JPS60236844A - Voltage varying system for electric vehicle - Google Patents
Voltage varying system for electric vehicleInfo
- Publication number
- JPS60236844A JPS60236844A JP9299984A JP9299984A JPS60236844A JP S60236844 A JPS60236844 A JP S60236844A JP 9299984 A JP9299984 A JP 9299984A JP 9299984 A JP9299984 A JP 9299984A JP S60236844 A JPS60236844 A JP S60236844A
- Authority
- JP
- Japan
- Prior art keywords
- substation
- inductance
- reactor
- rectifier
- ripple component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60M—POWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
- B60M3/00—Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
- B60M3/02—Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power with means for maintaining voltage within a predetermined range
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は電気車用変電システム、特に直流電気鉄道の
変電システムにおける誘導障害の除去(で関するイ)の
である。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to (a) the removal of inductive disturbances in substation systems for electric vehicles, particularly in substation systems for DC electric railways.
近年、直流電気鉄道の電気車の推進システムにおいて、
主電動機にかご形の3相誘導電動機を使用し、速度制御
を高周波変調式可変周波数可変電圧(以下VVVFとす
る)形J相インバータで行なう電気車が実用化されてい
る。第1図にはそのシステムが示されているゎ図におい
て、Sは直流変電所、FECはこの直流変電所Sに設け
られた変電所整流器である。Lは直流質M、所Sからの
電流が流れる架線であり、LJはこの架線りの架線イン
ダクタンスを示している。またTは電気車であり、Pa
nは架線りから電流を取り込むパンタグラフ、Lfは王
フィルタリアクトル、Cfkt主フィルタコンデンサ、
IM/およびIMJは主電動機であるかご形の3相誘導
電動機、INVは直流をJ相交流に変換し、J相誘導電
動機IM/ 、 IMJを駆動制御する’V V V
P’形3相インバータ、Wは電気車Tの車輪、そしてR
は直流変電所Sへの帰線となるレールである。また、第
一図には第7図の電気車T中のVVVF形3 相インバ
ータINVの入力−出力波形が示され′〔おり、(a)
は入力電流、(b)は出力電圧。In recent years, in the propulsion system of electric cars of DC electric railways,
BACKGROUND ART Electric vehicles have been put into practical use that use a squirrel-cage three-phase induction motor as the main motor and perform speed control with a high-frequency modulated variable frequency variable voltage (hereinafter referred to as VVVF) type J-phase inverter. In FIG. 1, the system is shown. In the diagram, S is a DC substation, and FEC is a substation rectifier installed in this DC substation S. L is a direct current M and an overhead wire through which a current from S flows, and LJ is the overhead wire inductance of this overhead wire. Also, T is an electric car, and Pa
n is a pantograph that takes in current from the overhead line, Lf is a filter reactor, Cfkt is a main filter capacitor,
IM/ and IMJ are squirrel-cage three-phase induction motors that are the main motors, and INV converts DC to J-phase AC and drives and controls the J-phase induction motors IM/ and IMJ.
P' type 3-phase inverter, W is the wheel of electric vehicle T, and R is
is a rail that serves as a return line to the DC substation S. In addition, Fig. 1 shows the input-output waveforms of the VVVF type three-phase inverter INV in the electric car T shown in Fig. 7, and (a)
is the input current, and (b) is the output voltage.
そして(C)は出力電流をそれぞれ示している。And (C) shows the output current, respectively.
第2図の(a)に示されているように、VVVF形3相
インバータINVの入力電流IINVは断続したものと
なり、また電気車Tの速度によってその周波数成分は変
化する。この周波数成分が特定の周波数域で許容量を超
えると、軌道継電器(図示せ喝を誤動作させる恐れがあ
り、このため、一般には車上の入力フィルタである主フ
イルタリアクトルLfおよび主フイルタコンデンサCf
によって、VVVF形3相インバータINVから発生す
る交流会が架線りに流れないように抑制されている。As shown in FIG. 2(a), the input current IINV of the VVVF type three-phase inverter INV is intermittent, and its frequency component changes depending on the speed of the electric vehicle T. If this frequency component exceeds the permissible amount in a specific frequency range, there is a risk that the track relay (not shown) may malfunction.
This prevents the exchange generated from the VVVF type three-phase inverter INV from flowing to the overhead wire.
さて、第1図において架線りに流れる高調波電流は、直
流変電所Sに設けられた一般には3相ブリツジ整流器で
構成されている変電所整流器RgCから流出する変電所
整流リップル成分IRN、および上述したvvvF形3
相インバータの入力電流IINVの高調波電流がらなっ
ており、これらは重畳して架線りを流れると共に、帰線
としてのレールR中にも流れることになる。特に双方の
高調波電流の高次周波数が一致すると1合成高調波電流
が急増する。これらの高調波電流および合成高調波電流
は、商用周波軌道回路、誘導無線回路、電話回路および
ATC軌道回路等に対し誘導障害を発生させる恐れがあ
る。従来の変電システムにおいては、車上のVVVF形
3相インノ(−夕INVの入力電流IXNVに関しては
、車上の入力フィルタによりいたが、直流変電所Sに設
けられた変電所整流器RFCの変電所整流リップル成分
InHに関しては、車上の入力フィルタによって多少低
減される程度で完全なものではなかった。従って他の回
路に誘導障害を与える恐れがあった。Now, in Fig. 1, the harmonic current flowing in the overhead wires is the substation rectification ripple component IRN flowing out from the substation rectifier RgC, which is generally composed of a three-phase bridge rectifier provided in the DC substation S, and the above-mentioned substation rectification ripple component IRN. vvvF type 3
There are harmonic currents of the input current IINV of the phase inverter, which flow in a superimposed manner through the overhead wire and also into the rail R as the return wire. In particular, when the high-order frequencies of both harmonic currents match, the number of one combined harmonic current increases rapidly. These harmonic currents and composite harmonic currents may cause induction disturbances in commercial frequency track circuits, inductive radio circuits, telephone circuits, ATC track circuits, and the like. In the conventional substation system, the input current IXNV of the on-board VVVF type 3-phase inverter (-INV) was determined by the on-board input filter, but the substation rectifier RFC installed at the DC substation S As for the rectification ripple component InH, it was not completely reduced by the on-vehicle input filter, but there was a risk of causing an induction disturbance to other circuits.
この発明は上述した欠点を改善する目的でなされたもの
であり、直流変電所において変電所整流器と直列に直列
リアクトルを接続することにより。This invention was made to improve the above-mentioned drawbacks by connecting a series reactor in series with a substation rectifier in a DC substation.
従来の車上のVVVF形3相インバータの入力電流の高
調波電流の抑制に加えて、直流変電所における変電所整
流リップル成分の高調波電流の抑制もおこない、他の回
路への誘導障害が起きないようにした電気車用変電シス
テムを提案するものである。In addition to suppressing the harmonic current of the input current of the conventional VVVF type 3-phase inverter on the vehicle, we also suppress the harmonic current of the substation rectification ripple component in the DC substation, which prevents induction disturbances to other circuits. This paper proposes a substation system for electric vehicles that eliminates the need for electric vehicles.
第3図にはこの発明による電気車用変電システムの直流
変電所の一実施例が示されており、直流質’Iff、所
Sの変電所整流器RgCのレールR側に直列に直列リア
クトルが設けられている。尚、電気車の方は全く同じな
ので省略した。FIG. 3 shows an embodiment of the DC substation of the electric vehicle substation system according to the present invention, in which a series reactor is installed in series on the rail R side of the substation rectifier RgC of the DC quality 'Iff and station S. It is being Note that electric cars are the same, so we have omitted them.
誘導障害を除去するためには、車上のVVVF形J相イ
ンバータINVの発生する高調波筒、流(VVVF形3
相インバータINVの入力電流エエNVの高調波成分)
、および変電所整流器RECの発生する変電所整流リッ
プル成分IRNのによる高調波電流の抑制を同時におこ
なう必要がある。変電所整流リップル成分IRNは次の
(1)式で表わされる。In order to eliminate induction disturbances, harmonic cylinders and currents (VVVF type 3
Input current of phase inverter INV (harmonic component of NV)
It is necessary to simultaneously suppress the harmonic current caused by the substation rectifier ripple component IRN generated by the substation rectifier REC. The substation rectification ripple component IRN is expressed by the following equation (1).
但し、En:重り角を考慮した整流電圧の高調波電圧、
n :高調波次数、
If :主フイルタリアクトルLfのインダクタンス値
、
!
JLI4=架線インダクタンスL(1>のインダクタン
ス値、
変電所整流リップル成分IRNを減らすには、(1)式
から主フイルタリアクトルLfのインダクタンス値J−
fを増やすか、或は架線インダクタンスL#のインダク
タンスLlを増やせばよいことがわかる。しかし、車上
搭載の主フイルタリアクトルLfのインダクタンス値i
fを増やすことは、主フィあるため現実的でないうえ、
車両重量増大による消費電力の増大を招くことになる。However, En: harmonic voltage of the rectified voltage considering the weight angle, n: harmonic order, If: inductance value of the main filter reactor Lf, ! JLI4 = Inductance value of overhead wire inductance L (1>) To reduce the substation rectification ripple component IRN, from equation (1), inductance value J- of main filter reactor Lf
It can be seen that either f should be increased or the inductance Ll of the overhead wire inductance L# should be increased. However, the inductance value i of the main filter reactor Lf mounted on the vehicle
Increasing f is not realistic because there is a main f, and
This results in an increase in power consumption due to an increase in vehicle weight.
従ってこの発明においては、直流変電、所Sの変商、所
整流器RECル−ルR側に直列リアクトルLSを設ケタ
。この直列リアクトルL8のインダクタンス値を1gと
すれば(/1式は次の(コ)式のように表わされる。Therefore, in this invention, a series reactor LS is installed on the DC transformer, transformer S, and rectifier REC rule R side. If the inductance value of this series reactor L8 is 1 g, the equation (/1) can be expressed as the following equation (c).
dπnf (Jf +J−t +J8)(コ)式から明
らかなように、変電所整流リップル成分1訃は変電所整
流器RECに直列に接続された直列リアクトルL8のイ
ンダクタンス7.8の加算分だけ小さくなる。このイン
ダクタンス値J、sは自由に選択できるので、変電所整
流リップル成分IRNを許容値以下に低減することが可
能となる。また、車上のVVVF 形3相インバーター
NYの入力電源I INVの高調波電流の抑制について
は、次のようになる。すなわち、入力フィルタ(主フイ
ルタリアクトルLfおよび主フイルタコンデンサCf)
の減衰特性、すなわち共振周波数frは次の(3)式%
式%
但し、J−f :主フイルタリアクトルLfのインダク
タンス値、
cf:主フイルタコンデンサCfのキャパシタンス値、
軌道継電器(図示せず)に対する誘導障害防止の面から
、特定の周波数範囲fで高調波電流をある許容値内に制
限することがおこなわれる。また。dπnf (Jf + J-t + J8) As is clear from equation (2), the substation rectification ripple component 1 is reduced by the addition of the inductance 7.8 of the series reactor L8 connected in series to the substation rectifier REC. . Since the inductance values J and s can be freely selected, it is possible to reduce the substation rectification ripple component IRN to a permissible value or less. Further, the harmonic current of the input power source IINV of the VVVF type three-phase inverter NY on the vehicle is suppressed as follows. That is, the input filter (main filter reactor Lf and main filter capacitor Cf)
The damping characteristic, that is, the resonant frequency fr, is expressed by the following formula (3)%
Formula % However, J-f: inductance value of main filter reactor Lf, cf: capacitance value of main filter capacitor Cf, harmonic current in a specific frequency range f, from the perspective of preventing inductive disturbances to track relays (not shown). is limited to within a certain tolerance value. Also.
減衰率には次の(4=)式で表わ1れる。The attenuation rate is expressed by the following equation (4=).
従って(3)式および(4I)式から定まるインダクタ
ンスが主フイルタリアクトルLfとして車上搭載し、そ
れ以上のインダクタンスは直流変電所SのI列すアクト
ルL8に受けもたせる。Therefore, the inductance determined from equations (3) and (4I) is mounted on the vehicle as the main filter reactor Lf, and any inductance beyond this is received by the actor L8 in the I column of the DC substation S.
なお、第弘図に示すように、直流変電所Sの変電所整流
器がサイリスタブリッジ°rHYで構成されていても同
様な効果が得られる。Incidentally, as shown in Fig. 1, the same effect can be obtained even if the substation rectifier of the DC substation S is constituted by a thyristor bridge °rHY.
上述したように直流電気鉄道の架線には、変電所整流リ
ップル成分111NおよびVVVF形3相インバータの
入力電流工HTVの高調波電流が重畳して流れ、これら
は他の回路に対して誘導障害を与える。また1両者の高
次周良数が一致すると合成高調波電流が急増し、これも
また誘導障害の原因となる。そこでこの発明においては
、従来おこなわ 。As mentioned above, the rectified ripple component 111N of the substation and the harmonic current of the input current HTV of the VVVF type three-phase inverter flow in the overhead wires of a DC electric railway in a superimposed manner, and these can cause inductive disturbances to other circuits. give. Furthermore, when the high-order frequency numbers of both of them match, the combined harmonic current increases rapidly, which also causes an induction disturbance. Therefore, in this invention, the conventional method is used.
れている車上のVVVF形3相インバータの入力電流の
高調波電流を低減させることと同時に、直流変電所の変
電所整流器と直列に直列リアクトルを接続することによ
り、変電所整流リップル成分を大巾に低減させた。これ
によって1合成高調波電流も許容値以下に抑制すること
ができ、他の回路への誘導障害な除去することができる
という効果が得られる。また、多編成の電気車が変厩所
負荷となる場合においても、直列リアクトルのインダク
タンス値を大きくすれば架線に流れる合成尚調波を成り
許容内に抑制することができるという効値の大きい大型
の主フイルタリアクトルを全車両に搭載する場合と比較
′すればをよるかに経済的であり、また、この場合、車
両重量軽減による省J、ネルギーが達成できるという効
果も得られる。さらK、1軒列リアクトルは、例えば車
上のV V V F形J相インバータのサイリスタの破
壊等による事故電流を抑制する効果も有している。At the same time, by connecting a series reactor in series with the substation rectifier of the DC substation, the substation rectification ripple component can be increased. It was reduced to width. As a result, the single composite harmonic current can also be suppressed to a permissible value or less, and an effect can be obtained in that induction interference to other circuits can be eliminated. In addition, even when a multi-set electric car becomes a substation load, by increasing the inductance value of the series reactor, the composite harmonics flowing to the overhead wire can be suppressed to within the allowable range. This is much more economical compared to the case where a main filter reactor is mounted on all vehicles, and in this case, it is also possible to achieve the effect of saving JPY and energy by reducing the weight of the vehicle. Furthermore, the single eave reactor also has the effect of suppressing accidental current caused by, for example, destruction of the thyristor of the V V V F type J-phase inverter on the vehicle.
第1図は従来の電気車用変電システムの概略図、第2図
はVVVF形3相インバータの入力・出力波形図、第3
図はこの発明による電気車変電システムの直流変電所の
一実施例を示す概略図、第9図はこの発明の他の笑施例
を示す概略図である。
S・・直流変電所、RECφ・変電所整流器、Lφ・架
線、リ ・拳架線インダクタンス、T・・電気車、 P
an・・パンタグラフ、Lf ・・主フイルタリアクト
ル、Cf11II主フイルタコンデンサ。
IM/とIMJ・・3相誘導電動機、INV・・高周波
変調式可変周波数可変電圧形3相インノく一タ(VVV
F形3相インバータ)、W・−車輪、R・・レール、L
8 ・・直列リアクトル、 ’I’HY・・変電所整流
器(サイリスタブリッジ)。
なお、各図中、同一符号は同−又は相当部分を示す。
毘2図 死31
q
死4図
S
手続補正書(自発)
昭和5CP 9月 。日
特許庁長官殿
1、事件の表示
昭和39年特許願第デコ!!9 号
2、発明の名称
一気阜用変電システム
(111j#細沓の発明の詳細な説明の―ム 補正の内
容
(1] 明細書第1頁第6行のr IFKOJの記載を
「R息0」と補正する。
セ) 同第3頁第16行の「高調波電流から」の記載を
「高調波電流から」と補正する。
口) 同第3頁第16行の
の記載を
[
1−内
と補正する。
(41同第6頁県J行の「νe)」の記載なrLtJと
補正する。Figure 1 is a schematic diagram of a conventional substation system for electric vehicles, Figure 2 is an input/output waveform diagram of a VVVF type three-phase inverter, and Figure 3
This figure is a schematic diagram showing one embodiment of a DC substation of an electric vehicle substation system according to the present invention, and FIG. 9 is a schematic diagram showing another embodiment of the present invention. S: DC substation, RECφ, substation rectifier, Lφ, overhead line, Re-fist overhead line inductance, T: Electric car, P
an...Pantograph, Lf...Main filter reactor, Cf11II main filter capacitor. IM/ and IMJ: 3-phase induction motor, INV: High-frequency modulation variable frequency variable voltage 3-phase inductor (VVV
F type 3-phase inverter), W.-Wheel, R..Rail, L
8...Series reactor, 'I'HY...Substation rectifier (thyristor bridge). In each figure, the same reference numerals indicate the same or corresponding parts. 2nd figure Death 31 q Death 4th figure S Procedural amendment (voluntary) Showa 5CP September. Mr. Commissioner of the Japan Patent Office 1, Indication of the case 1964 Patent Application No. Deco! ! 9 No. 2, Title of the invention: Electrical substation system for one-shot use C) Amend the statement "from harmonic current" on page 3, line 16 of the same document to "from harmonic current." C) Amend the statement "from harmonic current" on page 3, line 16 of the same document as [1- Correct to within. (41, page 6, prefecture J line, "ve)" is corrected to rLtJ.
Claims (1)
電圧形3相インバータで主電動機と1.ての前記3相誘
導電動機の速度制御をおこなう電気車に給電をおこなう
直流変電、所において、変電所整流器と直列に直列リア
クトルを接続したことを特徴とする電気車用変電システ
ム。 (λ)変電所整流器がサイリスタブリッジで構成されて
いる特許請求の範囲第1項記載の電気車用変電システム
。[Claims] 1] (1) A three-phase induction motor is used as the main motor, and a variable wave number variable voltage type three-phase inverter is used as the main motor and 1. A substation system for an electric car, characterized in that a series reactor is connected in series with a substation rectifier at a DC substation that supplies power to the electric car that controls the speed of the three-phase induction motor. (λ) The substation system for an electric vehicle according to claim 1, wherein the substation rectifier is constituted by a thyristor bridge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9299984A JPS60236844A (en) | 1984-05-11 | 1984-05-11 | Voltage varying system for electric vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9299984A JPS60236844A (en) | 1984-05-11 | 1984-05-11 | Voltage varying system for electric vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60236844A true JPS60236844A (en) | 1985-11-25 |
Family
ID=14070055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9299984A Pending JPS60236844A (en) | 1984-05-11 | 1984-05-11 | Voltage varying system for electric vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60236844A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0585173A1 (en) * | 1992-08-25 | 1994-03-02 | Gec Alsthom Transport Sa | Active filter for traction unit fed by single phase catenary |
JP2009177012A (en) * | 2008-01-25 | 2009-08-06 | West Japan Railway Co | Dc reactor |
JP2019201504A (en) * | 2018-05-17 | 2019-11-21 | 株式会社日立製作所 | Motor control device and method for controlling the same |
-
1984
- 1984-05-11 JP JP9299984A patent/JPS60236844A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0585173A1 (en) * | 1992-08-25 | 1994-03-02 | Gec Alsthom Transport Sa | Active filter for traction unit fed by single phase catenary |
FR2695221A1 (en) * | 1992-08-25 | 1994-03-04 | Alsthom Gec | Active filter for traction unit powered by single-phase catenary. |
JP2009177012A (en) * | 2008-01-25 | 2009-08-06 | West Japan Railway Co | Dc reactor |
JP2019201504A (en) * | 2018-05-17 | 2019-11-21 | 株式会社日立製作所 | Motor control device and method for controlling the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Steimel | Electric railway traction in Europe | |
JP3361047B2 (en) | Power supply for vehicles | |
KR100206030B1 (en) | Electric power control system for electric vehicles operating in both AC and DC zones | |
PT100665A (en) | A PROCESS AND DEVICE FOR THE OPERATION OF AN ALTERNATE CURRENT CONVERTER / CONTINUOUS CURRENT OF A THREE-PHASE POWER CURRENT MEANS OF AN ELECTRIC AUTOMOBILE AS A BOAT CHARGE ARROW | |
CN104935205B (en) | Traction drive transformer | |
CN105897023A (en) | Railway vehicle drive system | |
CN110661297B (en) | A high-speed railway regenerative braking energy feedback system and control method thereof | |
KR100310714B1 (en) | Single Phase Overhead Contact Wire Active Filter for Electric Vehicles | |
CN110138101A (en) | A kind of wireless power supply system circuit topology applied to rail traffic | |
JP3585733B2 (en) | Power converter | |
CN109215977B (en) | Traction-compensation transformer | |
CN109065338B (en) | In-phase traction transformer | |
JPS60236844A (en) | Voltage varying system for electric vehicle | |
JP2783204B2 (en) | Control method of PWM converter | |
Kebede et al. | Power electronics converter application in traction power supply system | |
Llaneza et al. | Implementation of Active Power Substation for Harvesting Regenerative Braking Energy in Italian 3 kV Railway Systems | |
Hassane | Harmonic analysis caused by static converters of the railway high speed train and their impact on the track circuit | |
EP2631104B1 (en) | DC-link decoupling circuit for parallel inverters | |
Hosseini et al. | Power quality improvement of DC electrified railway distribution systems using hybrid filters | |
JP2514758B2 (en) | Static var compensator | |
CN109435783B (en) | Negative sequence management system for AT power supply mode of electrified railway traction power supply system | |
Maeda et al. | A hybrid single-phase power active filter for high order harmonics compensation in converter-fed high speed trains | |
JPH099412A (en) | AC electric vehicle power converter | |
Tachibana et al. | Harmonic currents in catenary systems from chopper control | |
JPH0919161A (en) | Power converter for AC electric vehicle drive |