[go: up one dir, main page]

JPS60233804A - Improvement of magnetism in amorphous alloy thin film - Google Patents

Improvement of magnetism in amorphous alloy thin film

Info

Publication number
JPS60233804A
JPS60233804A JP59089947A JP8994784A JPS60233804A JP S60233804 A JPS60233804 A JP S60233804A JP 59089947 A JP59089947 A JP 59089947A JP 8994784 A JP8994784 A JP 8994784A JP S60233804 A JPS60233804 A JP S60233804A
Authority
JP
Japan
Prior art keywords
locally
amorphous alloy
amorphous
melted
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59089947A
Other languages
Japanese (ja)
Other versions
JPH0332886B2 (en
Inventor
Shun Sato
駿 佐藤
Toshio Yamada
山田 利男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59089947A priority Critical patent/JPS60233804A/en
Priority to US06/729,298 priority patent/US4724015A/en
Priority to EP85105443A priority patent/EP0161593B1/en
Priority to DE8585105443T priority patent/DE3578934D1/en
Publication of JPS60233804A publication Critical patent/JPS60233804A/en
Priority to US06/828,948 priority patent/US4685980A/en
Publication of JPH0332886B2 publication Critical patent/JPH0332886B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an iron core which has less iron loss in low frequency band by locally and momentarily melting the surface of an Fe group amorphous alloy thin belt used for the iron core of a power transducer irradiating laser light of the limited beam diameter of 0.5mm. or less and then by rapidly cooling to be solidified in amorphous again. CONSTITUTION:The surface of an amorphous alloy thin belt is melted locally and momentarily, the melted part is rapidly cooled and solidified to be made amorphous again and the iron loss is greatly reduced. In this case, the shape and the distribution of the locally melted part are desirable to be parallel lines or dotted lines and the area and the depth of each melted part are made under the conditions that the melted part and the peripheral part are not made amorphous in the solidification process during heating or after melting. For this reason, when locally melting using laser light, the width of the line of the melted part is made 0.3mm. or less and in the case of dotted lines, the diameter of the spot is made 0.5mm. or less.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主として電カドランス、高周波トランスなどの
電力変換器の鉄心として用いられるFe基非晶質合金薄
帯の磁気特性、とくに鉄損を改善する方法に関するもの
である。
Detailed Description of the Invention (Industrial Field of Application) The present invention improves the magnetic properties, particularly the iron loss, of Fe-based amorphous alloy ribbons used mainly as cores of power converters such as electrocadrans and high-frequency transformers. It's about how to do it.

(従来の技術) 溶融状態から急冷凝固することによって作製される非晶
質合金薄帯は種々のすぐれた性質を示し、応用上注目さ
れている。なかでもFe基非晶質合金は磁束密度が高く
鉄損が低いため各種鉄心の材料として利用されつつある
。非晶質合金の鉄損が低い理由として、非晶質合金は原
理的に異方性がなく、結晶粒界等の欠陥がないためヒス
テリシス損が小さい上に、板厚が薄く、電気抵抗が大き
いため渦電流損も小さいことが挙げられている。しかし
鉄損値から直流ヒステリシス損を差し引いた広義の渦電
流損は、一様磁化を仮定して計算される古典的渦電流損
に比べて数十倍から10,0倍も大きい。これは磁区幅
が大きいために不均一磁化変化に起因する異常渦電流損
の割合が大きいことを示す。
(Prior Art) Amorphous alloy ribbons produced by rapid solidification from a molten state exhibit various excellent properties and are attracting attention for applications. Among these, Fe-based amorphous alloys are being used as materials for various iron cores because of their high magnetic flux density and low iron loss. The reason why amorphous alloys have low core loss is that they have no anisotropy in principle and have no defects such as grain boundaries, so hysteresis loss is small, and the plate thickness is thin and electrical resistance is low. It is said that because of its large size, eddy current loss is also small. However, the eddy current loss in a broad sense, which is obtained by subtracting the DC hysteresis loss from the iron loss value, is several tens to 10,0 times larger than the classical eddy current loss calculated assuming uniform magnetization. This indicates that because the magnetic domain width is large, the proportion of abnormal eddy current loss caused by non-uniform magnetization changes is large.

異常渦電流損を低減する方法としては従来から方向性け
い素鋼板に用いられている方法の適用がまず考えられ試
みられた。例えばスクラッチ法である。これは硬い材質
の尖った先端でけい素鋼板の表面を罫書くもので、磁区
が細分化され鉄損が低減する。しかし、非晶質合金薄帯
にこれを適用しても必ずしも良好な結果を得なかったつ
例えばNa r I t aらはProcesding
s of 4th InternationalCon
ference on RapidlyQuenche
d Metal+(1982)P1001〜1004に
おいて、Fe基非晶質合金薄帯に焼鈍を施した後ダイヤ
モンド針で薄帯の表面を罫書いて導入した線状の歪が鉄
損におよぼす効果を報告している。それによれば歪の効
果は5](Hz以上の高周波数域で表われるが、電カド
ランス等で重要な100 Hz以下の低周波数域では鉄
損はむしろ増大している。この理由としてけい素鋼板に
比べて板厚の薄い非晶質合金では低周波数域において元
来、渦電流損が小さいため磁区細分化による鉄損低減効
果はわずかであること、むしろヒステリシス損の増大に
よって全鉄損が増大するためと推定される。
As a method for reducing abnormal eddy current loss, the application of the method conventionally used for grain-oriented silicon steel sheets was first considered and attempted. For example, the scratch method. This uses a sharp tip made of hard material to score the surface of a silicon steel plate, dividing the magnetic domains into smaller pieces and reducing iron loss. However, even when applied to amorphous alloy ribbons, good results were not necessarily obtained.
s of 4th InternationalCon
ference on RapidlyQuenche
d Metal+ (1982) P1001-1004 reported the effect on core loss of linear strain introduced by scribing the surface of the ribbon with a diamond needle after annealing the Fe-based amorphous alloy ribbon. ing. According to this, the effect of distortion appears in the high frequency range above 5] (Hz), but the iron loss actually increases in the low frequency range below 100 Hz, which is important for electric quadrants.The reason for this is that silicon steel sheets Since eddy current loss is originally small in the low frequency range for amorphous alloys, which have a thin plate thickness compared to It is presumed that this was for the purpose of

非晶質材料に独特の鉄損低減法としては、局部結晶化の
方法が提案されている。これは特開昭57−97606
号公報にて開示される方法で、薄帯の幅方向に線状ある
いは点列状の結晶化領域を形成させるものである。ここ
で結晶化の手法はし属針、金属エツジの何れかを薄帯表
面に近接ないし接触させながら通電加熱する方法を採用
している。この局部結晶化領域を導入する方法は磁区の
細分化に有効な手段ではあるが低周波数域での鉄損低減
に対して必ずしも一定の効果を示さない欠点があった。
A method of local crystallization has been proposed as a method of reducing iron loss unique to amorphous materials. This is Japanese Patent Publication No. 57-97606
This is the method disclosed in the publication, in which crystallized regions are formed in the form of lines or dots in the width direction of the ribbon. Here, the method of crystallization employed is a method of heating with electricity while bringing either a metal needle or a metal edge close to or in contact with the surface of the ribbon. Although this method of introducing local crystallized regions is an effective means for subdividing magnetic domains, it has the drawback that it does not necessarily have a certain effect on reducing iron loss in the low frequency range.

例えば前記特開昭57−97606号公報においては、
商用周波数で効果を表わしているのに対してNarit
aらの前記論文は線状結晶化領域を付与する効果につい
ても述べているが、それ、によればスクラッチ法に比べ
れば低周波数側まで効果のちる領域は広がっているが、
200Hz以下では無効ないしむしろ劣化している。
For example, in the above-mentioned Japanese Patent Application Laid-Open No. 57-97606,
While the effect is expressed at commercial frequencies, Narit
The above-mentioned paper by et al. also describes the effect of providing a linear crystallized region, and according to it, compared to the scratch method, the region where the effect is effective extends to the lower frequency side,
At frequencies below 200Hz, it is ineffective or rather deteriorates.

以上のように非晶質磁性合金とくにFe基非晶質合金薄
帯の鉄損を改善するために従来試みられてきた方法はい
ずれも商用周波数帯域では効果を示さないことが多かっ
た。
As described above, all the methods conventionally attempted to improve the core loss of amorphous magnetic alloys, particularly Fe-based amorphous alloy ribbons, have often been ineffective in commercial frequency bands.

これに対して本発明は非晶質合金の鉄損低減に対して低
周波数帯域においても安定した効果をもたらし、かつ、
効果の大きな新しい方法を提案するものである。
In contrast, the present invention has a stable effect on reducing iron loss in amorphous alloys even in low frequency bands, and
This project proposes a new method that is highly effective.

(発明が解決しようとする問題点) 本発明は非晶質磁性合金の鉄損を著しく、かつ安定に低
減する方法を提供することを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for significantly and stably reducing the core loss of an amorphous magnetic alloy.

(問題点を解決するための手段作用) 本発明は非晶質合金薄帯の表面を局所的かつ瞬間的に溶
解し、次いでその部分を急冷凝固させて再び非晶質化す
ることにより、著し・い鉄損の低減を安定して達成する
ものである。薄帯の表面を局所的に溶解するには細く絞
られたレーザー光を用いる。
(Means for Solving the Problems) The present invention melts the surface of an amorphous alloy ribbon locally and instantaneously, and then rapidly solidifies that part to make it amorphous again. This is to stably achieve a reduction in iron loss. A narrowly focused laser beam is used to locally melt the surface of the ribbon.

導入される局所溶解部の形/状および分布は、第1図に
例示するように並列する線状又は点列状が好ましい。個
々の溶解部の面積および深さは、加熱中あるいは溶解後
の再i固′過程において、溶解部および周辺部が結晶化
しないことを条件に決められる。レーザー光を用いる場
合、照射強度、ビーム径、掃引速度、周波数(ノヤルス
モードの場合)などが制御すべきパラメータである。
The shape/shape and distribution of the introduced local dissolution parts are preferably in the form of parallel lines or dots as illustrated in FIG. The area and depth of each melting zone are determined on the condition that the melting zone and the surrounding area do not crystallize during heating or during the re-solidification process after melting. When using laser light, parameters to be controlled include irradiation intensity, beam diameter, sweep speed, and frequency (in the case of Noyals mode).

レーザー光を用いて局所溶解する場合、溶解部の線幅は
0.3−以下、点列の場合、1つのスポットの径は0.
5 try以下が好ましい。これら範囲を越えると結晶
化を生じることがあシ、磁気特性の向上も認められなく
なる。
In the case of local melting using laser light, the line width of the melted part is 0.3- or less, and in the case of a dot array, the diameter of one spot is 0.3- or less.
5 tries or less is preferable. If it exceeds these ranges, crystallization may occur and no improvement in magnetic properties will be observed.

導入する局所溶解部の線又は点列の方向は第1図に示し
たように薄帯の幅方向がよいが、30°程度までならば
傾いた方向でもよい。また隣り合う線又は点列は平行で
ある必要は々く、また直線である必要もない。薄帯幅方
向に対する平均傾角が所定数値以下で、隣シ合う線又は
点列の平均間隔が所定の範囲内であれば鉄損低減に効果
をあられす。したがって第2図に示す正弦曲線状の溶解
部も本発明の範囲に含まれる。商用周波数に対して効果
を示す線又は点列の平均間隔は1〜20+w+。
The direction of the line or dot array of the locally dissolved portion to be introduced is preferably in the width direction of the ribbon as shown in FIG. 1, but it may be in an inclined direction up to about 30 degrees. Further, adjacent lines or dots do not necessarily need to be parallel, nor do they need to be straight lines. If the average inclination angle with respect to the ribbon width direction is less than a predetermined value and the average interval between adjacent lines or dots is within a predetermined range, it will be effective in reducing iron loss. Therefore, the sinusoidal melting section shown in FIG. 2 is also included within the scope of the present invention. The average spacing of lines or dots showing the effect on commercial frequencies is 1 to 20+w+.

幅方向に対する平均角度は30°以下が好ましい。The average angle with respect to the width direction is preferably 30° or less.

本発明において、局所溶解部を導入する時期は非晶質合
金薄帯を熱処理する工程の前、中、後のいずれでもよい
。ただし最適条件は溶解部を導入する時期によって異な
る。例えばYAGレーザーの/母ルスモードを用いて幅
方向に局所溶解部を導入する場合、第3図、および第4
図に示すように導入の時期によって有効な溶解部の径が
異なっている。すなわち熱処理後に導入する場合、最適
なスポット径は50〜100μmであるが、熱処理前に
導入する場合は200〜250μmの付近で最も効果的
であった。この理由は溶解部導入の影響が熱処理によっ
て緩和することによると考えられる。導入の時期による
効果の違いは励磁時、性にも表われる。熱処理後に導入
したものは、磁界1エルステツドにおける磁束密度が数
%〜10チの低下を示すのに対して、熱処理前に導入し
たものでは磁束密度の低下はitとんどなかった。
In the present invention, the local melting portion may be introduced at any time before, during, or after the step of heat treating the amorphous alloy ribbon. However, the optimum conditions differ depending on the time of introduction of the dissolving part. For example, when introducing a localized dissolution part in the width direction using the laser mode of a YAG laser, Figs.
As shown in the figure, the effective diameter of the melting zone differs depending on the time of introduction. That is, when introduced after heat treatment, the optimum spot diameter is 50 to 100 μm, but when introduced before heat treatment, it was most effective around 200 to 250 μm. The reason for this is thought to be that the effect of introducing the melted zone is alleviated by heat treatment. Differences in effectiveness depending on the time of introduction are also reflected in the time of excitation and sex. Those introduced after heat treatment showed a decrease in magnetic flux density of several percent to 10 degrees at a magnetic field of 1 oersted, whereas those introduced before heat treatment showed almost no decrease in magnetic flux density.

非晶質合金薄帯の表面を局所溶解するために、急速加熱
すべき具体的手段はすでに述べてきたように細く絞った
1/−デー光を短時間照射するのが最適である。その他
の手段では効果がないか、むしろ悪影響をもたらす。電
子ビームの照射や高温物体を接触させたり局部的に通電
したりする方法によって溶解しようとすると、入射エネ
ルギー密度が小さいために熱影響が拡がシ結晶化が生ず
るので好ましくない。
In order to locally melt the surface of the amorphous alloy ribbon, the best way to rapidly heat it is to irradiate it with narrowly focused 1/-day light for a short period of time, as described above. Other methods are either ineffective or have negative effects. Attempting to melt the material by electron beam irradiation, contact with a high-temperature object, or locally applying electricity is not preferable because the incident energy density is small and the thermal effect spreads, resulting in crystallization.

本発明を適用するときの鉄損改善効果は材料の板厚に依
存し、第5図のように板厚が大きくなるほど改善効果が
大きい(図中○印は照射前、・印は照射後)。板厚60
μmで40〜50%の鉄損低減効果を示すのに対して、
30μm厚以下では10〜20%程度である。この理由
は非晶質合金は一般に板厚が大きくなるほど磁区幅が大
きくなシ、異常渦電流損の絶対値および全鉄損に占める
割合が増大するためである。本発明の局所溶解部の導入
によって磁区幅は板厚60μmの場合、1/3に細分化
されることが走査型電子顕微鏡による観察によって検証
された。
The iron loss improvement effect when applying the present invention depends on the plate thickness of the material, and as shown in Figure 5, the larger the plate thickness, the greater the improvement effect (○ in the figure is before irradiation, ・ is after irradiation) . Plate thickness 60
While it shows a 40-50% iron loss reduction effect in μm,
When the thickness is 30 μm or less, it is about 10 to 20%. The reason for this is that, in general, as the plate thickness of an amorphous alloy increases, the magnetic domain width increases, and the absolute value of the abnormal eddy current loss and its proportion in the total core loss increase. It was verified by observation using a scanning electron microscope that the magnetic domain width can be subdivided into ⅓ in the case of a plate thickness of 60 μm by introducing the local melting portion of the present invention.

本発明においてレーザー照射された部分が一旦溶解した
後再凝固したか否かは照射部を光学顕微鏡あるいは走査
型電子顕微鏡で観察することによって明瞭に区別できる
。/IPルスで照射した場合溶解した部分の中心部はく
ほみとなり、周辺はやや盛シ上っている。急激な熱エネ
ルギーの入射によシ溶解された合金は周辺に溢れ出すた
めと考えられる。パルス・レーザーによシ導入された溶
解部の一例を第6図に示した。
In the present invention, it is possible to clearly distinguish whether or not the laser-irradiated area has once melted and then re-solidified by observing the irradiated area with an optical microscope or a scanning electron microscope. / When irradiated with IP Lux, the center of the melted part becomes dark, and the periphery becomes slightly raised. This is thought to be because the alloy melted by the rapid incidence of thermal energy overflows into the surrounding area. An example of a melted zone introduced by a pulsed laser is shown in FIG.

々お、本発明においてレーザー照射によって局部溶解さ
れ再凝固した部分およびその周辺部が結晶化していない
ことはX線回折、透過型電子顕微鏡、光学顕微鏡などに
よって゛確認された。
In the present invention, it was confirmed by X-ray diffraction, transmission electron microscopy, optical microscopy, etc. that the portion locally melted and resolidified by laser irradiation and the surrounding area were not crystallized.

また、本発明方法は薄帯表面に絶縁乃至防錆を目的とし
た表面処理を施す前または後に適用しても同様の効果を
示した。
Further, the method of the present invention showed similar effects even when applied before or after surface treatment for the purpose of insulation or rust prevention was applied to the surface of the ribbon.

(実施例) 実施例1゛ 単ロール法で作製された組成Fe80.58’6.5B
12C1板厚65μmの非晶質合金薄帯を360℃で6
0分間N2ガス中で磁場焼鈍後その自由面に、YAGレ
ーザーを用いて局所溶解部を導入し、鉄損におよげず影
響を調べる実験を行なった。照射条件は周波数400H
zのAルスモード、掃引速度10ロリec。
(Example) Example 1 Composition Fe80.58'6.5B produced by single roll method
12C1 65μm thick amorphous alloy ribbon at 360℃
After magnetic field annealing in N2 gas for 0 minutes, a local melting zone was introduced into the free surface using a YAG laser, and an experiment was conducted to examine the effect on iron loss. Irradiation conditions are frequency 400H
Z's A Luss mode, sweep speed 10 loli ec.

点列の方向は薄帯の幅方向に平行で、点列の間隔は5m
とし、溶解部の大きさは、照射エネルギーのノ4ワーお
よびビーム径によって制御した。導入されだスポット状
溶解部の直径と鉄損の関係を第3図に示す。溶解部の直
径が30〜150μmの範囲で鉄損低減の効果が大きい
。ここで鉄損の測定には単板試験器を用いた。鉄損低減
効果の大きな照射条件で照射された個所およびその周囲
が結晶化していないことは幅0.5 mのスリットを通
したX線を点列に沿って照射した時の回折像から確認さ
れた。
The direction of the dot row is parallel to the width direction of the ribbon, and the interval between the dot rows is 5 m.
The size of the melted zone was controlled by the irradiation energy and beam diameter. Figure 3 shows the relationship between the diameter of the introduced spot-shaped melted part and iron loss. The effect of reducing iron loss is large when the diameter of the melted part is in the range of 30 to 150 μm. Here, a single plate tester was used to measure iron loss. It was confirmed from the diffraction image when X-rays were irradiated along a dot array through a 0.5 m wide slit that the area irradiated under irradiation conditions with a large iron loss reduction effect and its surroundings were not crystallized. Ta.

実施例2 実施例1で用いたものと同じロットの鋳造ままの非晶質
合金薄帯の自由面に実施例1と同じ照射条件でパルスレ
ーザ−を照射した。照射後360’Cで60分間N2ガ
ス中で磁場焼鈍した後の鉄損と溶解部の直径との関係は
第4図のようであった。溶解部の直径が200/Am付
近で鉄損低減の効果が著しい。磁場焼鈍後の前記薄帯の
溶解部を実施例1で述べた方法でX線回折を行なったが
結晶の存在は認められなかった。
Example 2 The free surface of an as-cast amorphous alloy ribbon of the same lot as that used in Example 1 was irradiated with a pulsed laser under the same irradiation conditions as in Example 1. The relationship between the core loss and the diameter of the melted part after magnetic field annealing at 360'C for 60 minutes in N2 gas after irradiation was as shown in Figure 4. The effect of reducing iron loss is remarkable when the diameter of the melted part is around 200/Am. The melted portion of the ribbon after magnetic field annealing was subjected to X-ray diffraction using the method described in Example 1, but no crystals were found.

(発明の効果) 以上説明したように本発明によれば低周波数帯域におい
ても鉄損の低減をはかることができるので、本発明は極
めて有用である。
(Effects of the Invention) As explained above, according to the present invention, iron loss can be reduced even in a low frequency band, so the present invention is extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)および第2図は本発明方法を適用
した非晶質合金薄帯を示す説明図、第3図および第4図
は本発明方法における溶解部径と鉄損との関係を示す説
明図、第5図は本発明方法における板厚と鉄損との関係
を示す説明図、・第6図は本発明方法による溶解部の金
属組織の状態を示す顕微鏡写真である。゛ 特許出願人 新日本製鐵株式會社 第1回 (α) (b) $ 2図 第3図 溶解部怪0/M) 第41ff1 7z解11径(、l/町 板厚(メm)
Figures 1 (a), (b) and 2 are explanatory diagrams showing amorphous alloy ribbon to which the method of the present invention is applied, and Figures 3 and 4 are diagrams showing the melted part diameter and iron loss in the method of the present invention. Figure 5 is an explanatory diagram showing the relationship between plate thickness and iron loss in the method of the present invention, and Figure 6 is a microscopic photograph showing the state of the metal structure of the melted part by the method of the present invention. be.゛Patent applicant Nippon Steel Corporation 1st (α) (b) $ 2 Figure 3 Melting part thickness 0/M) No. 41ff1 7z solution 11 diameter (, l/town board thickness (mm)

Claims (2)

【特許請求の範囲】[Claims] (1)非晶質合金薄帯の表面を局部的かつ瞬間的に溶解
し、次いで急冷凝固させて再び非晶質化することを特徴
とする非晶質合金薄帯の磁性改善方法。
(1) A method for improving the magnetism of an amorphous alloy ribbon, which is characterized by locally and instantaneously melting the surface of the amorphous alloy ribbon, and then rapidly solidifying it to make it amorphous again.
(2)非晶質合金薄帯の表面を局部的に溶解する手段と
してビーム径がQ、 5 mmφ以下に絞ったレーザー
光を照射することを特徴とする特許請求の範囲第1項記
載の方法。
(2) The method according to claim 1, characterized in that the method for locally melting the surface of the amorphous alloy ribbon includes irradiating laser light with a beam diameter of Q, 5 mmφ or less. .
JP59089947A 1984-05-04 1984-05-04 Improvement of magnetism in amorphous alloy thin film Granted JPS60233804A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59089947A JPS60233804A (en) 1984-05-04 1984-05-04 Improvement of magnetism in amorphous alloy thin film
US06/729,298 US4724015A (en) 1984-05-04 1985-05-01 Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip
EP85105443A EP0161593B1 (en) 1984-05-04 1985-05-03 Method for improving the magnetic properties of fe-based amorphous-alloy thin strip
DE8585105443T DE3578934D1 (en) 1984-05-04 1985-05-03 METHOD FOR IMPROVING THE MAGNETIC PROPERTIES OF THIN STRAPS MADE OF AMORPHOUS IRON ALLOYS.
US06/828,948 US4685980A (en) 1984-05-04 1986-02-12 Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089947A JPS60233804A (en) 1984-05-04 1984-05-04 Improvement of magnetism in amorphous alloy thin film

Publications (2)

Publication Number Publication Date
JPS60233804A true JPS60233804A (en) 1985-11-20
JPH0332886B2 JPH0332886B2 (en) 1991-05-15

Family

ID=13984896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089947A Granted JPS60233804A (en) 1984-05-04 1984-05-04 Improvement of magnetism in amorphous alloy thin film

Country Status (1)

Country Link
JP (1) JPS60233804A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174824A (en) * 2011-02-21 2012-09-10 Hitachi Metals Ltd MELT-QUENCHED Fe-BASED SOFT MAGNETIC ALLOY THIN BAND AND MAGNETIC CORE
JP2012199506A (en) * 2011-03-04 2012-10-18 Hitachi Metals Ltd Tape-wound core
JP5440606B2 (en) * 2009-09-14 2014-03-12 日立金属株式会社 Soft magnetic amorphous alloy ribbon, method for producing the same, and magnetic core using the same
WO2020262493A1 (en) * 2019-06-28 2020-12-30 日立金属株式会社 Fe-based amorphous alloy ribbon, iron core, and transformer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6107140B2 (en) 2011-01-28 2017-04-05 日立金属株式会社 Method for producing Fe-based amorphous and method for producing iron core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161031A (en) * 1981-03-28 1982-10-04 Nippon Steel Corp Improving method for watt loss of thin strip of amorphous magnetic alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161031A (en) * 1981-03-28 1982-10-04 Nippon Steel Corp Improving method for watt loss of thin strip of amorphous magnetic alloy

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5440606B2 (en) * 2009-09-14 2014-03-12 日立金属株式会社 Soft magnetic amorphous alloy ribbon, method for producing the same, and magnetic core using the same
JP2012174824A (en) * 2011-02-21 2012-09-10 Hitachi Metals Ltd MELT-QUENCHED Fe-BASED SOFT MAGNETIC ALLOY THIN BAND AND MAGNETIC CORE
JP2012199506A (en) * 2011-03-04 2012-10-18 Hitachi Metals Ltd Tape-wound core
JPWO2020262494A1 (en) * 2019-06-28 2021-09-13 日立金属株式会社 Fe-based amorphous alloy strip and its manufacturing method, iron core, and transformer
WO2020262494A1 (en) * 2019-06-28 2020-12-30 日立金属株式会社 Fe-based amorphous alloy ribbon, production method therefor, iron core, and transformer
JPWO2020262493A1 (en) * 2019-06-28 2021-09-13 日立金属株式会社 Fe-based amorphous alloy strips, iron cores, and transformers
WO2020262493A1 (en) * 2019-06-28 2020-12-30 日立金属株式会社 Fe-based amorphous alloy ribbon, iron core, and transformer
CN113892154A (en) * 2019-06-28 2022-01-04 日立金属株式会社 Fe-based amorphous alloy thin ribbon and method for producing the same, iron core and transformer
CN113994441A (en) * 2019-06-28 2022-01-28 日立金属株式会社 Fe-based amorphous alloy ribbons, iron cores and transformers
JP2022081516A (en) * 2019-06-28 2022-05-31 日立金属株式会社 METHOD FOR PRODUCING Fe-BASED AMORPHOUS ALLOY THIN STRIP
JP2022084618A (en) * 2019-06-28 2022-06-07 日立金属株式会社 Fe-BASED AMORPHOUS ALLOY RIBBON, IRON CORE, AND TRANSFORMER
US11802328B2 (en) 2019-06-28 2023-10-31 Proterial, Ltd. Fe-based amorphous alloy ribbon, iron core, and transformer
US11952651B2 (en) 2019-06-28 2024-04-09 Proterial, Ltd. Fe-based amorphous alloy ribbon, production method thereof, iron core, and transformer
CN113892154B (en) * 2019-06-28 2024-12-20 株式会社博迈立铖 Fe-based amorphous alloy thin strip and manufacturing method thereof, iron core and transformer
US12264389B2 (en) 2019-06-28 2025-04-01 Proterial, Ltd. Fe-based amorphous alloy ribbon, production method thereof, iron core, and transformer

Also Published As

Publication number Publication date
JPH0332886B2 (en) 1991-05-15

Similar Documents

Publication Publication Date Title
JP5477438B2 (en) Method for producing grain-oriented electrical steel sheet
US9978497B2 (en) Wound magnetic core and method of producing the same
US4685980A (en) Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip
JPH0532881B2 (en)
JPH0151527B2 (en)
JP5696380B2 (en) Iron loss improvement device and iron loss improvement method for grain-oriented electrical steel sheet
KR960014943B1 (en) Method of improving coreless properties of electrical sheet products
JPS60233804A (en) Improvement of magnetism in amorphous alloy thin film
CN118510926A (en) Grain oriented electromagnetic steel sheet
JPS6323243B2 (en)
CN104884643B (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JPH0253935B2 (en)
CN114829639B (en) Oriented electrical steel sheet and method for refining magnetic domains thereof
JPH0332888B2 (en)
JPS62227070A (en) Manufacture of thin amorphous co alloy strip having superior magnetic characteristic at high frequency
JP6838321B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JPS63239906A (en) Manufacture of fe alloy thin band having excellent high-frequency magnetic characteristic
JPS61248507A (en) Method for improving magnetism of amorphous alloy laminated core
WO2024111642A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JPS60216511A (en) Method for improving magnetism of amorphous magnetic alloy ribbon
KR20240098852A (en) Grain oriented electrical steel sheet and method for refining magnetic domains therein
WO2025005170A1 (en) Grain-oriented electrical steel sheet
WO2025005166A1 (en) Grain-oriented electrical steel sheet
Mawella et al. Metallic Glass Surface Layers of Fe80 P13 C7 Alloy by Rapid Quenching
Zheng et al. Rapidly solidified amorphous and microcrystalline phases by laser glazing