[go: up one dir, main page]

JPS60234937A - Titanium diboride-base sintered hard alloy - Google Patents

Titanium diboride-base sintered hard alloy

Info

Publication number
JPS60234937A
JPS60234937A JP8936884A JP8936884A JPS60234937A JP S60234937 A JPS60234937 A JP S60234937A JP 8936884 A JP8936884 A JP 8936884A JP 8936884 A JP8936884 A JP 8936884A JP S60234937 A JPS60234937 A JP S60234937A
Authority
JP
Japan
Prior art keywords
tib2
alloy
cemented carbide
hard alloy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8936884A
Other languages
Japanese (ja)
Other versions
JPS6316460B2 (en
Inventor
Katsuhiro Nishiyama
勝廣 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBASON KK
Original Assignee
SHIBASON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBASON KK filed Critical SHIBASON KK
Priority to JP8936884A priority Critical patent/JPS60234937A/en
Publication of JPS60234937A publication Critical patent/JPS60234937A/en
Publication of JPS6316460B2 publication Critical patent/JPS6316460B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a TiB2-base sintered hard alloy having very high hardness and higher sinterability than a conventional alloy by bonding TiB2 with an Ni- Zr alloy so as to make use of the high hardness and wear resistance of TiB2. CONSTITUTION:TiB2 is bonded with an Ni-Zr alloy prepd. by adding 2-98.7wt% Zr to Ni to obtain a TiB2-base very hard alloy. The amount of the Ni-Zr alloy used is 0.1-50wt% of the amount of TiB2. When the TiB2-base very hard alloy contg. the Ni-Zr alloy as a binder is used, a high density sintered body is easily manufactured by conventional sintering under ordinary pressure. The TiB2-base sintered hard alloy is provided with advantages of TiB2 and has high hardness and deflective strength.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は2ほう化チタン(以下TiB2と略記する。)
粒子を基質とし、それらを結合金属で結合させた2はう
化チタン基質超合金に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to titanium diboride (hereinafter abbreviated as TiB2).
This invention relates to a titanium boroside matrix superalloy in which particles are used as a matrix and the particles are bonded by a bonding metal.

〔従来技術〕[Prior art]

TiB2は従来から知られている超硬合金の構成素材で
ある炭化タングステン(WC)または炭化チタン(Ti
C)等に比較して硬度が高く、耐酸化抵抗も大きく、し
かも耐摩耗性に優れていることから、TlB2を基質と
した高性能の超硬合金を作製すれば硬度的にも耐摩耗性
にも優れた超硬合金が得られることが期待できる。
TiB2 is made from tungsten carbide (WC) or titanium carbide (Ti), which are conventionally known constituent materials of cemented carbide.
It has higher hardness, greater oxidation resistance, and excellent wear resistance than C), so if a high-performance cemented carbide using TlB2 as a substrate is made, it will have high hardness and wear resistance. It is expected that an excellent cemented carbide can be obtained.

しかし、この種の超硬合金を作製する際には、最適な結
合金属の発見が重要であり、従来のWC系超硬合金にお
いては最適結合金属はCo又はCo−Mo合金であり、
TiC系超硬合金においてはNi−Mo合金であった。
However, when producing this type of cemented carbide, it is important to discover the optimal bonding metal, and in conventional WC-based cemented carbide, the optimal bonding metal is Co or Co-Mo alloy.
The TiC-based cemented carbide was a Ni-Mo alloy.

一方、TiB2系超硬合金においては、未だ結合金属と
して満足すべきものは無かった。例えばCr,Si,C
u,Co,Fe,Niなどの純金属系の結合金属および
N1−P,Ni−B,Co−Bなどの合金系の結合金属
が検討されているが、このうちNi−Bを除く他の結合
金属はTiB2粒子との界面接合が不充分であったりし
て、焼結性も悪く、しかも機械的強度も低いので実用的
ではない。
On the other hand, as for TiB2-based cemented carbide, there is still no satisfactory bonding metal. For example, Cr, Si, C
Pure metal-based bonding metals such as u, Co, Fe, and Ni and alloy-based bonding metals such as N1-P, Ni-B, and Co-B are being considered; The bonding metal has insufficient interfacial bonding with the TiB2 particles, has poor sinterability, and has low mechanical strength, so it is not practical.

〔目的〕〔the purpose〕

本発明は、上述した従来のTiB2に対する結合金属よ
り焼結性および機械的性質が優れた結合金属でTiB2
を結合して各種性質が非常に優れた2ほう化チタン基質
超硬合金を提供することを目的とする。
The present invention provides a bonding metal for TiB2 that has superior sinterability and mechanical properties than the conventional bonding metal for TiB2 described above.
The purpose of this invention is to provide a titanium diboride matrix cemented carbide having extremely excellent various properties.

〔発明の概要〕[Summary of the invention]

本発明は、ニッケル(Ni)とこれに添加したジルコニ
ウム(Zr)との合金を結合金属として結合したことを
特徴とするものである。
The present invention is characterized in that an alloy of nickel (Ni) and zirconium (Zr) added thereto is bonded as a bonding metal.

本発明にかかるTiB2に対する結合金属であるNi−
Zr合金の組成は第1図に示すNi−Zr系合金状態図
に示すNiに対し(2〜98.7)重量%Zrである。
Ni- which is a binding metal for TiB2 according to the present invention
The composition of the Zr alloy is (2 to 98.7)% by weight Zr relative to Ni as shown in the Ni-Zr alloy phase diagram shown in FIG.

さらにTiB2に対する結合金属量は(0.1〜50%
)重量%(Ni−Zr)合金である。
Furthermore, the amount of bonded metal to TiB2 is (0.1 to 50%
)% by weight (Ni-Zr) alloy.

本発明にかかるNi−Zr合金を結合金属として用いる
場合には、通常の焼結法である常圧焼結法(若くは無加
圧焼結法と呼ばれる場合もある。)で容易に高密度Ti
B2基超硬合金の焼結体が得られる。
When the Ni-Zr alloy according to the present invention is used as a bonding metal, it can be easily formed into a high-density sintering method using a normal pressureless sintering method (sometimes referred to as a pressureless sintering method). Ti
A sintered body of B2 group cemented carbide is obtained.

本発明により得られたTiB2基質超硬合金は、硬度が
大きく、しかも抗折強度が大きくTiB2の持つ利点を
備えたTiB2基質超硬合金である。
The TiB2 matrix cemented carbide obtained by the present invention is a TiB2 matrix cemented carbide having high hardness and high flexural strength, which has the advantages of TiB2.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

第1実施例 (1)TiB2基質超硬合金の作製方法325メッシュ
以下のTiB2粉にNi−30重量%Zr合金粉を重量
比にして0.2重量%加え、WC−Co超硬合金製のボ
ールミル中で、加分混合粉砕し、これらの混合粉を2〜
4ton/cm2の圧縮圧力で5X10X30mm3の
直方体に成形し、黒鉛型(又は炭素製)の台の上におい
て真空度〜10−3mmHgの真空中、2100℃で1
時間加熱する。
First Example (1) Method for producing TiB2 substrate cemented carbide 0.2% by weight of Ni-30% by weight Zr alloy powder was added to TiB2 powder of 325 mesh or less to form a WC-Co cemented carbide. Additionally mixed and ground in a ball mill, and these mixed powders are
It was molded into a rectangular parallelepiped of 5 x 10 x 30 mm3 with a compression pressure of 4 ton/cm2, and heated at 2100°C on a graphite mold (or carbon) stand in a vacuum of ~10-3 mmHg.
Heat for an hour.

(2)上記作製方法で得られた本発明のTiB2基質超
硬合金の特性 (a)組成 高密度のTiB2単体の超硬合金となる。
(2) Characteristics of the TiB2-based cemented carbide of the present invention obtained by the above manufacturing method (a) Composition A cemented carbide made of TiB2 alone with high composition.

(b)気孔率 気孔率は0.01%以下となる。(b) Porosity The porosity is 0.01% or less.

(c)ピッカース硬度(荷重100g)3350〜34
00kg/mm2を示した。(第2図のTiB2−(N
i−Zr)線参照)(d)抗折強度(JISH5501
−1956の試験法に基づく) 75〜85kg/mmを示した。
(c) Pickers hardness (load 100g) 3350-34
00 kg/mm2. (TiB2-(N
i-Zr) line) (d) bending strength (JISH5501
-1956 test method) showed 75 to 85 kg/mm.

(e)組織状態 第3図は金属顕微鏡の写真で網目状に見える部分がTi
B2結晶粒界であり、全く気孔が無いことが判かる。
(e) Structure state Figure 3 is a photo taken with a metallurgical microscope. The mesh-like part is Ti.
It can be seen that this is a B2 grain boundary and that there are no pores at all.

このように、TiB2に対しNi−Zr合金を3%以下
添加した焼結体は気孔の全く無い高密度TiB2超硬合
金が得られることが判かる(3)従来の超硬合金との比
較 従来のWC−Co合金、WC−TiC−Co合金、Ti
C−(Ni−Mo)合金およびCr3C2−40WC−
15Ni合金等のピッカース硬度は1000〜2500
kg/mm2である(第2図のWC−Co線参照)から
、本発明のTiB2基質超硬合金は硬度の点で著しく優
れている。又、従来のTiB2焼結体の気孔率は4〜1
0%であるから、本発明のTiB2基質超硬合金は高密
度化を達成したという点で著しく優れている。
In this way, it can be seen that a sintered body in which 3% or less of Ni-Zr alloy is added to TiB2 can be obtained as a high-density TiB2 cemented carbide with no pores. (3) Comparison with conventional cemented carbide WC-Co alloy, WC-TiC-Co alloy, Ti
C-(Ni-Mo) alloy and Cr3C2-40WC-
Pickers hardness of 15Ni alloy etc. is 1000-2500
kg/mm2 (see WC-Co line in FIG. 2), the TiB2 matrix cemented carbide of the present invention is significantly superior in hardness. Moreover, the porosity of the conventional TiB2 sintered body is 4 to 1.
0%, the TiB2 matrix cemented carbide of the present invention is significantly superior in that it achieves high density.

上述の従来合金の抗折強度は40〜180kg/mm2
であり、本発明のTiB2基質超硬合金の抗折強度もこ
の範囲に含まれているから、本発明のTiB2基質超硬
合金は耐摩耗用工具としての使用に充分耐えるものであ
る。
The bending strength of the conventional alloys mentioned above is 40 to 180 kg/mm2.
Since the flexural strength of the TiB2-based cemented carbide of the present invention is also within this range, the TiB2-based cemented carbide of the present invention can sufficiently withstand use as a wear-resistant tool.

第2実施例 (1)超硬合金の作製方法 325メッシュ以下のTiB2粉末とNi−Zr合金粉
をWC−Co超硬合金製のボールミルで30分間、粉砕
混合し、これらの混合粉を2〜4ton/cm2の圧縮
圧力で5×10×30mm2の直方体に成形し、黒鉛(
又は炭素)製の台の上において真空度〜10−3mmH
gの真空中、1150〜2100℃で1時間加熱する。
Second Example (1) Manufacturing method of cemented carbide TiB2 powder of 325 mesh or less and Ni-Zr alloy powder were pulverized and mixed in a ball mill made of WC-Co cemented carbide for 30 minutes. It was molded into a rectangular parallelepiped of 5 x 10 x 30 mm2 with a compression pressure of 4 ton/cm2, and graphite (
or carbon) on a stand made of vacuum to 10-3 mmH.
Heat at 1150-2100° C. for 1 hour in a vacuum of 100 g.

(2)用いた結合合金(Ni−Zr)の組成と添加量N
iに対するZrの組成は10重量%、22重量%、30
重量%、37重量%、57重量%、61重量%、70重
量%、76重量%、90重量%の9種類を用いた。又、
TiB2に対するNi−Zr合金の添加量は3重量%〜
50重量%である。
(2) Composition and addition amount N of the bonding alloy (Ni-Zr) used
The composition of Zr with respect to i is 10% by weight, 22% by weight, 30% by weight.
Nine types were used: % by weight, 37% by weight, 57% by weight, 61% by weight, 70% by weight, 76% by weight, and 90% by weight. or,
The amount of Ni-Zr alloy added to TiB2 is 3% by weight ~
It is 50% by weight.

(3)上記の作製方法で得られた本発明のTiB2基質
超硬合金の特性 (a)組成 TiB2(3〜50)重量%(Ni−10重量%〜90
重量%Zr)の超硬合金となる。
(3) Properties of the TiB2-based cemented carbide of the present invention obtained by the above manufacturing method (a) Composition TiB2 (3 to 50) wt% (Ni-10 wt% to 90 wt%
wt% Zr).

(b)ビッカース硬度(荷重100g)Ni−Zr合金
の添加量が増すとともに硬度が減少するが、第2図のT
iB2−(5〜25)重量%(Ni−30型量%Zr)
の各測定点にあるように、3200〜1500kg/m
m2を示した。
(b) Vickers hardness (load: 100 g) As the amount of Ni-Zr alloy added increases, the hardness decreases, but T
iB2-(5-25) weight% (Ni-30 type weight% Zr)
As shown at each measurement point, 3200 to 1500 kg/m
m2 was shown.

(c)抗折強度(JIS H5501−1956の試験
法に基づく。) 抗折強度は、Ni−Zr合金の組成および添加量が変化
しても余り変化せず、60〜82kg/mm2を示した
(c) Flexural strength (based on the test method of JIS H5501-1956) The flexural strength did not change much even when the composition and addition amount of the Ni-Zr alloy changed, and was 60 to 82 kg/mm2. .

(d)組織状態 第4図は本実施例のTiB2基質超硬合金の金属顕微鏡
組織を示す写真の1例であり、白い部分がTiB2相で
黒灰色の部分がNi−Zr合金相である。このようにT
iB2粒子はNi−Zr合金によって結合され、かつ気
孔がほとんど無いことが判かる。
(d) Structure state FIG. 4 is an example of a photograph showing the metallurgical microscopic structure of the TiB2 matrix cemented carbide of this example, where the white part is the TiB2 phase and the black-gray part is the Ni-Zr alloy phase. Like this T
It can be seen that the iB2 particles are bonded by the Ni-Zr alloy and have almost no pores.

(4)従来の超硬合金との比較 第1実施例と同様に本発明のTiB2基質超硬合金は焼
結性および硬度の点で著しく優れている。
(4) Comparison with conventional cemented carbide Similar to the first example, the TiB2 matrix cemented carbide of the present invention is significantly superior in terms of sinterability and hardness.

なお、常圧焼結法の他にホットプレス法などの加圧焼結
法の手法を用いて焼結しても上記2つの実施例と同様に
硬度的に優れた気孔の無い超硬合金が得られる。
In addition, even if sintered using a pressure sintering method such as a hot press method in addition to the pressureless sintering method, a cemented carbide with excellent hardness and no pores can be obtained as in the above two examples. can get.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、従来品より焼結性が優れた
TiB2基質超硬合金を得ることができ、TiB2の高
硬度性、耐摩耗性を生かした非常に硬度の高い超硬合金
を得ることができ、さらに機械的特性も従来品に比して
劣らない極めて優れた超硬合金が得られる。
As described above, according to the present invention, it is possible to obtain a TiB2 matrix cemented carbide that has better sinterability than conventional products, and to produce a very hard cemented carbide that takes advantage of the high hardness and wear resistance of TiB2. Furthermore, a cemented carbide with extremely excellent mechanical properties comparable to those of conventional products can be obtained.

特に従来TiB2単体の高密度焼結体を得ることは困難
とされていたが、本発明のNi−Zr合金を少量添加す
るこ七により、気孔の全く無いTiB2単味焼結体が得
られる。
In particular, it has traditionally been difficult to obtain a high-density sintered body of TiB2 alone, but by adding a small amount of the Ni-Zr alloy of the present invention, a TiB2 single sintered body with no pores can be obtained.

また、本発明の超硬合金は従来のWC−Co超硬合金等
と同様にあらゆる耐摩耗用工具に使用することが出来る
と共に、高硬度、耐摩耗性があるため応用範囲が従来品
より広くなり産業上の効果が極めて大である。
In addition, the cemented carbide of the present invention can be used in all types of wear-resistant tools like conventional WC-Co cemented carbide, and has a wider range of applications than conventional products due to its high hardness and wear resistance. Therefore, the industrial effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNi−Zr系合金の状態図、第2図は本発明の
TiB2基質超硬合金と従来のWC−Coとのビッカー
ス硬度の比較特性図、第3図は第1実施例のTiB2基
質超硬合金の金属顕微鏡組織写真(500倍)、第4図
は本発明の第2実施例のTiB2基質超硬合金の金属顕
徴税写真である。 特許出願人 西 山 勝 廣 図面の浄書(内容に変更なし) 尾2図 t 6 図 ゛・東y ′L1− 図 手 続 補 正 べ K(41159tf[6月6[1 ・侍1、・1庁艮官 れ=杉和友 殿 1者f’l−の&示 11f(オl]59年q、’j♂[碩第 89368 
弓2発明の名称 2はう化チタン基質1附硬合金 3111白りをする名 13件との関h ′F¥i、−t +、、l l組人f
−j朽す^叶H」小山1奇東亀山264.1 ;rij
l轄東は理科大学理工学部俵械1−学、+41/(1、
ηIi、明細11)、同曲、i?よび、;1!明−(5
111i止の内容 ]1にり捕光する。 (!i)、 Cじド1こ町’ ”44. ’tA シ1
;;゛す、うしs−t、−r a゛+ 57g\、□ 
k ’ノ木& −杓(匹丸じ象テロ、 L−)。
Figure 1 is a phase diagram of the Ni-Zr alloy, Figure 2 is a comparative characteristic diagram of Vickers hardness between the TiB2 matrix cemented carbide of the present invention and conventional WC-Co, and Figure 3 is the TiB2 of the first embodiment. FIG. 4 is a metal micrograph of the substrate cemented carbide (500x magnification), and FIG. 4 is a metal micrograph of the TiB2 substrate cemented carbide of the second embodiment of the present invention. Patent applicant Katsuhiro Nishiyama's engraving of the drawing (no changes to the content) Figure 2 t 6 Figure ゛・East y 'L1- Drawing procedure correction BeK (41159tf [June 6 [1, Samurai 1, 1] Government official Re = Kazutomo Sugi, 1st person f'l- & 11f (Ol) 59th year q, 'j♂ [Seki No. 89368
Bow 2 Name of the invention 2 Hard alloy with titanium hydride substrate 1 3111 Whitening name 13 relationships h ′F\i, -t +,, l l Kumite f
-j Decay ^ Kano H” Koyama 1 Kito Kameyama 264.1; rij
l Jurisdiction East is University of Science, Faculty of Science and Technology, Tawara Mechanical Engineering, +41/(1,
ηIi, specification 11), same song, i? Call ;1! Ming-(5
111i stop contents] Light is captured by 1. (!i), Cjid1komachi'``44.
;;゛su, cow s-t, -r a゛+ 57g\,□
k 'noki & -dake (Torumaruji elephant terror, L-).

Claims (1)

【特許請求の範囲】[Claims] ニッケル・ジルコニウム合金によって結合された2ほう
化チタンからなる2ほう化チタン基質超硬合金。
A titanium diboride matrix cemented carbide consisting of titanium diboride bonded by a nickel-zirconium alloy.
JP8936884A 1984-05-07 1984-05-07 Titanium diboride-base sintered hard alloy Granted JPS60234937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8936884A JPS60234937A (en) 1984-05-07 1984-05-07 Titanium diboride-base sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8936884A JPS60234937A (en) 1984-05-07 1984-05-07 Titanium diboride-base sintered hard alloy

Publications (2)

Publication Number Publication Date
JPS60234937A true JPS60234937A (en) 1985-11-21
JPS6316460B2 JPS6316460B2 (en) 1988-04-08

Family

ID=13968751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8936884A Granted JPS60234937A (en) 1984-05-07 1984-05-07 Titanium diboride-base sintered hard alloy

Country Status (1)

Country Link
JP (1) JPS60234937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055280A (en) * 1987-09-18 1991-10-08 National Research Institute For Metals Process for producing transition metal boride fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055280A (en) * 1987-09-18 1991-10-08 National Research Institute For Metals Process for producing transition metal boride fibers

Also Published As

Publication number Publication date
JPS6316460B2 (en) 1988-04-08

Similar Documents

Publication Publication Date Title
JP5051168B2 (en) Nitride-dispersed Ti-Al target and method for producing the same
US11247268B2 (en) Methods of making metal matrix composite and alloy articles
JPH05209247A (en) Cermet alloy and its production
CN1312078C (en) Submicron grain Ti(C,N)-base cermet and its prepn process
JP2019510872A5 (en)
JPH055152A (en) Hard heat resisting sintered alloy
US5128080A (en) Method of forming diamond impregnated carbide via the in-situ conversion of dispersed graphite
JPS60234937A (en) Titanium diboride-base sintered hard alloy
CN103468994A (en) Method for preparing molybdenum nickel chromium boron multivariant boride metal ceramic
Zhang et al. Effect of WС content on the mechanical properties and high temperature oxidation behavior of Ti (С, N)-based cermets
JPS5946907B2 (en) Sintered cermets for wear-resistant materials and tools
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JPS59118852A (en) Composite high speed steel of sintered hard alloy and its production
JP7351582B1 (en) Sintered alloy and mold
JP2017186624A (en) Hard metal alloy and manufacturing method therefor and carbide tool
JP4121694B2 (en) Sintered body Ni-based cermet and parts for plastic molding machine and die casting machine using the same
JP7429432B2 (en) Pressure sintered body and its manufacturing method
JP2716886B2 (en) Method for producing Ti-Al intermetallic compound
JPH1136037A (en) Hard molybdenum alloy, wear-resistant alloy, wear-resistant sintered alloy and method for producing the same
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JP3603318B2 (en) Double boride based sintered alloy
JP5896394B2 (en) Composite structure hard material and method for producing the same
JP2019077930A (en) Hard phase dispersed nickel group intermetallic compound composite sintered material, manufacturing method therefor, and corrosion resistant abrasion resistant component using the material
US4092156A (en) Process for preparing titanium carbide base powder for cemented carbide alloys

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees