JPS60234213A - Magneto-resistance effect head - Google Patents
Magneto-resistance effect headInfo
- Publication number
- JPS60234213A JPS60234213A JP9040084A JP9040084A JPS60234213A JP S60234213 A JPS60234213 A JP S60234213A JP 9040084 A JP9040084 A JP 9040084A JP 9040084 A JP9040084 A JP 9040084A JP S60234213 A JPS60234213 A JP S60234213A
- Authority
- JP
- Japan
- Prior art keywords
- storage medium
- thin film
- magnetic storage
- magnetoresistive
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000694 effects Effects 0.000 title claims abstract description 8
- 230000005291 magnetic effect Effects 0.000 claims abstract description 65
- 239000010409 thin film Substances 0.000 claims description 19
- 230000005294 ferromagnetic effect Effects 0.000 claims description 17
- 239000000696 magnetic material Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 2
- 230000035699 permeability Effects 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 230000003247 decreasing effect Effects 0.000 abstract 2
- 239000004020 conductor Substances 0.000 description 11
- 230000005415 magnetization Effects 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 4
- 229910000889 permalloy Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910003266 NiCo Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は磁気記憶媒体に書き込まhだ磁気的情報を、い
わゆる磁気抵抗効果を利用して、読み出しを行う強磁性
磁気抵抗効果素子(以下、MR素子と称す)を備えた磁
気抵抗効果ヘッド(以下、MRヘッドと称す)に関する
。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a ferromagnetic magnetoresistive element (hereinafter referred to as "ferromagnetic magnetoresistive element") that reads out magnetic information written in a magnetic storage medium by utilizing the so-called magnetoresistive effect. The present invention relates to a magnetoresistive head (hereinafter referred to as an MR head) equipped with a magnetoresistive head (hereinafter referred to as an MR head).
(従来技術とその問題点)
近年、MRヘッドは、磁気記録における記録密度の向上
に大きく貢献するものとして注目されている。(Prior art and its problems) In recent years, MR heads have attracted attention as a device that greatly contributes to improving the recording density in magnetic recording.
周知の如く、MR素子を磁気記憶媒体からの信号磁界に
対して、線形応答を呈する高効率の再生ヘッドとして用
いる場合には、MR水素子流すセンス電流IとMR水素
子磁化Mの成す角度を所定の値に設定するバイアス手段
が必要である。又、記録密度の増大に対して、その再生
分解能を高める手段も必要とされ梅々の検討がなされて
いる。As is well known, when an MR element is used as a highly efficient reproducing head that exhibits a linear response to a signal magnetic field from a magnetic storage medium, the angle formed by the sense current I through which MR hydrogen atoms flow and the MR hydrogen element magnetization M is A biasing means is required to set it to a predetermined value. Furthermore, in response to the increase in recording density, there is a need for means for increasing the reproduction resolution, and numerous studies are being made.
特に、高記録密度における再生分解能の低下は次の様に
説明されている。今、第1図に示すMR素子1(長さL
、幅り、厚みtMのストライプ状に形成され、長さL
方向にセンス電流■が供給され適当なバイアス磁界によ
って磁化Mとθbの角度を成す)と磁気記憶媒体2の相
対的位置関係において、磁気記憶媒体2からの信号磁界
H8は低記録密度時においては、MR素子1の幅り方向
に充分に印加され、MR素子1全体が抵抗変化に寄与し
大きい再生出力が得られる。しかし高記録密度時には、
MR素子1に充分な信号磁界H8が到達しえず、抵抗変
化に寄与するのは、磁気記憶媒体2に最近接する領域の
みとなり、大きく再生出力が低下するとされている。更
に、MR素子1の磁化Mのバイアス状態は一般に、幅り
の中央部で最適となるように設定され(即ちθbご45
度となる様に設定されている)でいるが、高記録密度時
に最も抵抗変化に寄与する、磁気記憶媒体2 VC最近
接する領域では、MR素子10幅り方向の反磁界のため
、理想的バイアス状態は実現されておらず(即ちθb(
45度)、再生感度を低下させていた。In particular, the decrease in reproduction resolution at high recording densities is explained as follows. Now, the MR element 1 (length L
, width, thickness tM, and length L.
At low recording density, the signal magnetic field H8 from the magnetic storage medium 2 is , are sufficiently applied in the width direction of the MR element 1, and the entire MR element 1 contributes to the change in resistance, resulting in a large reproduction output. However, at high recording density,
It is said that a sufficient signal magnetic field H8 cannot reach the MR element 1, and only the region closest to the magnetic storage medium 2 contributes to the resistance change, resulting in a significant drop in reproduction output. Furthermore, the bias state of the magnetization M of the MR element 1 is generally set to be optimal at the center of the width (i.e., θb
However, in the region closest to the magnetic storage medium 2 VC, which contributes the most to the resistance change at high recording density, due to the demagnetizing field in the width direction of the MR element 10, the ideal bias The state is not realized (i.e. θb(
45 degrees), which lowered the playback sensitivity.
上述したMRヘッドの欠点を解決するため、特開昭57
−109121に、MR素子1の幅り中央部で磁化Mを
飽和させ(即ち、θb”:9 o度に設定)磁気記憶媒
体2に最近接する領域のバイアス状態を最高に設定(即
ちθb”l:’45度)する方法が開示されている。こ
の手法によれば、低記録密度から高記録密度にわたって
、抵抗変化に寄与するのは、磁気記憶媒体2に最近接す
る領域のみであるので、比較的良好な記録密度特性が得
られる。In order to solve the above-mentioned drawbacks of the MR head, Japanese Patent Laid-Open No. 57
-109121, the magnetization M is saturated at the center of the width of the MR element 1 (i.e., θb": set to 9 degrees), and the bias state of the region closest to the magnetic storage medium 2 is set to the maximum (i.e., θb"l). : '45 degrees) is disclosed. According to this method, only the region closest to the magnetic storage medium 2 contributes to resistance change over a range from low recording density to high recording density, so relatively good recording density characteristics can be obtained.
しかし、この様なバイアス状態を実現するためには、M
R素子1に印加されるバイアス磁界は少なくともMR素
子1の幅り方向の反磁界以上に設定しなければならない
。例えば、MR$子1として飽和磁化M−800emu
/c c のパーマロイを用い、その寸法をtu−=0
.05pm、h=5pmに設定した場合、Mr を消磁
してしまい、磁気記憶システムとして、信頼性にとほし
いものとなっでいた。However, in order to realize such a bias state, M
The bias magnetic field applied to the R element 1 must be set at least higher than the demagnetizing field in the width direction of the MR element 1. For example, as MR$1, saturation magnetization M-800emu
/cc Permalloy is used, and its dimensions are tu-=0
.. If the setting is 0.05 pm and h=5 pm, Mr 2 will be demagnetized, resulting in a magnetic storage system that is not reliable.
(発明の目的)
本発明は、このような欠点を招来することなく高記録密
度側の特性を向上することのできる磁気抵抗効果ヘッド
を提供することにある。(Object of the Invention) An object of the present invention is to provide a magnetoresistive head that can improve characteristics on the high recording density side without causing such drawbacks.
(発明の構成)
本発明によれば、強磁性薄膜を含む磁気抵抗効果素子と
前記磁気抵抗効果素子にセンス電流を供給するだめの二
つの電極が接続された構造を有する磁気抵抗効果ヘッド
においてこの二つの電極の間隔は、磁気記憶媒体に最も
近い部分が磁気記憶媒体に最も遠い部分よりも小さいこ
とを特徴とする磁気抵抗効果ヘッドが得られる。(Structure of the Invention) According to the present invention, in a magnetoresistive head having a structure in which a magnetoresistive element including a ferromagnetic thin film and two electrodes for supplying a sense current to the magnetoresistive element are connected, A magnetoresistive head is obtained in which the distance between the two electrodes is smaller at the part closest to the magnetic storage medium than at the part furthest from the magnetic storage medium.
(構成の詳細な説明)
本発明は、上述の構成をとることにょシ従来技5−
術の問題点を解決した。即ち、本発明では、MR水素子
接続された二つの電極の間隔を磁気記憶媒体に最近接す
る領域で小さく設定しているため、二つの電極を径由し
てMR水素子流れるセンス電流は、MR水素子幅方向で
不均一に流り1、特に磁気記憶媒体に最近接する領域に
集中することになる。従って、磁気記憶媒体に最近接す
る領域における抵抗変化が最も再生出力に寄与すること
になる。即ち、1viR素子の高記録密度時に最も抵抗
変化に寄与する領域を常に再生出力として得ているため
、広範囲にわたる記録密度に対し、tlぼ均一な再生出
力を得ることが可能となる。(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-mentioned configuration. That is, in the present invention, since the interval between the two electrodes connected to the MR hydrogen element is set small in the region closest to the magnetic storage medium, the sense current flowing through the MR hydrogen element via the two electrodes is smaller than the MR hydrogen element. The hydrogen atoms flow non-uniformly in the width direction, and are particularly concentrated in the region closest to the magnetic storage medium. Therefore, the resistance change in the region closest to the magnetic storage medium contributes most to the reproduction output. That is, since the region that contributes most to the resistance change is always obtained as the reproduction output when the 1viR element has a high recording density, it is possible to obtain a reproduction output that is almost uniform over a wide range of recording densities.
更に、センス電流によって発生する磁界を直接、又は他
の磁性体を径由して間接的に利用してMR水素子バイア
ス状態を実現するMRヘッドにおいては、センス電流に
比例したバイアス磁界を得ることができるため、MR水
素子磁気記憶媒体に最近接する領域を最大感度とするバ
イアス状態が実現される。これは、高記録密度時の再生
出力の低下を補正し、良好な記録密度特性が得られる。Furthermore, in an MR head that achieves an MR hydrogen bias state by directly utilizing the magnetic field generated by the sense current or indirectly through another magnetic material, it is possible to obtain a bias magnetic field proportional to the sense current. As a result, a bias state is realized in which the region closest to the MR hydrogen magnetic storage medium has maximum sensitivity. This corrects the decrease in reproduction output at high recording density, and provides good recording density characteristics.
6−
以下、本発明の構成例について図面を参照してさらに詳
細に説明する。6- Hereinafter, configuration examples of the present invention will be described in further detail with reference to the drawings.
第2図は、本発明の第1の例を示す概略斜視図で、短柵
状MR素子1の長さ方向の両端に、センス電流■を供給
するための電極3及び4がMR素子lの幅り方向に対し
、傾斜をもって接続されている。電極3及び40間隔は
、MR素子1が磁気記憶媒体2に近接する領域でW2、
最も離れた領域でWlの値を有し、”+ > W、の関
係を満す様に設定されている。FIG. 2 is a schematic perspective view showing a first example of the present invention, in which electrodes 3 and 4 for supplying a sense current (1) are installed at both ends of the short fence-like MR element (1) in the length direction of the MR element (1). They are connected at an angle in the width direction. The spacing between the electrodes 3 and 40 is W2 in the region where the MR element 1 is close to the magnetic storage medium 2;
The farthest region has a value of Wl, and is set so as to satisfy the relationship "+>W".
MR素子1は例えばNiCo系合金、N i F e系
合金(パーマロイ)等が選定され、その寸法は厚みを数
百A乃至数千A1幅りを数μm乃至数十pmに選定され
る。又、電極3及び4はMR素子1よシも固有抵抗の小
さい、例えばAn、AI、Cu等が選定される。For the MR element 1, a NiCo alloy, a NiFe alloy (permalloy), or the like is selected, and its dimensions are selected such that the thickness ranges from several hundred Å to several thousand Å, and from several μm to several tens of pm. Further, the electrodes 3 and 4 are selected from materials having lower specific resistance than the MR element 1, such as An, AI, Cu, etc.
MR素子lの磁化Mは、永久磁石等の適当な手段(図示
せず)により、センス電流Iに対して、所定の角度θb
に設定されている。The magnetization M of the MR element l is set at a predetermined angle θb with respect to the sense current I by a suitable means (not shown) such as a permanent magnet.
is set to .
かかる構成により、電極3及び4を経由して、MR素子
1に供給されるセンス電流■は電極間隔が最も小さな領
域、即ち、磁気記憶媒体2に最近接する領域に集中する
ことになる。With this configuration, the sense current (2) supplied to the MR element 1 via the electrodes 3 and 4 is concentrated in the region where the electrode spacing is the smallest, that is, in the region closest to the magnetic storage medium 2.
第3図はこのMR累子lの幅方向における電流分布を示
す。第3図において、横軸の零目盛は、MR素子lが磁
気記憶媒体2に最近接する側、hは最も遠い側を示し、
縦軸の電流密度は、磁気記憶媒体2に最近接する側の電
流密度で規格化したを取っている。FIG. 3 shows the current distribution in the width direction of this MR resistor l. In FIG. 3, the zero scale on the horizontal axis indicates the side where the MR element l is closest to the magnetic storage medium 2, and h indicates the farthest side,
The current density on the vertical axis is normalized by the current density on the side closest to the magnetic storage medium 2.
第3図より、MR素子1の幅りを一定とした場合、Wt
−W、の値が大きくなるほど、センス電流Iは、磁気記
憶媒体2に最近接する側に大きく集中することが理解さ
れる。From FIG. 3, when the width of the MR element 1 is constant, Wt
It is understood that the larger the value of -W, the more the sense current I concentrates on the side closest to the magnetic storage medium 2.
この結果、MR素子1の磁気記憶媒体2に最近接する領
域における抵抗変化が最も再生出力に寄与することにな
る。即ち、MR索子1の高記録密度時に最も抵抗変化が
大きい領域を常に再生出力として得ているため、広範囲
にわたる記録密度に対し、良好な再生出力を得ることが
できるq第1の実施例では、MR素子のバイアス状態は
外部からの磁界によって一意的に決定されていたが、本
発明では、センス電流を利用して、MR素子のバイアス
状態を決定する構成のMRヘッドに対して最も効果的で
ある。As a result, the resistance change in the region of the MR element 1 closest to the magnetic storage medium 2 contributes most to the reproduction output. In other words, in the first embodiment, since the region with the largest resistance change is always obtained as the reproduction output when the MR probe 1 has a high recording density, good reproduction output can be obtained over a wide range of recording densities. , the bias state of the MR element was uniquely determined by an external magnetic field, but in the present invention, the bias state of the MR element is most effectively determined for an MR head using a sense current. It is.
以下、この様な構成を有するMRヘッドの例について説
明する。An example of an MR head having such a configuration will be described below.
第4図は、本発明の第2の例を示す概略斜視図である。FIG. 4 is a schematic perspective view showing a second example of the present invention.
図においては、第2図及び第3図を用いて説明した第1
の例のMR素子に対して、非磁性導体薄膜(例えば、T
i、Mo、Ta、Cr等)から成るバイアス導体5が数
百X乃至数千Xの厚みをもって積層された構成を有する
。In the figure, the first
For the MR element of the example, a nonmagnetic conductor thin film (for example, T
It has a structure in which bias conductors 5 made of (i, Mo, Ta, Cr, etc.) are laminated with a thickness of several hundred times to several thousand times.
かかる構成において、電極3及び40間隔が、MR索子
1及びバイアス導体5の膜厚よシ充分大きければ、電極
3及び4から供給されるセンス電流IはMR素子1とバ
イアス導体5とにその固有抵抗及び膜厚に応じて、分流
する。バイアス導体5に分流したセンス電流はMR素子
1の膜面内を9−
通シ幅りの方向にバイアス磁界Hbを発生し、MR素子
lの磁化Mをセンス電流に対して、角度θbだけ回転さ
せる。又、バイアス導体5に分流したセンス電流は、M
R素子1と同様、第3図に示した如く、幅り方向に分布
するため、磁気記憶媒体2に最近接する領域に大きなバ
イアス磁界Hb を発生し、それに応じて、θbも大き
くなる。In such a configuration, if the distance between the electrodes 3 and 40 is sufficiently larger than the film thickness of the MR element 1 and the bias conductor 5, the sense current I supplied from the electrodes 3 and 4 will be applied to the MR element 1 and the bias conductor 5. The flow is divided depending on the specific resistance and film thickness. The sense current shunted to the bias conductor 5 generates a bias magnetic field Hb in the direction of the 9-width width within the film plane of the MR element 1, and rotates the magnetization M of the MR element 1 by an angle θb with respect to the sense current. let Also, the sense current shunted to the bias conductor 5 is M
Like the R element 1, as shown in FIG. 3, since it is distributed in the width direction, a large bias magnetic field Hb is generated in the region closest to the magnetic storage medium 2, and θb increases accordingly.
第5図に、θbのMR索子1の幅り方向の分布を示す。FIG. 5 shows the distribution of θb in the width direction of the MR cord 1.
又、診考のため、センス電流が幅り方向に均一に分布す
る従来例におけるθbの分布を破線で示す。For diagnostic purposes, the distribution of θb in a conventional example in which the sense current is uniformly distributed in the width direction is shown by a broken line.
第5図から明らかな如く、従来例では幅りの中央部で最
大のθbが得られるのに対し、本実施例では磁気記憶媒
体2に近接する側にθbの最大値がシフトしている。即
ち、この例では、高記録密度時に最も再生出力として寄
与する領域のバイアス状態を最適に設定(望ましくはθ
b−450)することができる。As is clear from FIG. 5, in the conventional example, the maximum value of θb is obtained at the center of the width, whereas in this embodiment, the maximum value of θb is shifted to the side closer to the magnetic storage medium 2. That is, in this example, the bias state of the region that contributes most to the reproduction output at high recording density is set optimally (preferably θ
b-450).
従って、この構成では、高記録密度時においてMR素子
1の磁気記憶媒体2に最近接する領域に10−
おける抵抗変化が最も再生出力寄与するとともに、その
抵抗変化が信号磁界H8に対して最大感度と成る様に設
定でき、第1の実施例に比較して更に、良好な記録密度
特性が得られる。Therefore, in this configuration, at high recording density, the resistance change at 10- in the region closest to the magnetic storage medium 2 of the MR element 1 contributes the most to the reproduction output, and the resistance change has the maximum sensitivity to the signal magnetic field H8. This allows even better recording density characteristics to be obtained than in the first embodiment.
第4図ではバイアス導体5に分流するセンス電流でMR
素子1にバイアス磁界HBを印加していたが、第6図の
断面図に示す如く、バイアス導体5に更に導電性強磁性
薄膜6を積層しても良い。In Fig. 4, the sense current shunted to the bias conductor 5
Although the bias magnetic field HB was applied to the element 1, a conductive ferromagnetic thin film 6 may be further laminated on the bias conductor 5, as shown in the cross-sectional view of FIG.
かかる構成では、センス電流工はMR素子11バイアス
導体5及び導電性強磁性薄膜6に、磁気記憶媒体2に近
接する側を最大電流密度となる分布を有して分流するこ
とになる。バイアス導体5及び導電性強磁性薄膜6に分
流したセンス電流■。In this configuration, the sense current is shunted to the MR element 11, bias conductor 5, and conductive ferromagnetic thin film 6 with a distribution such that the maximum current density is on the side closer to the magnetic storage medium 2. Sense current (■) shunted to the bias conductor 5 and the conductive ferromagnetic thin film 6.
及び1.は、第4図で示したと同様なバイアス磁界を与
え、又、導電性強磁性薄膜はMR素子10幅り方向の反
磁界を大きく軽減する効果がある。and 1. provides a bias magnetic field similar to that shown in FIG. 4, and the conductive ferromagnetic thin film has the effect of greatly reducing the demagnetizing field in the width direction of the MR element 10.
従って、第4図に示した構成のMRヘッドよプも小さな
センス電流で第5図に示したバイアス状態を実現できる
。Therefore, the MR head having the configuration shown in FIG. 4 can also realize the bias state shown in FIG. 5 with a small sense current.
導電性強磁性薄膜6には、磁気抵抗効果が小さく、固有
抵抗の大きい非晶質軟磁性体が望ましい。The conductive ferromagnetic thin film 6 is preferably an amorphous soft magnetic material that has a small magnetoresistive effect and a high specific resistance.
又、導電性強磁性薄膜6として特開昭51−26510
号に開始された如く、MR素子1と全く特性が同一なパ
ーマロイ膜などを用いても良い。この場合は導電性強磁
性薄膜6も、信号磁界H8に対し抵抗変化を生じ信号再
生に寄与する。Also, as a conductive ferromagnetic thin film 6, Japanese Patent Application Laid-Open No. 51-26510
A permalloy film or the like having exactly the same characteristics as the MR element 1 may be used, as disclosed in the above publication. In this case, the conductive ferromagnetic thin film 6 also causes a resistance change with respect to the signal magnetic field H8 and contributes to signal reproduction.
更に第4図、第6図を用いて説明した例と同様、MR素
子の磁気記憶媒体に最近接する領域を最大感度とするバ
イアス状態を実現するには、第7図に示した構成を有す
るMRヘッドであっても良い。Furthermore, similar to the example explained using FIGS. 4 and 6, in order to realize a bias state in which the region of the MR element closest to the magnetic storage medium has maximum sensitivity, an MR having the configuration shown in FIG. It may be the head.
第7図は、特開昭50−59023号に開示された高透
磁率磁性体からなる磁気シールドを具備し、MR素子部
分に第2図で示した本発明を適用した磁気シールド付M
Rヘッドの断面図である。FIG. 7 shows an M with a magnetic shield, which is equipped with a magnetic shield made of a high magnetic permeability magnetic material disclosed in JP-A No. 50-59023, and in which the present invention shown in FIG. 2 is applied to the MR element part.
FIG. 3 is a cross-sectional view of the R head.
図において、MR素子lの両側にS iO,、Ai 、
0゜等の絶縁層を介して、磁気シールド7及び8がMR
素子1とG1及びG、の間隔をもって並設されている。In the figure, SiO,, Ai,
The magnetic shields 7 and 8 are connected to the MR via an insulating layer such as 0°.
Element 1, G1 and G are arranged side by side with an interval between them.
かかる構成で、MR素子1の幅り方向に第3図に示した
如き分布を吃って流れるセンス電流■は、MR素子1の
周囲に磁界を発生し、その磁界は磁気シールド7及び8
を着磁する。着磁された磁気シールド7及び8の内、最
もMR素子1に近接する磁気シールド(例えば、第7図
ではG * > G +であるため、磁気シールド7)
が、最も強いバイアス磁界をMR素子1に与えMR素子
1の磁化Mff:バイアスする。前記バイアス磁界のM
R素子l内での分布は、センス電流Iの分布に対応する
ため、第5図に示したと同様なバイアス状態が実現され
る。上述した様な作用を更に顕著するためには、G、と
G、の差が大きい方が望ましい。極端な場合、G、又は
G1の一方が無限大の大きさ、即ち、MR素子lの一方
の側のみに磁気シールドが具備された構成であっても良
い。With this configuration, the sense current (2) flowing in the width direction of the MR element 1 with a distribution as shown in FIG.
magnetize. Among the magnetized magnetic shields 7 and 8, the magnetic shield closest to the MR element 1 (for example, in FIG. 7, since G*>G+, the magnetic shield 7)
However, the strongest bias magnetic field is applied to the MR element 1 to bias the magnetization Mff of the MR element 1. M of the bias magnetic field
Since the distribution within the R element I corresponds to the distribution of the sense current I, a bias state similar to that shown in FIG. 5 is realized. In order to make the above-mentioned effect more pronounced, it is desirable that the difference between G and G be larger. In an extreme case, either G or G1 may have an infinite size, that is, a magnetic shield may be provided only on one side of the MR element 1.
以上、本発明の構成例について述べたが、本発明で示し
た電極は第2図、及び第4図に示した如く、MR素子の
幅方向に直線的に広がった構造に限るものではなく、曲
線状に広がった構成であっても良く、本発明の主旨を逸
脱しない限り種々の変形変更をなし得る。Although the configuration examples of the present invention have been described above, the electrodes shown in the present invention are not limited to the structure that extends linearly in the width direction of the MR element, as shown in FIGS. 2 and 4. It may have a curved configuration, and various modifications may be made without departing from the gist of the present invention.
尚、本発明では、磁気記憶媒体上のトラック幅−13=
(MR素子の長さ方向に対して、磁気的情報が書き込ま
れている領域幅)はMR素子の磁気記憶媒体に最近接す
る側の電極間隔より小さいことが望ましい。これは、低
記録密度時に磁気記憶媒体から最も離れたMR素子上の
領域の抵抗変化を最小にするのに有効である。In the present invention, the track width on the magnetic storage medium - 13 = (width of the area where magnetic information is written with respect to the length direction of the MR element) is defined as the track width on the magnetic storage medium on the side closest to the magnetic storage medium of the MR element. It is desirable that the distance be smaller than the electrode spacing. This is effective in minimizing the resistance change in the region on the MR element farthest from the magnetic storage medium at low recording densities.
(発明の効果)
以上説明した様に、本発明はMR素子に接続される電極
の間隔を磁気記憶媒体に近接する側で小さく設定して゛
いるため、MR素子の高記録密度時に最も抵抗変化とし
て寄与する領域を再生出力として得ることができ、更に
この領域が最大感度となる様なバイアス状態も実現でき
、極めて簡単にかつ、磁気記憶媒体を消磁させることな
く、広範囲にわたる記録密度に対し、はぼ均一な再生出
力を得ることができる。(Effects of the Invention) As explained above, in the present invention, since the spacing between the electrodes connected to the MR element is set to be smaller on the side closer to the magnetic storage medium, the resistance change is the largest when the MR element is at high recording density. It is possible to obtain the contributing region as the reproduction output, and also to realize a bias state in which this region has the maximum sensitivity, and it is extremely easy to use for a wide range of recording densities without demagnetizing the magnetic storage medium. Almost uniform playback output can be obtained.
第1図は従来の磁気抵抗効果ヘッドの概略斜視図、第2
図は本発明の第1の構成例を示す概略斜14−
視図、第3図は磁気抵抗効果ヘッドに流れるセンス電流
の分布を示すグラフ、第4図は本発明の第2の構成例を
示す概略斜視図、第5図は磁気抵抗効果ヘッドのバイア
ス状態を示すグラフ、第6図は本発明の第3の構成例を
示す断面図、第7図は本発明の第4の構成例を示す断面
図である。
図において、
1・・・磁気抵抗効果素子(MR素子)、2・・・磁気
記憶媒体、3.4・・・電極、5・・・バイアス導体、
6・・・導電性強磁性薄膜、7.8・・・磁気シールド
をそれぞれ示す。
第4図
円r
第5図
OL h
?
第6図
第″7図Figure 1 is a schematic perspective view of a conventional magnetoresistive head; Figure 2 is a schematic perspective view of a conventional magnetoresistive head;
3 is a graph showing the distribution of the sense current flowing through the magnetoresistive head, and FIG. 4 is a diagram showing the second configuration example of the present invention. 5 is a graph showing the bias state of the magnetoresistive head, FIG. 6 is a sectional view showing a third configuration example of the present invention, and FIG. 7 is a graph showing a fourth configuration example of the present invention. FIG. In the figure, 1... Magnetoresistive element (MR element), 2... Magnetic storage medium, 3.4... Electrode, 5... Bias conductor,
6... conductive ferromagnetic thin film, 7.8... magnetic shield, respectively. Figure 4 Circle r Figure 5 OL h ? Figure 6 Figure 7
Claims (6)
抵抗効果素子にセンス電流を供給する二つの電極が接続
された構造を有する磁気抵抗効果ヘッドにおいて、載皿
つの電極の間隔は磁気記憶媒体に最も近い部分が磁気記
憶媒体に最も遠い部分よりも小さいことを特徴とする磁
気抵抗効果ヘッド。(1) In a magnetoresistive head having a structure in which a magnetoresistive element including a ferromagnetic thin film and two electrodes for supplying a sense current to the magnetoresistive element are connected, the spacing between the two electrodes on the mounting plate is equal to that of the magnetic storage medium. A magnetoresistive head characterized in that a portion closest to the magnetic storage medium is smaller than a portion furthest from the magnetic storage medium.
が積層されている構造である特許請求の範囲第1項記載
の磁気抵抗効果ヘッド。(2) The magnetoresistive head according to claim 1, wherein the magnetoresistive element has a structure in which a nonmagnetic conductive thin film and a ferromagnetic thin film are laminated.
と導電性強磁性薄膜とがこの順で積層されている構造で
ある特許請求の範囲第1項記載の磁気抵抗効果ヘッド。(3) The magnetoresistive head according to claim 1, wherein the magnetoresistive element has a structure in which a ferromagnetic thin film, a nonmagnetic conductive thin film, and a conductive ferromagnetic thin film are laminated in this order.
ある特許請求の範囲第3項記載の磁気抵抗効果ヘッド。(4) The magnetoresistive head according to claim 3, wherein the ferromagnetic thin films sandwiching the nonmagnetic conductive thin films are made of the same material.
求の範囲第3項記載の磁気抵抗効果ヘッド。(5) The magnetoresistive head according to claim 3, wherein the conductive ferromagnetic thin film is an amorphous soft magnetic material.
磁性体から々る磁気シールドが形成されている特許請求
の範囲第1項又は第2項又は第3項に記載の磁気抵抗効
果ヘッド。(6) The magnetoresistive element according to claim 1, 2, or 3, wherein a magnetic shield made of a high permeability magnetic material is formed through an insulating layer. effect head.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9040084A JPS60234213A (en) | 1984-05-07 | 1984-05-07 | Magneto-resistance effect head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9040084A JPS60234213A (en) | 1984-05-07 | 1984-05-07 | Magneto-resistance effect head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60234213A true JPS60234213A (en) | 1985-11-20 |
JPH0572642B2 JPH0572642B2 (en) | 1993-10-12 |
Family
ID=13997534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9040084A Granted JPS60234213A (en) | 1984-05-07 | 1984-05-07 | Magneto-resistance effect head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60234213A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63177069U (en) * | 1987-05-08 | 1988-11-16 | ||
US5894375A (en) * | 1995-06-06 | 1999-04-13 | Fujitsu Limited | Magnetic disk apparatus and method that reverses sense current in magnetoresistive head |
-
1984
- 1984-05-07 JP JP9040084A patent/JPS60234213A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63177069U (en) * | 1987-05-08 | 1988-11-16 | ||
US5894375A (en) * | 1995-06-06 | 1999-04-13 | Fujitsu Limited | Magnetic disk apparatus and method that reverses sense current in magnetoresistive head |
Also Published As
Publication number | Publication date |
---|---|
JPH0572642B2 (en) | 1993-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6064552A (en) | Magnetoresistive head having magnetic yoke and giant magnetoresistive element such that a first electrode is formed on the giant magnetoresistive element which in turn is formed on the magnetic yoke which acts as a second electrode | |
US6243288B1 (en) | Giant magnetoresistive sensor, thin-film read/write head and magnetic recording apparatus using the sensor | |
US5712751A (en) | Magnetic sensor and magnetic recording-reproducing head and magnetic recording-reproducing apparatus using same | |
US8149548B2 (en) | Magnetic head and manufacturing method thereof | |
US7031108B2 (en) | Magnetic head for perpendicular recording and magnetic disk storage apparatus mounting the head | |
US6903906B2 (en) | Magnetic head with a lamination stack to control the magnetic domain | |
US5535077A (en) | Magnetoresistive head having magnetically balanced magnetoresistive elements laminated on opposite sides of an electrically conductive film | |
US5581427A (en) | Peak enhanced magnetoresistive read transducer | |
JPH064832A (en) | Combine thin film magnetic head | |
JPS60234213A (en) | Magneto-resistance effect head | |
US5828527A (en) | Thin-film magnetic head having magnetic resistance effect stabilizing layer | |
JP2000011331A (en) | Magnetoresistive element and thin film magnetic head | |
US20020160228A1 (en) | Magnetoresistive head and magnetic recording/reproducing apparatus using the same | |
JPH026490Y2 (en) | ||
JPH1125425A (en) | Magnetic head | |
US5930062A (en) | Actively stabilized magnetoresistive head | |
JP3120012B2 (en) | Magnetic sensor, magnetic recording / reproducing head and magnetic recording / reproducing apparatus using the same | |
JPS58100216A (en) | magnetoresistive head | |
JP3606988B2 (en) | Magnetoresistive head | |
US5870261A (en) | Magnetoresistive head | |
JP2002232038A (en) | Vertical energization type magnetoresistance effect element, magnetic head and magnetic recorder/ reproducer | |
US20020018324A1 (en) | Ferromagnetic tunneling magneto-resistive head | |
JPH06251336A (en) | Magnetoresistive effect type magnetic head | |
JPH07201019A (en) | Magneto-resistance effect type head | |
JPH07153023A (en) | Magnetic thin-film head for read and write |