increased in order to increase the calculated denitrification efficiency, the circulating fluid has a high DO, so the system is shifted to the denitrification tank. The purpose of this invention is to provide a solution to the problem that the amount of circulating fluid is limited due to an increase in the amount of DO that is produced, resulting in DO inhibition of the denitrification reaction in the denitrification tank.

末端セクション18における活性汚泥はDOO.1脚以
下(最低壕気強度)の空気量の調整により、残存NH4
十一Nまたはびg−Nの硝酸化を並行して嫌気状態に近
い低めであることから内生呼吸作用が起き、硝酸及び亜
硝酸性窒素濃度が急激に低下し、脱窒素効果が得られる
The activated sludge in the end section 18 is DOO. Residual NH4 can be reduced by adjusting the air volume below 1 foot (minimum air strength).
In parallel with the nitrification of 11-N or 2-g-N, endogenous respiration occurs because the nitrification is low, close to an anaerobic state, and nitrate and nitrite nitrogen concentrations rapidly decrease, resulting in a denitrification effect. .

さらに徴量曝気による蝿群効果により、汚泥塊中の4・
気泡(窒素ガス、CR2などを含む)はすみやかに汚泥
から分離し、連続して空気中に放出され、次段の第1濃
縮槽における固液分離効果に寄与する。第1爆気槽に関
する上記の説明より明らかな通り、各セクションのDO
を順次低下させることにより、脱窒脱燐に対し顕著な効
果を与えることが可能となるが、ここでDOは先端セク
ションから末端セクションにかけて煩何として低下すれ
ば良く、各セクション内で分割された各槽のDOが厳密
に順次低下しなくてもかまわない。
Furthermore, due to the fly swarm effect caused by the aeration, 4.
The bubbles (containing nitrogen gas, CR2, etc.) are quickly separated from the sludge and continuously released into the air, contributing to the solid-liquid separation effect in the first thickening tank in the next stage. As is clear from the above explanation regarding the first explosion tank, the DO of each section
It is possible to have a remarkable effect on denitrification and dephosphorization by sequentially lowering DO, but here it is sufficient that DO decreases as a matter of course from the tip section to the end section, and DO is divided within each section. There is no need for the DO of each tank to decrease strictly sequentially.

残存徴量の硝酸性窒素(NQ−N)及び頭硝酸性窒素(
NQ−N)は、さらに第1濃縮槽4において、DOO.
1脚心〆下の嫌気性状態の場合、脱窒素効果が得られる
Residual signs of nitrate nitrogen (NQ-N) and head nitrate nitrogen (
NQ-N) is further processed into DOO.
In the case of anaerobic conditions under monopod cardiopulmonary denitrification, a denitrification effect can be obtained.

糟内には汚泥浮上防止機21を設置してもよくこの場合
網状細線の連続的綾速移動により、汚泥塊中の小気泡(
窒素ガス、C02などを含む)を脱気させ、同時に著し
く濃縮効果が得られ、第1返送汚泥12の16 000
〜20,00Q桝の高い返送濃度が安定的に維持できる
。さらに第2曝気槽5において、残存徴量の有機性窒素
(0rg−N)、アンモニア性窒素(NH4十一N)及
び燐は第2曝気槽末端セクションと同様の理由から適量
の空気を調整することにより活性汚泥により除去される
A sludge flotation prevention device 21 may be installed inside the pot. In this case, small air bubbles in the sludge mass (
16,000 of the first return sludge 12.
A high return concentration of ~20,00Q can be stably maintained. Furthermore, in the second aeration tank 5, the residual amounts of organic nitrogen (0rg-N), ammonia nitrogen (NH411N), and phosphorus are adjusted to an appropriate amount for the same reason as in the end section of the second aeration tank. It is removed by activated sludge.

第2濃縮槽6は、第1濃縮槽4と同様に汚泥浮上防止機
21を設置してもよく、この場合絹状紬線の連続的緩遠
移動により、汚泥の濃縮効果が得られ、同時に水中残存
した極微量の硝酸性窒素(NQ−N)及び亜硝酸性窒素
(N02−N)はDOO.1脚以下の嫌気性状態におい
て最終的に脱窒素効果が得られる。この糟の低部から定
期的に汚泥抜き20から余剰汚泥を抜く。次に汚泥の返
送方式において、すべての汚泥を脱窒糟へ返送すること
、すなわち、第2濃縮槽からの返送汚泥についても脱窒
槽へ返送することの意義について説明する。上記の返送
方式としたことにより、第2曝気槽肌麓こ存在する汚泥
については、第1濃縮槽より上燈水と共に強制的にキャ
リーオーバーさせた汚泥により、構成されること)なる
。これはとりもなおさず、第1濃縮槽に対して、沈降性
が良好であるために、沈降分離して返送すべき汚泥と比
較的沈降分離しずらいために、キャリーオーバ−して第
2曝気槽において、再度曝気することにより沈降性を改
善した後、第2濃縮槽にて沈降分離し、返送すべき汚泥
とを汚泥の沈降性に応じて撰択的に分離させる作用をも
たせていることにほかならない。かくして各濃縮糟から
の返送汚泥は安定的に高濃度となり、結果として脱窒槽
第1曝気槽、第2蝿気槽の汚泥は極めて高濃度に且つ安
定的に維持することが可能となる。したがって単位容積
当りの処理能力が向上し、負荷変動に対する処理の安定
化、装置のコンパクト化、敷地面積の縮小等が可能とな
る。
The second thickening tank 6 may be equipped with a sludge flotation prevention device 21 in the same way as the first thickening tank 4. In this case, the sludge thickening effect can be obtained by continuous slow movement of the silk-like pongee wire, and at the same time Trace amounts of nitrate nitrogen (NQ-N) and nitrite nitrogen (N02-N) remaining in the water are DOO. The denitrification effect is finally obtained in anaerobic conditions with less than one leg. Excess sludge is periodically removed from the lower part of the sludge through the sludge drain 20. Next, in the sludge return method, the significance of returning all the sludge to the denitrification tank, that is, returning the sludge returned from the second thickening tank to the denitrification tank will be explained. By using the above-mentioned return method, the sludge present at the foot of the second aeration tank is composed of sludge forcibly carried over from the first thickening tank together with the top water. This is because the sludge has good sedimentation properties compared to the first thickening tank, so it is relatively difficult to separate the sludge from the sludge that should be separated by sedimentation and sent back. After the sedimentation property is improved by aeration again in the tank, the sludge is sedimented and separated in the second thickening tank, and has the effect of selectively separating the sludge from the sludge to be returned depending on the sedimentation property of the sludge. Nothing but. In this way, the sludge returned from each thickener has a stable high concentration, and as a result, the sludge in the denitrification tank, the first aeration tank, and the second fly aeration tank can be stably maintained at an extremely high concentration. Therefore, the processing capacity per unit volume is improved, and it becomes possible to stabilize the processing against load fluctuations, make the device more compact, and reduce the site area.

なお少量の浮遊物質(SO)を除去することを目的とし
てさらに最終沈殿槽7において沈降し、上澄液はポンプ
桝8を通り、注入管14から砂ろ過櫓9を経て、処理水
10として放流することも可能である。この場合適量な
放流水を用い、定期的に逆洗管15を通して、砂ろ過槽
9を逆洗することが必要である。上記全工程を通し、本
発明の利点は次の通りである。
In order to remove a small amount of suspended solids (SO), the water is further settled in a final settling tank 7, and the supernatant liquid passes through a pump basin 8, passes through an injection pipe 14 to a sand filter tower 9, and is discharged as treated water 10. It is also possible to do so. In this case, it is necessary to periodically backwash the sand filter tank 9 through the backwash pipe 15 using an appropriate amount of discharged water. Throughout the above steps, the advantages of the present invention are as follows.

1 第1爆気槽を3セクションに分け、段階的にDO調
整することにより、先端セクション及び中間セクション
における活性汚泥は硝化反応と同時に脱燐効果が著しく
、末端セクションにおいては、DOO.1脚以下の低D
O濃度を維持することができ、徴量末硝化態窒素の硝酸
化及び低DOであることに伴う内生呼吸作用による脱窒
素効果同時に得られる。
1 By dividing the first explosion tank into three sections and adjusting the DO in stages, the activated sludge in the tip section and the middle section has a significant dephosphorization effect at the same time as the nitrification reaction, and in the end section, the DOO. Low D of less than one leg
O concentration can be maintained, and denitrification effects can be obtained at the same time through nitrification of terminal nitrified nitrogen and endogenous respiration associated with low DO.

2 残存徴量の硝酸及び亜硝酸性窒素は第1及び第2濃
縮槽の嫌気性状態により、脱窒素効果が得られ、また残
存徴量の有機性窒素、アンモニア性窒素及び燐は第1曝
気槽第3セクション及び第2濠気槽において、適量の空
気を調整することにより活性汚泥によって除去される。
2. The residual amounts of nitric acid and nitrite nitrogen can be denitrified by the anaerobic conditions in the first and second concentration tanks, and the residual amounts of organic nitrogen, ammonia nitrogen, and phosphorus can be removed by the first aeration. In the third section of the tank and the second moated tank, the activated sludge is removed by adjusting the appropriate amount of air.

3 第2濃縮槽からの返送汚泥についても、脱窒槽へ返
送するため、第1濃縮槽においては、第2爆気槽で沈降
性の改善を目的としてさらに処理されるべき汚泥を選択
的に分離し、上燈水と共にキャリーオ−バーさせると云
う効果が生じることから系内の汚泥は高濃度に維持でき
かつ安定する。4 最終放流水の窒素、燐は硝化、脱窒
素及び脱燐工程中、薬品を一切使用せずに極めて低濃度
(T−N&桝以下・T一PO.敦風以下)までに処理で
きる。
3 The sludge returned from the second thickening tank is also sent back to the denitrification tank, so in the first thickening tank, sludge that should be further processed in the second atomization tank is selectively separated for the purpose of improving sedimentation. However, the sludge in the system can be maintained at a high concentration and stabilized because of the effect of carryover with the top water. 4. Nitrogen and phosphorus in the final effluent can be treated to extremely low concentrations (below T-N & Masu and T-PO. Atsushi) during the nitrification, denitrification and dephosphorization processes without using any chemicals.

上記の利点から本発明は従来の3槽式生物汚泥脱窒素法
及び2段脱窒素循環方式の欠点を適確に解消した省エネ
、高効率の無薬注高度脱窒素、脱燐方法である。
Based on the above-mentioned advantages, the present invention is an energy-saving, highly efficient chemical-free advanced denitrification and dephosphorization method that accurately eliminates the drawbacks of the conventional three-tank biological sludge denitrification method and the two-stage denitrification circulation method.

以上第1曝気槽を先端、中間、末端の3セクションに分
けた場合について説明したが、流入汚水濃度が高い場合
、この槽の第1セクションDO濃度はかなり高く維持し
なければならないので、末端セクションのD功濃度を0
.1脚以下に維持するために、第1セクションと末端セ
クションとの間に第2,第3・…・・など多セクション
に分け、段階的にDO濃度を低下させることは運転管理
上便利である。
The case where the first aeration tank is divided into three sections, the tip, middle, and end, has been explained above, but if the concentration of inflow sewage is high, the DO concentration in the first section of this tank must be maintained quite high, so the end section D gong concentration of 0
.. In order to maintain the DO concentration below one leg, it is convenient for operational management to divide the DO concentration into multiple sections such as the second, third, etc. between the first section and the end section, and reduce the DO concentration in stages. .

又本発明において第2曝気槽を2セクションに分ける場
合がある。
Further, in the present invention, the second aeration tank may be divided into two sections.

すなわち、流入汚水濃度が高く、第2爆気槽において残
存NH4‐一Nまたはorg−N量が多い場合、この糟
を2セクションに分け、第1セクションにおいて残存N
比‐一Nまたはo唯一NをNQ一NまたはN02一Nに
硝化させ、第2セクションにおいてDO濃度0.1脚以
下に調整することにより、N03−NまたはN02一N
をN2ガスとして脱峯させる。実施例 例えば第4及び第5図に示す通り、と畜場廃水の原水濃
度T−N252脚、T−p9.8脚を循環汚泥混液、第
1返送汚泥及び第2返送汚泥と共に混合した脱窒槽流入
混液濃度(NO松炉過液濃度。
In other words, when the concentration of inflow sewage is high and the amount of residual NH4-1N or org-N is large in the second explosion tank, this waste is divided into two sections, and the residual N in the first section is
By nitrifying the ratio-1N or o-onlyN to NQ-N or N02-N and adjusting the DO concentration to below 0.1 in the second section, N03-N or N02-N
is demineralized as N2 gas. Example For example, as shown in FIGS. 4 and 5, the raw water concentration of slaughterhouse wastewater is a denitrification tank inflow mixture in which two legs of T-N25 and eight legs of T-p are mixed together with the circulating sludge mixture, the first return sludge, and the second return sludge. Concentration (NO pine furnace filtrate concentration.

以下汚泥混液については同様)は全窒素(T−N)67
・8脚、全燐(T−P)2.の岬こなり、脱窒槽に流入
後、槽内縄拝速度約150脚、溶存酸素0脚、水温1ず
0、糟内渡液浮遊物質(M比SS)濃度9斑O脚、窒素
(N○x−N)賦荷36.6タノk9M比SS、滞留時
間1$時間の条件で、脱窒槽流出液の水中濃度はT−N
31.1脚、T−Pl.4脚となり、T−N、T−Pの
除去率はそれぞれ54.1、30%の初期除去効果が得
られた。なお全窒素(T−N)は(TK−N+N○x−
N)である。つづいて第1曝気槽の先端セクションD0
3.03脚、MBS9060柳、TK‐N(ケルダール
法窒素)容積負荷0.6k9/〆D(汚泥負荷6略/k
9M山SS)、滞留時間1.3時間、水温19℃の条件
で第4図に示す通り、有機性窒素(or−N)及びアン
モニア性窒素(NH4十一N)は大部分硝酸性窒素+騒
硝酸性窒素(NO広−N)へ移行し、また第5図に示す
通りに全燐(T一P)濃度は1.■側から0.2袖風こ
減少し、T−P除去率は80.7%に達した。
The same applies to the sludge mixture below) is total nitrogen (T-N) 67
・8 legs, total phosphorus (T-P) 2. After flowing into the denitrification tank, the water speed in the tank was approximately 150 feet, dissolved oxygen was 0 feet, water temperature was 1.0 feet, the suspended solids (M ratio SS) concentration in the tank was 9 spots, nitrogen ○x-N) Under the conditions of loading 36.6 tano k9M ratio SS and residence time 1 $ hour, the concentration of denitrification tank effluent in water is T-N
31.1 leg, T-Pl. There were four legs, and initial removal effects of TN and TP removal rates of 54.1 and 30% were obtained, respectively. The total nitrogen (T-N) is (TK-N+N○x-
N). Next, the tip section D0 of the first aeration tank
3.03 legs, MBS9060 willow, TK-N (Kjeldahl method nitrogen) volumetric load 0.6k9/〆D (sludge load 6 omitted/k
As shown in Figure 4, organic nitrogen (or-N) and ammonia nitrogen (NH4-11N) are mostly nitrate nitrogen + As shown in Figure 5, the total phosphorus (T-P) concentration decreased to 1. The air flow rate decreased by 0.2 from the side (3), and the T-P removal rate reached 80.7%.

第1曝気槽の中間セクションにおいて、DOI.8弦四
、MはSS9340脚、TK一N容積負荷0.16k9
/の〆(汚泥負荷1松/k9MはSS)、滞留時間1.
3時間、水温19℃の条件で第4図の通り、すべての窒
素はほとんどN○×−Nへ移行し、完全に硝化反応を行
なった。また第1爆気槽の末端セクションにおいて、D
OO.05肌、MLSS9180脚、NO広−N負荷3
5.雌/k9MBS、滞留時間2.仇r、水温1ぴ0の
条件で、T−N濃度36.9風から4脚に減少し、T−
N除去率は89.2%に達した。このように第1曝気槽
において、T−N、T−Pの除去効果は著しいo第1濃
縮槽において、DOO.0■蝿の嫌気性状態で残存N○
x−Nは完全に除去されたが、逆にN比十一Nが若干増
加し(第4図)またT−Pも若干増加した(第5図)。
In the middle section of the first aeration tank, DOI. 8 strings 4, M is SS9340 leg, TK-N volumetric load 0.16k9
/ end (sludge load 1 pine/k9M is SS), residence time 1.
As shown in FIG. 4, under the condition of water temperature of 19° C. for 3 hours, almost all of the nitrogen was transferred to N○×-N, and a complete nitrification reaction was carried out. Also, in the end section of the first explosion tank, D
OO. 05 skin, MLSS9180 legs, NO wide-N load 3
5. Female/k9MBS, residence time 2. At a water temperature of 1.0, the T-N concentration decreased from 36.9 to 4, and the T-N concentration decreased from 36.9 to 4.
The N removal rate reached 89.2%. As described above, in the first aeration tank, the removal effect of TN and TP is remarkable o In the first concentration tank, DOO. 0 ■Residual N○ in the anaerobic state of flies
Although x-N was completely removed, conversely, the N ratio 11N increased slightly (Figure 4), and T-P also increased slightly (Figure 5).

第2爆気槽において、水中残存アルカリ度127,DO
O.12風、水温19℃、M山SS濃度5020胸、T
K−N容積負荷0.03k9ノめ(汚泥負荷6.総/k
9M比SS)、滞留時間4.岬時間の条件で残存徴量N
H4十一N、org−N及びT−Pはほとんど糟内の活
性汚泥に吸着され、T−Nは6.1胸から2.の風、T
−Pは0.7銭から0.朝風までに低下した。
In the second explosion tank, the residual alkalinity in the water was 127, DO
O. 12 wind, water temperature 19℃, M mountain SS concentration 5020 chest, T
K-N volumetric load 0.03k9mm (sludge load 6.total/k
9M ratio SS), residence time 4. Residual feature N under the condition of Cape time
H411N, org-N and T-P are mostly adsorbed to the activated sludge in the tank, and T-N is 6.1 to 2. wind, T
-P is 0.7 sen to 0. It decreased by the morning wind.

さらに第2暖気槽を通し、最終放流水のT−Nは2.3
脚、T一Pは0.21脚まで低下し、流入原水に対しT
−N除去率は99.1%、T−Pは97.6%に達した
。上記にて全く薬品を使用せずに、高濃度舎窒素.燐の
廃水をT−N均畑以下、T−PO.3脚以下までに処理
することは、経済的省エネの時代に即応すると思われる
Furthermore, the T-N of the final discharged water is 2.3 after passing through the second warming tank.
leg, T-P decreased to 0.21 leg, and T
-N removal rate reached 99.1% and T-P reached 97.6%. The above method uses high concentration nitrogen without using any chemicals. Phosphorus wastewater is disposed of at T-N Hitoshi field and below, T-PO. Processing down to three legs or less seems to be an immediate response to the era of economical energy conservation.

図面の簡単な説明第1図は3槽式生物汚泥脱窒素法のフ
ロシートを示す。
Brief Description of the Drawings Figure 1 shows a flow sheet for a three-tank biological sludge denitrification method.

第2図は2段脱窒素循環方式のフロシートを示す。第3
図は無薬注高度脱窒素・脱燐方法(NNAWT方式)の
フロシートを示す。第4図は各工程における窒素濃度の
変化を示す。第5図は各工程における全燐濃度の変化。
1・・・・・・流入原水、2・・・・・・脱窒槽、3・
・・・・・第1曝気槽、4・・・・・・第1濃縮槽、5
・・・・・・第2曝気槽、6……第2濃縮槽、7……沈
殿槽、8……ポンプ桝、9・・・・・・砂ろ過槽、10
・・・・・・処理水、11・・・・・・循環管、12・
・・・・・第1返送汚泥管、13・・・・・・第2返送
汚泥管、14・・・・・・注入管、15・・・・・・逆
洗管、16・・・・・・先端セクション、17・・・・
・・中間セクション、18・・・・・・末端セクション
、19・・・・・・送風機、20・・・・・・汚泥抜き
、21・・…・汚泥浮上防止機、22・・…・鷹梓機。
髪’図多2図 国 ぬ * 多4図 秦ヲ図
Figure 2 shows a flow sheet for a two-stage denitrification circulation system. Third
The figure shows a flow sheet for the chemical-free advanced denitrification and dephosphorization method (NNAWT method). FIG. 4 shows changes in nitrogen concentration in each step. Figure 5 shows the change in total phosphorus concentration in each process.
1... Inflow raw water, 2... Denitrification tank, 3.
...First aeration tank, 4...First concentration tank, 5
...Second aeration tank, 6...Second concentration tank, 7...Sedimentation tank, 8...Pump basin, 9...Sand filter tank, 10
... Treated water, 11 ... Circulation pipe, 12.
...First return sludge pipe, 13...Second return sludge pipe, 14...Injection pipe, 15...Backwash pipe, 16...・Tip section, 17...
...Middle section, 18... End section, 19... Blower, 20... Sludge removal, 21... Sludge flotation prevention machine, 22... Hawk Azusa machine.
Hair' 2 drawings Kuninu* 4 drawings Qinwo drawing

Claims (1)

【特許請求の範囲】[Claims] 1 脱窒槽、第1曝気槽、第1濃縮槽、第2曝気槽、第
2濃縮槽の順に配置し、該第1曝気槽の槽内を複数のセ
クシヨンに区切り各セクシヨン溶存酸素)濃度を低くし
、第1曝気槽中間セクシヨンの混液及び各濃縮槽の濃縮
汚泥を脱窒槽に返送することを特徴とする無薬注高度脱
窒槽.脱燐方法。
1 A denitrification tank, a first aeration tank, a first concentration tank, a second aeration tank, and a second concentration tank are arranged in this order, and the inside of the first aeration tank is divided into a plurality of sections to lower the dissolved oxygen concentration in each section. A chemical-free advanced denitrification tank characterized in that the mixed liquid in the middle section of the first aeration tank and the thickened sludge in each thickening tank are returned to the denitrification tank. Dephosphorization method.
JP5373282A 1982-04-02 1982-04-02 Chemical-free advanced denitrification and dephosphorization method Expired JPS6023879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5373282A JPS6023879B2 (en) 1982-04-02 1982-04-02 Chemical-free advanced denitrification and dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5373282A JPS6023879B2 (en) 1982-04-02 1982-04-02 Chemical-free advanced denitrification and dephosphorization method

Publications (2)

Publication Number Publication Date
JPS58174294A JPS58174294A (en) 1983-10-13
JPS6023879B2 true JPS6023879B2 (en) 1985-06-10

Family

ID=12950997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5373282A Expired JPS6023879B2 (en) 1982-04-02 1982-04-02 Chemical-free advanced denitrification and dephosphorization method

Country Status (1)

Country Link
JP (1) JPS6023879B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605295A (en) * 1983-06-22 1985-01-11 Hitachi Plant Eng & Constr Co Ltd Biological dephosphorization and denitrification equipment for wastewater
JPS61125493A (en) * 1984-11-22 1986-06-13 Nippon Kokan Kk <Nkk> Treatment of organic waste water
JPS61125490A (en) * 1984-11-22 1986-06-13 Nippon Kokan Kk <Nkk> Treatment of organic waste water
JP5929987B2 (en) * 2014-09-16 2016-06-08 栗田工業株式会社 Biological treatment method and biological treatment apparatus

Also Published As

Publication number Publication date
JPS58174294A (en) 1983-10-13

Similar Documents

Publication Publication Date Title
CN1115178A (en) Water and wastewater treatment method and system
JP3214707B2 (en) Wastewater treatment method using intermittent discharge type long aeration process
KR100428047B1 (en) A Waste Water Purifier Using Overflow Sediment and Method
Balku Influence of temperature on activated sludge systems
JPS6023879B2 (en) Chemical-free advanced denitrification and dephosphorization method
van Kempen et al. SHARON process evaluated for improved wastewater treatment plant nitrogen effluent quality
JP2904005B2 (en) Apparatus and method for removing nitrogen from wastewater
JP3942488B2 (en) Control method and apparatus for intermittent aeration method
CN115477388A (en) Ammonium nitrate wastewater treatment device and method
JPS6365399B2 (en)
CN218491592U (en) Integrated sewage treatment equipment based on rhodobacter
JP3265884B2 (en) Solid-liquid separation method and apparatus for wastewater
JP3303475B2 (en) Operation control method of activated sludge circulation method
JPS6068096A (en) How to treat organic wastewater
JP3634403B2 (en) Denitrification and dephosphorization methods in oxidation ditch
JP2607030B2 (en) Wastewater treatment method and apparatus
JP2004130249A (en) Biological phosphorus removal promotion method in anaerobic and aerobic circulation activated sludge treatment
JPH038399Y2 (en)
CN113415954A (en) Integrated sewage treatment equipment and treatment process based on rhodobacter
JPH0218155B2 (en)
JPS6355999B2 (en)
JPS6128498A (en) Simultaneous removal of nitrogen and phosphorus in organic waste water
JPS5836639B2 (en) Sewage treatment method
JPS6210719B2 (en)
Heard et al. Aerated biological filtration for the removal of ammonia and manganese in a major new water treatment works under construction in Hong Kong