[go: up one dir, main page]

JPS60233823A - Fresnel zone target - Google Patents

Fresnel zone target

Info

Publication number
JPS60233823A
JPS60233823A JP59089414A JP8941484A JPS60233823A JP S60233823 A JPS60233823 A JP S60233823A JP 59089414 A JP59089414 A JP 59089414A JP 8941484 A JP8941484 A JP 8941484A JP S60233823 A JPS60233823 A JP S60233823A
Authority
JP
Japan
Prior art keywords
target
fresnel zone
alignment
concentric rings
zone target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59089414A
Other languages
Japanese (ja)
Inventor
Shinya Nakagawa
慎也 中川
Susumu Komoriya
進 小森谷
Hiroshi Nishizuka
西塚 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59089414A priority Critical patent/JPS60233823A/en
Publication of JPS60233823A publication Critical patent/JPS60233823A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable alignment of stability and high accuracy by preventing the phenomenon of light disturbance in a target made of resist by a method wherein a plurality of concentric rings constituting the Fresnel zone target are composed of assemblages of micro plane parts each isolated at micro intervals. CONSTITUTION:The surface of an Si substrate 17 is coated with a thin film of SiO2, polycrystalline Si, Al, or the like, which is then patterned into the Fresnel zone target 10. In this construction, the target 10 is composed of four concentric rings 11-14 as a whole, and the widths and the gaps of the respective concentric rings 11-14 in the radius direction are successively reduced from the center toward the periphery. In such a manner, micro plane parts 11b-14b are generated in the concentric rings 11-14, thus making the coating state uniform when the whole surface is coated with the resist 16, and making the film thickness of each part uniform. Such a manner can prevent the light disturbance due to light interference at the time of alignment; then, stable diffraction is caused, and the alignment becomes increased in accuracy.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体装置製造時におけるパターン転写アライ
メント技術に関し、特にチップアライメント用ターゲッ
トとして利用されているフレネルゾーンターゲットの改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to pattern transfer alignment technology during the manufacture of semiconductor devices, and particularly to improvements in Fresnel zone targets used as targets for chip alignment.

〔背景技術〕[Background technology]

LSI、VLSI等に半導体装置の高集積化に5伴なっ
て素子パターンも益々微細化される傾向にあり、この素
子パターンを形成するパターン転写技術、特にパターン
アライメントも高精度化が要求されてきている。このよ
うなことから、とりわけチップアライメント用のターゲ
ットとして、フレネルゾーンターゲットを利用したアラ
イナが考えられる。
With the increasing integration of semiconductor devices such as LSI and VLSI, element patterns are also becoming increasingly finer, and pattern transfer technology for forming these element patterns, especially pattern alignment, is also required to be highly accurate. There is. For this reason, an aligner using a Fresnel zone target can be considered, especially as a target for chip alignment.

フレネルゾーンターゲットは、第1図に示すように、複
数の同心環1,2,3.4を配列したもので、各同心環
の内径寸法や幅寸法を使用する光(アライメント光)の
波長に基づいて夫々設定することにより、光の回折現象
により焦点位置の光強度を極端に高め得るものである。
As shown in Figure 1, a Fresnel zone target is an arrangement of multiple concentric rings 1, 2, 3.4, and the inner diameter and width of each concentric ring are adjusted to the wavelength of the light (alignment light) used. By setting the values based on the respective values, the light intensity at the focal position can be extremely increased due to the light diffraction phenomenon.

したがって、このターゲットをアライメントのターゲッ
トとして使用すれば、ターゲット寸法が小さく、あるい
はアライメント光の強度(照度)が低くても高い光強度
の光スポットを得ることができ、この光スポットの位置
を検出することにより極めて高い精度の位置検出、即ち
アライメントを行なうことができる。
Therefore, if this target is used as an alignment target, a light spot with high light intensity can be obtained even if the target size is small or the intensity (illuminance) of the alignment light is low, and the position of this light spot can be detected. This makes it possible to perform position detection with extremely high precision, that is, alignment.

しかしながら、本発明者が実際にこのターゲットを各種
のプロセスに適用したところ、各プロセス毎に最適な条
件が相違し、設計値上のターゲットに対して各プロセス
で夫々異なる補正(同心環の各寸法補正)が必要とされ
ることが経験された。
However, when the present inventor actually applied this target to various processes, the optimal conditions were different for each process, and each process had different corrections (each dimension of the concentric ring) for the target on the design value. It has been experienced that corrections are required.

このため、本発明者が、この原因について検討したとこ
ろ、フレネルゾーンターゲット上に塗布するレジスト(
フォトレジスト、電子線レジスト等)が影響因子の一つ
であることが判明した。即ち、前記フレネルゾーンター
ゲットは、通常第2図のようにAM等の薄膜をパターニ
ングして形成しているが、各同異環1〜4の幅や間隔が
夫々異なっているために、ターゲット5上に塗布したレ
ジスト6の膜厚が同図に膜行dlyd2+d3で示すよ
うに不規則に相違してしまう。このため、この不規則な
膜厚変化と光の干渉が、本来のターゲットによる光の反
射および回折現象を乱してしまい、明るく見えるべき所
が暗くなったり、またその逆の状態になる等して正確な
アライメントが阻害されることになるということが本発
明者によって明らかにされた。図中7はウェーハである
For this reason, the inventor investigated the cause of this problem and found that the resist applied on the Fresnel zone target (
Photoresists, electron beam resists, etc.) were found to be one of the influencing factors. That is, the Fresnel zone target is usually formed by patterning a thin film of AM or the like as shown in FIG. The film thickness of the resist 6 applied thereon varies irregularly as shown by film rows dlyd2+d3 in the figure. Therefore, this irregular film thickness change and light interference disturbs the original reflection and diffraction phenomenon of light by the target, causing areas that should appear bright to become dark, or vice versa. The inventors have found that accurate alignment will be hindered by this. In the figure, 7 is a wafer.

〔発明の目的〕[Purpose of the invention]

本発明の目的はレジストによりフレネルゾーンターゲッ
トにおける光の乱れ現象を防止し、これにより各プロセ
スにわたって安定がっ高精度のアライメントを行なうこ
とができるフレネルゾーンターゲットを提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Fresnel zone target that can prevent light disturbances in the Fresnel zone target by using a resist, thereby allowing stable and highly accurate alignment throughout each process.

本発明の前記ならびにそのほがの目的と新規な特徴は、
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above-mentioned objects and novel features of the present invention are as follows:
It will become clear from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわも、フレネルゾーンターゲットを構成する複数の
同心環を夫々微小間隔離した微小面部を集合させた構成
とすることにより、各微小間隔の存在によりレジストの
不規則な膜厚変化を防止し。
In other words, by configuring a plurality of concentric rings constituting the Fresnel zone target to have a configuration in which minute surface portions separated by minute intervals are assembled, irregular changes in the film thickness of the resist can be prevented due to the presence of each minute interval.

これにより光干渉により乱れを防止して安定した回折現
象を生じさせ、かつ高精度のアライメントを可能にする
ものである。
This prevents disturbance due to optical interference, produces a stable diffraction phenomenon, and enables highly accurate alignment.

〔実施例〕〔Example〕

第3図(A)、(B)は本発明のフレネルゾーンターゲ
ット1oを示しており、例えばシリコン等の半導体基板
17の表面(通常は絶縁膜)上に形成したシリコン酸化
膜、ポリシリコン膜、AM膜等の薄膜をパターニングし
て形成している。このフレネルゾーンターゲット1oは
全体として4個の同心環11,12,13.14がらな
り中心から周辺に向がって各同心環11,12,13゜
14の半径方向の幅と間隔を順次小さくしている。
FIGS. 3(A) and 3(B) show a Fresnel zone target 1o of the present invention. For example, a silicon oxide film, a polysilicon film, a polysilicon film, It is formed by patterning a thin film such as an AM film. This Fresnel zone target 1o has four concentric rings 11, 12, 13, 14 as a whole, and the radial width and interval of each concentric ring 11, 12, 13, 14 gradually decreases from the center to the periphery. are doing.

これら幅2間隔の各寸法はアライメントに使用する光の
波長に基づいて設計式により設定していることはいうま
でもない。そして、本例では前記各同心環11,12,
13.14の夫々に円周方向の微小間隔11a、12a
、13a、14aを等配し、これにより各同心環11,
12,13゜14は複数個の微小面部11b、12b、
13b。
It goes without saying that each dimension of these two-width intervals is set by a design formula based on the wavelength of light used for alignment. In this example, each of the concentric rings 11, 12,
13. Small intervals 11a, 12a in the circumferential direction in each of 14
, 13a, 14a are arranged equally, thereby each concentric ring 11,
12, 13° 14 are a plurality of minute surface portions 11b, 12b,
13b.

14bを夫々円周方向に配列した構成としている。14b are arranged in the circumferential direction.

この場合微小間隔や微小面部は夫々各同心環11゜12
.13.14において等して寸法にすることが好ましい
In this case, the minute intervals and minute surfaces are each concentric ring 11°12
.. It is preferred to dimension them equally at 13.14.

したがって、この構成のフレネルゾーンターゲット10
によれば、第4図に示すように、上面にレジスト16を
塗布したときに、微小間隔11a。
Therefore, the Fresnel zone target 10 with this configuration
According to FIG. 4, when a resist 16 is applied to the upper surface, a minute interval 11a is formed.

12a、13a、14aの存在およびこの寸法が略等し
いことから、各同心環11,12,13゜14の近傍に
おけるレジスト16は塗布状態も略等しいものとされ、
これによりレジスト16の各部の膜厚が均一化される。
Since the resists 12a, 13a, and 14a exist and their dimensions are approximately equal, the coating state of the resist 16 in the vicinity of each concentric ring 11, 12, 13°14 is also approximately equal,
This makes the film thickness of each part of the resist 16 uniform.

したがって、この状態でアライメントを行なえば、レジ
スト16の膜厚の均一化が良好であることがら光の干渉
による光の乱れが防止され、安定した回折現像が生じて
高精度のアラメントが可能とされるのである。
Therefore, if alignment is performed in this state, the film thickness of the resist 16 will be uniform, preventing light disturbance due to light interference, and stable diffraction development will occur, making highly accurate alignment possible. It is.

フレネルゾーンターゲット1oを使用したアライメント
は、例えば第5図に概念図を示すように。
Alignment using the Fresnel zone target 1o is conceptually shown in FIG. 5, for example.

図外の光源からの平行光2oを縮小レンズ21に入射し
、ウェーハ17上の5000μmの位置でビームを交差
させてウェーハ上のフレネルゾーンターゲット10を照
射する。所要の広がり角をもってフレネルゾーンターゲ
ット10に照射されたビームはフレネルゾーンターゲッ
トによって反射回折され、ウェーハ17上の200μm
の位置に焦点22を結ぶ。そして、この焦点像を会堂系
21.23により1/4分割ディテクタ24に結像(焦
点像)25しかつその位置を検出することによりフレネ
ルゾーンターゲットlO1即ちウェーハ17の位置を検
出でき、アライメントを完了できる。前記焦点像25は
約1.25mnのビームを径とされ、1/4分割ディテ
クタ24における中心位置からのずれをディテクタの光
量バランスによりめることができる。この光学系では、
ウェーハ17の6μmの動きをディテクタ24上で1.
2+m+の焦点像25の移動として検出でき、ウェーハ
の0.1μmの動きは0.02ngnの焦点像25の動
きとして2%の光量バランス差でめることができる。結
局0.1μmの精度のアラメントが可能とされる。
Parallel light 2o from a light source (not shown) is incident on the reduction lens 21, the beams are crossed at a position 5000 μm above the wafer 17, and the Fresnel zone target 10 on the wafer is irradiated. The beam irradiated onto the Fresnel zone target 10 with a required spread angle is reflected and diffracted by the Fresnel zone target, and is 200 μm above the wafer 17.
The focal point 22 is set at the position. Then, by forming this focal image (focal image) 25 on the quarter-divided detector 24 using the hall system 21.23 and detecting its position, the position of the Fresnel zone target lO1, that is, the wafer 17 can be detected, and the alignment can be performed. Can be completed. The focal image 25 has a beam diameter of approximately 1.25 mm, and the deviation from the center position of the 1/4-split detector 24 can be determined by the balance of light quantity of the detector. In this optical system,
The 6 μm movement of the wafer 17 is detected on the detector 24 by 1.
It can be detected as a movement of the focal image 25 of 2+m+, and a movement of 0.1 μm of the wafer can be detected as a movement of the focal image 25 of 0.02 ngn with a light amount balance difference of 2%. After all, alignment with an accuracy of 0.1 μm is possible.

ここで、フレネルゾーンターゲットは、第6図のように
円形の微小面部(ドツト)26を微小間隔において多数
個配列した構成としてもよう。ドツト26は方形あるい
はその他あ形状であってもよい。
Here, the Fresnel zone target may have a structure in which a large number of circular minute surface portions (dots) 26 are arranged at minute intervals as shown in FIG. The dots 26 may be square or other shapes.

〔効果〕〔effect〕

(1)フレネルゾーンターゲットを構成する各同心環を
、微小間隔離した多数個の微小面部の集tにより構成し
ているので、微小間隔を略等しく形成することにより上
面に塗布したレジストの膜厚を均一なものとし、これに
より光の乱れを防止して安定な回折を生じさせ、高精度
のアライメントを可能にする。
(1) Since each concentric ring constituting the Fresnel zone target is made up of a large number of microscopic surface portions separated by microscopic distances, the film thickness of the resist applied to the upper surface is This makes the beam uniform, thereby preventing light disturbance and producing stable diffraction, which enables highly accurate alignment.

(2)各同心環に微小間隔を円周方向に等配すればよい
ので、各同心環の半径2幅、径方向間隔はそのままでよ
く、ターゲットパターンの形成が困難になることはない
(2) Since minute intervals may be equally distributed in the circumferential direction of each concentric ring, the two radius widths and the radial interval of each concentric ring may remain as they are, and the formation of the target pattern will not become difficult.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。たとえば、ターゲット
の各同心環を凹状に形成してもよく、また粘性の小さい
レジストを塗布して膜厚差を減少させるようにしてもよ
い。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, each concentric ring of the target may be formed in a concave shape, or a resist with low viscosity may be applied to reduce the difference in film thickness.

〔利用分野〕[Application field]

以上の説明では主として本発明者によってなされた発明
をその背景となって利用分野であるチップアライメント
用のターゲットに適用した場合について説明したが、そ
れに限定されるものではなく種々のアライメント用のタ
ーゲットに適用できる。
In the above explanation, the invention made by the present inventor was mainly applied to a target for chip alignment, which is the background of the invention, but it is not limited to this, and can be applied to targets for various alignments. Applicable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、フレネルゾーンターゲットを説明する平面図
、 第2図は、従来の不具合を説明する中央断面図、第3図
は、(A)、(B)は本発明のターゲットの(A)平面
図、(B)(A)図のBB線断面図、 第4図は、レジストを塗布した状態の第3図(B)と同
様の図、 第5図は、アライメント方法を説明するための概念構成
図、 第6図は、変形例の部分平面図である。 10・・・プレネルゾーンターゲット、11〜14・・
・同心環、11a”14a・・・微小間隔、llb〜1
4b・・・微小面部、16・・・レジスト、17・・・
ウェーハ、21・・・縮小レンズ、24・・・174分
割ディテクタ、25・・・焦点像、26・・・ドツト。 第 1 図 第 2 図 第 3 図 (β2 第 4 図
Fig. 1 is a plan view illustrating a Fresnel zone target, Fig. 2 is a central cross-sectional view illustrating conventional defects, and Figs. 3 (A) and (B) are (A) of the target of the present invention. A plan view, a cross-sectional view taken along the line BB in FIGS. Conceptual configuration diagram, FIG. 6 is a partial plan view of a modified example. 10... Prenel zone target, 11-14...
・Concentric ring, 11a" 14a... minute interval, llb~1
4b...Minute surface portion, 16...Resist, 17...
Wafer, 21... Reducing lens, 24... 174-divided detector, 25... Focused image, 26... Dot. Figure 1 Figure 2 Figure 3 (β2 Figure 4

Claims (1)

【特許請求の範囲】 1、複数の同心環からなり、光の回折を利用してアライ
メントを行なうプレネルゾーン形状のターゲットであっ
て、前記各同心環は夫々微小間隔で配列した多数の微小
面部にて構成したことを特徴とするフレネルゾーンター
ゲット。 2、各同心環に円周方向の微小間隔を円周方向゛に等配
してなる特許請求の範囲第1項記載のフレネルゾーンタ
ーゲット。 3、各同心環は多数の微小ドツトを微小間隔離した状態
で集合させて構成してなる特許請求の範囲第1項記載の
フレネルゾーンターゲット。
[Claims] 1. A planel zone-shaped target consisting of a plurality of concentric rings and performing alignment using light diffraction, each of the concentric rings having a large number of microscopic surfaces arranged at microscopic intervals. A Fresnel zone target characterized by its composition. 2. The Fresnel zone target according to claim 1, wherein minute intervals in the circumferential direction are equally distributed in each concentric ring. 3. The Fresnel zone target according to claim 1, wherein each concentric ring is constructed by aggregating a large number of minute dots in a state of minute separation.
JP59089414A 1984-05-07 1984-05-07 Fresnel zone target Pending JPS60233823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59089414A JPS60233823A (en) 1984-05-07 1984-05-07 Fresnel zone target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089414A JPS60233823A (en) 1984-05-07 1984-05-07 Fresnel zone target

Publications (1)

Publication Number Publication Date
JPS60233823A true JPS60233823A (en) 1985-11-20

Family

ID=13969986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089414A Pending JPS60233823A (en) 1984-05-07 1984-05-07 Fresnel zone target

Country Status (1)

Country Link
JP (1) JPS60233823A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981529A (en) * 1987-08-08 1991-01-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor substrate provided with marks for alignment even under a resist film
EP0410802A2 (en) * 1989-07-28 1991-01-30 Canon Kabushiki Kaisha Position detecting method
US5229617A (en) * 1989-07-28 1993-07-20 Canon Kabushiki Kaisha Position detecting method having reflectively scattered light prevented from impinging on a detector
NL9302118A (en) * 1992-12-14 1994-07-01 Samsung Electronics Co Ltd Color filter for liquid crystal display device and method of manufacturing it.
WO2009132569A1 (en) * 2008-04-30 2009-11-05 Lee Hor Led spotlight
US20190109245A1 (en) * 2016-02-05 2019-04-11 Texas Instruments Incorporated Integrated Photodetector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981529A (en) * 1987-08-08 1991-01-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor substrate provided with marks for alignment even under a resist film
EP0410802A2 (en) * 1989-07-28 1991-01-30 Canon Kabushiki Kaisha Position detecting method
US5229617A (en) * 1989-07-28 1993-07-20 Canon Kabushiki Kaisha Position detecting method having reflectively scattered light prevented from impinging on a detector
NL9302118A (en) * 1992-12-14 1994-07-01 Samsung Electronics Co Ltd Color filter for liquid crystal display device and method of manufacturing it.
WO2009132569A1 (en) * 2008-04-30 2009-11-05 Lee Hor Led spotlight
US20190109245A1 (en) * 2016-02-05 2019-04-11 Texas Instruments Incorporated Integrated Photodetector
US11094837B2 (en) * 2016-02-05 2021-08-17 Texas Instruments Incorporated Integrated photodetector

Similar Documents

Publication Publication Date Title
US6440616B1 (en) Mask and method for focus monitoring
JP2003287870A (en) Photomask, focus monitor method, exposure monitor method and production method of semiconductor device
JPS6038821A (en) Etching method
JP2725895B2 (en) Exposure mechanism
JP2023522847A (en) A misregistration target having device-scale features useful in measuring misregistration of semiconductor devices
US7351504B2 (en) Photomask blank substrate, photomask blank and photomask
US20050020083A1 (en) Method of making photomask blank substrates
JPS60233823A (en) Fresnel zone target
KR101121354B1 (en) Method and system of controlling critical dimensions of structures formed on a wafer in semiconductor processing
JP4817907B2 (en) Photomask for forming resist pattern, method for manufacturing the same, and method for forming resist pattern using the photomask
US7329475B2 (en) Method of selecting photomask blank substrates
US5849438A (en) Phase shift mask and method for fabricating the same
US7341809B2 (en) Photomask, method for manufacturing the same, and method for measuring optical characteristics of wafer exposure system using the photomask during operation
JPH0695360A (en) Optical mask
JPS6167858A (en) Transferring mask
JPS62155532A (en) Formation of positioning mark for semiconductor wafer
US6414366B1 (en) Thin-film magnetic head wafer and manufacturing method of thin-film magnetic head
CN106643598A (en) Deposition APF equipment shadow shadowring position deviation detecting and solving method
JPH1115133A (en) Pattern formation method
JP3291924B2 (en) Overlay accuracy measurement pattern
JPS588132B2 (en) Integrated circuit manufacturing method
JPH04216552A (en) Exposing mask and exposing method
US20060194129A1 (en) Substrate edge focus compensation
JPH03191348A (en) Reticle for reduction stepper
US8241836B2 (en) Method of fabricating a line pattern in a photoresist layer by using a photomask having slanted unit patterns