JPS60233472A - Absorption heat pump - Google Patents
Absorption heat pumpInfo
- Publication number
- JPS60233472A JPS60233472A JP9168584A JP9168584A JPS60233472A JP S60233472 A JPS60233472 A JP S60233472A JP 9168584 A JP9168584 A JP 9168584A JP 9168584 A JP9168584 A JP 9168584A JP S60233472 A JPS60233472 A JP S60233472A
- Authority
- JP
- Japan
- Prior art keywords
- absorption liquid
- heat
- absorber
- regenerator
- concentrated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010521 absorption reaction Methods 0.000 title claims description 123
- 239000007788 liquid Substances 0.000 claims description 143
- 239000003507 refrigerant Substances 0.000 claims description 82
- 239000006096 absorbing agent Substances 0.000 claims description 72
- 238000010438 heat treatment Methods 0.000 claims description 27
- 239000002918 waste heat Substances 0.000 claims description 20
- 238000009833 condensation Methods 0.000 claims description 15
- 230000005494 condensation Effects 0.000 claims description 15
- 239000000284 extract Substances 0.000 claims description 8
- 238000001704 evaporation Methods 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims 2
- 239000000498 cooling water Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 6
- 238000005507 spraying Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000002745 absorbent Effects 0.000 description 4
- 239000002250 absorbent Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は吸収ヒートポンプに関し、詳しくは、再生器か
ら吸収器に向かう濃吸収液の濃度を高めると共に加熱用
吸収器で取得した高温の熱媒により蒸発器での冷媒蒸気
の温度を高め、吸収器での熱回収温度を高めるようにし
た吸収ヒートポンプに関する。これは、廃熱等の温度の
低い熱源を用いて廃熱源温度より高い温度の熱を取り出
すようにした吸収ヒートポンプの分野で利用されるもの
である。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an absorption heat pump, and more specifically, the present invention relates to an absorption heat pump, in particular, it increases the concentration of a concentrated absorption liquid flowing from a regenerator to an absorber, and uses a high-temperature heat medium obtained in a heating absorber. The present invention relates to an absorption heat pump that increases the temperature of refrigerant vapor in an evaporator and increases the heat recovery temperature in an absorber. This is used in the field of absorption heat pumps that use a low-temperature heat source such as waste heat to extract heat at a temperature higher than the waste heat source temperature.
従来の吸収ヒートポンプとして第1図に示すような装置
がある。その作動を略述すると、蒸発器1内で冷媒液が
、外部から供給された廃熱により加熱されて冷媒蒸気と
なる。管路2を介して吸収器3に導入されたこの冷媒蒸
気は、再生器4から熱交換器5を介して導入されてきた
濃吸収液に吸収され、その際、凝縮潜熱が発生する。こ
の凝縮潜熱により温水用コイル6に供給された温水が加
熱され、高温水または飽和蒸気となって取り出されて熱
回収が行なわれる。一方、冷媒蒸気を吸収した稀吸収液
は、熱交換器5で再生器4から吸収器3に向かう濃吸収
液を加熱した後、圧力の低い再生器4の液溜り4aに流
れ込む。再生器4では、外部から熱源用コイル7に供給
された廃熱が、稀吸収液を加熱して冷媒蒸気を発生させ
ると共に稀吸収液を濃吸収液に再生する。管路8を介し
て冷媒蒸気が導入される中間吸収器9内では、冷却水用
コイル10に冷却水が供給される一方、ポンプ11によ
り中間再生器12から移送されてきた濃吸収液が、散布
装置13により散布される。その結果、濃吸収液は冷却
水用コイル10の表面で冷却されながら冷媒蒸気を吸収
するので、中間吸収器9の内部圧力は低下する。この中
間吸収器9には管路8で再生器4が連通されているので
、その中の圧力も低下してその圧力に対する飽和温度も
低下する。したがって、再生器4では供給される熱源が
比較的低くても充分冷媒蒸気を発生させることができる
ようになる。また、中間吸収器9で冷媒蒸気を吸収した
濃吸収液は、稀吸収液となって稀吸収液管路14を介し
て熱交換器15で前述の中間再生器12より中間吸収器
9へ向かう濃吸収液によって加熱され、中間再生器12
の液溜り12aに流れ込む。この稀吸収液は中間再生器
12内で外部から熱源用コイル16を介して供給される
廃熱により加熱され、その一部は冷媒蒸気となって管路
17を流過して凝縮器18に導入される。この冷媒蒸気
は、外部から冷却水用コイル19に導入された冷却水に
より冷却されて冷媒液となり、ポンプ20によって管路
21を介して蒸発器1の液溜り1aに移送される。液溜
り1aの冷媒液は散布装置22により散布され、上述の
作動が繰り返される。There is a device as shown in FIG. 1 as a conventional absorption heat pump. To briefly describe its operation, refrigerant liquid is heated in the evaporator 1 by waste heat supplied from the outside and becomes refrigerant vapor. This refrigerant vapor introduced into the absorber 3 via the pipe line 2 is absorbed by the concentrated absorption liquid introduced from the regenerator 4 via the heat exchanger 5, at which time latent heat of condensation is generated. The hot water supplied to the hot water coil 6 is heated by this latent heat of condensation, and is taken out as high-temperature water or saturated steam for heat recovery. On the other hand, the dilute absorption liquid that has absorbed the refrigerant vapor heats the concentrated absorption liquid heading from the regenerator 4 to the absorber 3 in the heat exchanger 5, and then flows into the liquid reservoir 4a of the regenerator 4 where the pressure is low. In the regenerator 4, waste heat supplied from the outside to the heat source coil 7 heats the dilute absorption liquid to generate refrigerant vapor and regenerates the dilute absorption liquid into a concentrated absorption liquid. In the intermediate absorber 9 into which refrigerant vapor is introduced via the pipe line 8, cooling water is supplied to the cooling water coil 10, while the concentrated absorption liquid transferred from the intermediate regenerator 12 by the pump 11 is It is sprayed by the spraying device 13. As a result, the concentrated absorption liquid absorbs refrigerant vapor while being cooled on the surface of the cooling water coil 10, so that the internal pressure of the intermediate absorber 9 decreases. Since the intermediate absorber 9 is connected to the regenerator 4 through a pipe line 8, the pressure therein also decreases, and the saturation temperature with respect to that pressure also decreases. Therefore, the regenerator 4 can generate sufficient refrigerant vapor even if the supplied heat source is relatively low. Further, the concentrated absorption liquid that has absorbed the refrigerant vapor in the intermediate absorber 9 becomes a diluted absorption liquid and is directed to the intermediate absorber 9 via the diluted absorption liquid pipe line 14 through the heat exchanger 15 from the intermediate regenerator 12 described above. Heated by the concentrated absorption liquid, the intermediate regenerator 12
The liquid flows into the liquid reservoir 12a. This dilute absorption liquid is heated in the intermediate regenerator 12 by waste heat supplied from the outside via the heat source coil 16, and a part of it becomes refrigerant vapor and flows through the pipe 17 to the condenser 18. be introduced. This refrigerant vapor is cooled by cooling water introduced into the cooling water coil 19 from the outside, becomes a refrigerant liquid, and is transferred to the liquid reservoir 1a of the evaporator 1 via a pipe line 21 by a pump 20. The refrigerant liquid in the liquid reservoir 1a is spread by the spreading device 22, and the above-described operation is repeated.
コノような吸収ヒートポンプでば、再生器の圧力を低下
させることができるので、低い熱源で冷媒蒸気の発生を
助長させることができ、その結果、再生器の濃吸収液の
濃度を高めることが可能となって吸収器での取り出し温
度を高めることができる。ところで、この取り出し温度
を高めるには、吸収器に導入される再生器からの濃吸収
液の濃度を高めることによって可能となるほかに、吸収
器に導入される蒸発器からの冷媒蒸気の温度を高めるこ
とによっても可能となる。したがって、両者を兼ね備え
ると一層吸収器での取り出し温度を高めることかできる
。このように吸収器での取り出し温度を高めることは熱
の利用用途を大幅に拡大できるので、上述の例のように
濃吸収液の濃度を高めることに加えて、冷媒蒸気の温度
を高めることも要望される。With an absorption heat pump like Kono, the pressure in the regenerator can be lowered, so the generation of refrigerant vapor can be promoted with a low heat source, and as a result, the concentration of the concentrated absorption liquid in the regenerator can be increased. This makes it possible to increase the extraction temperature in the absorber. By the way, this extraction temperature can be increased by increasing the concentration of the concentrated absorption liquid from the regenerator that is introduced into the absorber, as well as by increasing the temperature of the refrigerant vapor from the evaporator that is introduced into the absorber. This is also possible by increasing it. Therefore, if both are combined, the extraction temperature in the absorber can be further increased. Increasing the extraction temperature in the absorber in this way can greatly expand the uses of heat, so in addition to increasing the concentration of the concentrated absorption liquid as in the example above, it is also possible to increase the temperature of the refrigerant vapor. requested.
本発明は上述の要望に応えるためになされたもので、蒸
発器での冷媒蒸気の温度を高め、しかも、その温度の向
上に利用される熱源を有効な熱サイクルの応用で達成さ
せることのできる吸収ヒートポンプを提供することを目
的とする。The present invention has been made in response to the above-mentioned needs, and it is possible to increase the temperature of refrigerant vapor in an evaporator, and to achieve this by applying an effective heat cycle to the heat source used to increase the temperature. The purpose is to provide an absorption heat pump.
本発明の特徴とするところを図面を参照し7て説明する
。The features of the present invention will be explained with reference to the drawings.
第1の発明は、第2図に示すように、凝縮器18で凝縮
した冷媒液を蒸発させる蒸発器1と、再生器4との間で
循環される吸収液により冷媒蒸気を吸収するときに生じ
る凝縮潜熱を外部に取出す吸収器3と、再生器4で蒸発
した冷媒蒸気を吸収する中間吸収器38と、この中間吸
収器38で稀薄となった稀吸収液が稀吸収液管路41を
介して導入されると共に凝縮器18に冷媒蒸気を導出す
る中間再生器34とを備え、廃熱等の温度の低い熱源を
用いて廃熱源温度より高い温度の熱を取り出すようにし
た吸収ヒートポンプであって、凝縮器18で凝縮した冷
媒液の一部を廃熱等の低温の熱で加熱して蒸発させる中
間蒸発器25と、この中間蒸発器25で蒸発した冷媒蒸
気が導入され、中間再生器34で濃縮された濃吸収液が
濃吸収液管路33を介して導入され、冷媒蒸気が濃吸収
液に吸収されることによって発生する高い温度の熱で加
熱された熱媒を蒸発器1に循環供給し、中法吸収液を中
法吸収液管路39を介して中間吸収器38に供給する加
熱用吸収器26とを有する吸収ヒートポンプとしたこと
である。The first invention, as shown in FIG. The absorber 3 extracts the generated latent heat of condensation to the outside, the intermediate absorber 38 absorbs the refrigerant vapor evaporated in the regenerator 4, and the diluted absorbent liquid in the intermediate absorber 38 flows through the dilute absorbent pipe line 41. It is an absorption heat pump that is equipped with an intermediate regenerator 34 that introduces refrigerant vapor into the condenser 18 through the refrigerant, and extracts heat at a temperature higher than the waste heat source temperature using a low temperature heat source such as waste heat. There is an intermediate evaporator 25 that heats and evaporates a part of the refrigerant liquid condensed in the condenser 18 using low-temperature heat such as waste heat, and the refrigerant vapor evaporated in this intermediate evaporator 25 is introduced and performs intermediate regeneration. The concentrated absorption liquid concentrated in the vessel 34 is introduced through the concentrated absorption liquid line 33, and the heat medium heated with high temperature heat generated by the absorption of refrigerant vapor into the concentrated absorption liquid is transferred to the evaporator 1. This is an absorption heat pump having a heating absorber 26 that circulates and supplies the medium-process absorption liquid to the intermediate absorber 38 via the medium-process absorption liquid pipe line 39.
第2の発明は、第3図に示すように、凝縮器18で凝縮
した冷媒液を蒸発させる蒸発器lと、再生器4との間で
循環される吸収液により冷媒蒸気を吸収するときに生じ
る凝縮潜熱を外部に取出す吸収器3と、再生器4で蒸発
した冷媒蒸気を吸収する中間吸収器38と、この中間吸
収器38で稀薄となった稀吸収液が稀吸収液管路41を
介して導入されると共に凝縮器18に冷媒蒸気を導出す
る中間再生器34とを備え、廃熱等の温度の低い熱源を
用いて廃熱源温度より高い温度の熱を取り出すようにし
た吸収ヒートポンプであって、凝縮器18で凝縮した冷
媒液の一部を廃熱等の低温の熱で加熱して蒸発させる中
間蒸発器25と、この中間蒸発器25で蒸発した冷媒蒸
気が導入され、中間再生器34で濃縮された濃吸収液が
濃吸収液管路33を介して導入され、冷媒蒸気が濃吸収
液に吸収されることによって発生する高い温度の熱で加
熱された熱媒を蒸発器1に循環供給し、中法吸収液を中
法吸収液管路39を介して中間吸収器38に供給する加
熱用吸収器26と、濃吸収液管路33と中法吸収液管路
39との間で熱交換を行なわせる熱交換器47と、稀吸
収液管路41と中法吸収液管路39との間で熱交換を行
なわせる熱交換器48とを有する吸収ヒートポンプとし
たことである。The second invention, as shown in FIG. The absorber 3 extracts the generated latent heat of condensation to the outside, the intermediate absorber 38 absorbs the refrigerant vapor evaporated in the regenerator 4, and the diluted absorbent liquid in the intermediate absorber 38 flows through the dilute absorbent pipe line 41. It is an absorption heat pump that is equipped with an intermediate regenerator 34 that introduces refrigerant vapor into the condenser 18 through the refrigerant, and extracts heat at a temperature higher than the waste heat source temperature using a low temperature heat source such as waste heat. There is an intermediate evaporator 25 that heats and evaporates a part of the refrigerant liquid condensed in the condenser 18 using low-temperature heat such as waste heat, and the refrigerant vapor evaporated in this intermediate evaporator 25 is introduced and performs intermediate regeneration. The concentrated absorption liquid concentrated in the vessel 34 is introduced through the concentrated absorption liquid line 33, and the heat medium heated with high temperature heat generated by the absorption of refrigerant vapor into the concentrated absorption liquid is transferred to the evaporator 1. a heating absorber 26 that circulates and supplies medium-process absorption liquid to the intermediate absorber 38 via a medium-process absorption liquid pipe line 39; The absorption heat pump has a heat exchanger 47 that exchanges heat between the diluted absorption liquid pipe 41 and the medium absorption liquid pipe 39. .
以下に本発明の吸収ヒートポンプを、その実施例を示す
図面に基づいて詳細に説明する。EMBODIMENT OF THE INVENTION Below, the absorption heat pump of this invention is demonstrated in detail based on the drawing which shows the Example.
第2図は本発明の一実施例である吸収ヒートポンプ23
の系統図を示す。これは、第1図で説明した吸収ヒート
ポンプ24に中間蒸発器25と加熱用吸収器26とを付
加したものである。図中の中間蒸発器25は、凝縮器1
8から蒸発器1に向かう冷媒液の管路21における分岐
点21Aから枝路27を、その先端が内部の液溜り25
aの上方近傍に突入した状態で有している。また、この
中間蒸発器25には、液溜り25aの冷媒液を移送ポン
プ28で移送してその内部で散布させるための散布装置
29が内蔵されている。さらに、散布された冷媒液を加
熱して冷媒蒸気を発生させる熱源用コイル30もその内
部に備えられている。FIG. 2 shows an absorption heat pump 23 which is an embodiment of the present invention.
The system diagram is shown below. This is the absorption heat pump 24 described in FIG. 1 with an intermediate evaporator 25 and a heating absorber 26 added thereto. The intermediate evaporator 25 in the figure is the condenser 1
A branch line 27 is connected from a branch point 21A in a refrigerant liquid pipe line 21 heading from 8 to an evaporator 1, and the tip of the branch line 27 is connected to an internal liquid reservoir 25.
It has a state of protruding into the upper vicinity of a. Further, this intermediate evaporator 25 has a built-in dispersion device 29 for transferring the refrigerant liquid in the liquid reservoir 25a using a transfer pump 28 and dispersing the refrigerant liquid therein. Further, a heat source coil 30 for heating the sprayed refrigerant liquid to generate refrigerant vapor is also provided inside.
その冷媒蒸気を加熱用吸収器26に導入する冷媒蒸気管
路31が中間蒸発器25の上部に設けられ、その他端は
加熱用吸収器26の上部に連結されている。この加熱用
吸収器26には、移送ポンプ32により濃吸収液管路3
3を介して移送されてきた中間再生器34の濃吸収液を
、その内部で散布する散布装置35が備えられている。A refrigerant vapor pipe line 31 for introducing the refrigerant vapor into the heating absorber 26 is provided at the upper part of the intermediate evaporator 25, and the other end is connected to the upper part of the heating absorber 26. This heating absorber 26 is connected to a concentrated absorption liquid pipe 3 by a transfer pump 32.
A dispersion device 35 is provided for dispersing the concentrated absorption liquid from the intermediate regenerator 34 transferred through the intermediate regenerator 3 therein.
散布された濃吸収液は、導入された冷媒蒸気を吸収して
凝縮潜熱を発生するようになっている。この発生した凝
縮潜熱を吸収する熱媒が循環する循環供給路36の一端
部36Aが加熱用吸収器26の内部に装着され、その他
端部36Bは蒸発器1の内部に設けられている。なお、
この循環供給路36には熱媒を循環させる循環ポンプ3
7が介在されている。The sprayed concentrated absorption liquid absorbs the introduced refrigerant vapor and generates latent heat of condensation. One end 36A of the circulation supply path 36 through which the heat medium that absorbs the generated latent heat of condensation circulates is installed inside the heating absorber 26, and the other end 36B is provided inside the evaporator 1. In addition,
This circulation supply path 36 has a circulation pump 3 that circulates the heat medium.
7 is interposed.
さらに、加熱用吸収器26の液溜り26aに貯留する中
温吸収液を、中間吸収器38に移送させる中温吸収液管
路39が設けられ、その先端は中間吸収器38の散布装
置40に接続されている。なお、41は稀吸収液管路で
、中間吸収器38の液溜り38aの稀吸収液を中間再生
器34の液溜り34aに流入させるために設けられてい
る。ところで、中間吸収器38の内部圧力は前述の中間
再生器34の内部圧力よりも僅かに低いので、稀吸収液
管路41に図示しないポンプを設けるが、中間吸収器3
8を中間再生器34よりも高い位置に設けて液溜り38
aの稀吸収液を中間再生器34に重力で流下させるよう
にすればよい。Further, a medium-temperature absorption liquid pipe line 39 is provided for transferring the medium-temperature absorption liquid stored in the liquid reservoir 26a of the heating absorber 26 to the intermediate absorber 38, and the tip thereof is connected to the dispersion device 40 of the intermediate absorber 38. ing. In addition, 41 is a diluted absorption liquid pipe line, which is provided to cause the diluted absorption liquid in the liquid reservoir 38a of the intermediate absorber 38 to flow into the liquid reservoir 34a of the intermediate regenerator 34. By the way, since the internal pressure of the intermediate absorber 38 is slightly lower than the internal pressure of the aforementioned intermediate regenerator 34, a pump (not shown) is provided in the diluted absorption liquid pipe line 41.
8 is provided at a higher position than the intermediate regenerator 34 to create a liquid reservoir 38.
The diluted absorption liquid a may be allowed to flow down to the intermediate regenerator 34 by gravity.
このような構成によれば、次のように作動させることが
できる。According to such a configuration, it can be operated as follows.
まず、蒸発器1の液溜り1aに貯留する冷媒液は、ポン
プ42により散布装置43に移送され散布される。この
とき、循環供給路36の他端部36Bを流過する高温の
熱媒に散布された冷媒液が加熱され高温の冷媒蒸気とな
る。この冷媒蒸気が管路2より吸収器3に導入される一
方、吸収器3内では、低圧の再生器4からポンプ44に
より移送されてきた濃吸収液が散布装置45から散布さ
れ、導入された冷媒蒸気が吸収されて凝縮潜熱が発生す
る。凝縮潜熱は温水用コイル6内の温水に吸収され、温
水は高温となって高温水あるいは飽和蒸気となり取り出
される。冷媒蒸気を吸収した濃吸収液は稀吸収液となり
低圧の再生器4に流入する途中、熱交換器5で前述の低
圧の再生器4における飽和温度に相当する低温の濃吸収
液を加熱した後、再生器4の液溜り4aに流れ込む。熱
交換器5で加熱された濃吸収液は、再生器4より高圧の
吸収器3の飽和温度近くまで加熱されて吸収器3内で散
布され、前述したように冷媒蒸気を吸収する。その結果
、発生する凝縮潜熱は、濃吸収液の温度が吸収器3の飽
和温度近くまで達しているので、濃吸収液の温度を高め
るために殆ど使われることなく供給された温水の温度を
高めるために利用される。ところで、再生器4に流入さ
れた稀吸収液は、液溜り4aに貯留されると共に外部か
ら供給される廃熱により熱源用コイル7を介して加熱さ
れる。その一部は冷媒蒸気として管路8を介して中間吸
収器38に導入され、残部は冷媒蒸気になった分だけ濃
度が濃くなって濃吸収液として液溜り4aに溜る。中間
吸収器38に導入された冷媒蒸気は、冷却水用コイル1
0の表面で冷却されながら後述する加熱用吸収器26か
らの中温吸収液に吸収される。その結果、低温のもとて
冷媒蒸気が中温吸収液に吸収されるので、吸収能率は高
まり中間吸収器38内の圧力は低下し、再生器4の圧力
も管路8を通して下がる。再生器4内の圧力が低圧とな
るので、飽和温度は低下し、比較的低い供給熱源で冷媒
蒸気の発生が助長される。その結果、液溜り4aに貯留
する濃吸収液の濃度は高くなる。ところで、中間吸収器
38内で冷媒蒸気を吸収した中温吸収液は、稀吸収液と
なり液溜り38aに溜る。液溜り38aの稀吸収液は低
圧の中間再生器34の液溜り34aに稀吸収液管路41
を介して流れ込む。この稀吸収液は外部から熱源用コイ
ル16を通して供給される廃熱により加熱され、一部は
冷媒蒸気となって管路17より凝縮器18へ導入され、
残部は濃吸収液となって液溜り34aに貯留され2る。First, the refrigerant liquid stored in the liquid reservoir 1a of the evaporator 1 is transferred to the spraying device 43 by the pump 42 and is sprayed. At this time, the refrigerant liquid spread over the high temperature heat medium flowing through the other end 36B of the circulation supply path 36 is heated and becomes high temperature refrigerant vapor. This refrigerant vapor is introduced into the absorber 3 through the pipe 2, while in the absorber 3, the concentrated absorption liquid transferred from the low-pressure regenerator 4 by the pump 44 is sprayed from the spraying device 45 and introduced. Refrigerant vapor is absorbed and latent heat of condensation is generated. The latent heat of condensation is absorbed by the hot water in the hot water coil 6, and the hot water becomes high temperature and is extracted as high temperature water or saturated steam. The concentrated absorption liquid that has absorbed the refrigerant vapor becomes a dilute absorption liquid, and while flowing into the low-pressure regenerator 4, the concentrated absorption liquid is heated at a low temperature corresponding to the saturation temperature in the aforementioned low-pressure regenerator 4 in the heat exchanger 5. , flows into the liquid reservoir 4a of the regenerator 4. The concentrated absorption liquid heated in the heat exchanger 5 is heated to near the saturation temperature of the absorber 3, which has a higher pressure than the regenerator 4, and is dispersed within the absorber 3 to absorb refrigerant vapor as described above. As a result, the generated latent heat of condensation increases the temperature of the supplied hot water, which is hardly used to raise the temperature of the concentrated absorption liquid, since the temperature of the concentrated absorption liquid has reached near the saturation temperature of the absorber 3. used for. By the way, the dilute absorption liquid that has flowed into the regenerator 4 is stored in the liquid reservoir 4a and is heated via the heat source coil 7 by waste heat supplied from the outside. A part of the refrigerant vapor is introduced into the intermediate absorber 38 via the pipe line 8, and the remaining part becomes concentrated as a refrigerant vapor and accumulates in the liquid reservoir 4a as a concentrated absorption liquid. The refrigerant vapor introduced into the intermediate absorber 38 is transferred to the cooling water coil 1
While being cooled on the surface of 0, it is absorbed by a medium-temperature absorption liquid from a heating absorber 26, which will be described later. As a result, the low-temperature refrigerant vapor is absorbed into the medium-temperature absorption liquid, so the absorption efficiency increases and the pressure in the intermediate absorber 38 decreases, and the pressure in the regenerator 4 also decreases through the pipe 8. Since the pressure inside the regenerator 4 becomes low, the saturation temperature decreases, and the generation of refrigerant vapor is promoted with a relatively low supply heat source. As a result, the concentration of the concentrated absorption liquid stored in the liquid reservoir 4a increases. By the way, the medium-temperature absorption liquid that has absorbed the refrigerant vapor in the intermediate absorber 38 becomes a diluted absorption liquid and accumulates in the liquid reservoir 38a. The diluted absorption liquid in the liquid reservoir 38a is transferred to the diluted absorption liquid pipe line 41 to the liquid reservoir 34a of the low-pressure intermediate regenerator 34.
flows through. This dilute absorption liquid is heated by waste heat supplied from the outside through the heat source coil 16, and a part of it becomes refrigerant vapor and is introduced into the condenser 18 through the pipe line 17.
The remainder becomes a concentrated absorption liquid and is stored in a liquid reservoir 34a.
凝縮器18に導入された冷媒蒸気は、冷却水用コイル1
9より供給される冷却水に冷却され冷媒液となって液溜
り18aに溜る。冷媒液はポンプ46により管路21を
介して蒸発器1の液溜り1aに移送される途中で、その
一部は分岐点21Aで分流され、枝路27より中間蒸発
器25の液溜り25aに流れ込む。流れ込んだ冷媒液は
移送ポンプ28により移送され散布装置29により散布
される。このとき熱源用コイル30に廃熱が供給される
ので、この廃熱によって冷媒液は加熱され冷媒蒸気とな
って、冷媒蒸気管路31より加熱用吸収器2Gに導入さ
れる。加熱用吸収器26内では前述の中間再生器34の
濃吸収液が、移送ポンプ32により移送され散布装置3
5より循環供給路3Gの一端部36Aに向けて散布され
る。その結果、濃吸収液は導入された冷媒蒸気を一端部
36Aの表面で吸収し、凝縮潜熱を発生して循環供給1
i!836内の熱媒を加熱する。加熱されて高温となっ
た熱媒は、循環ポンプ37により循環供給路36内を循
環する。この高温の熱媒が循環して蒸発器1内の他端部
36Bを流過するときに、散布装置43より散布される
冷媒液を加熱して冷媒蒸気とする。その結果、低温とな
った熱媒は、循環供給路36内を循環し他端部36Bで
前述と同様に凝縮潜熱により加熱され再び高温となる。The refrigerant vapor introduced into the condenser 18 is transferred to the cooling water coil 1
It is cooled by the cooling water supplied from 9, becomes a refrigerant liquid, and accumulates in a liquid reservoir 18a. The refrigerant liquid is transferred to the liquid reservoir 1a of the evaporator 1 by the pump 46 via the pipe line 21, and a part of it is diverted at the branch point 21A, and is transferred from the branch line 27 to the liquid reservoir 25a of the intermediate evaporator 25. Flow into. The flowing refrigerant liquid is transferred by a transfer pump 28 and sprayed by a spraying device 29. At this time, waste heat is supplied to the heat source coil 30, so the refrigerant liquid is heated by this waste heat, becomes refrigerant vapor, and is introduced into the heating absorber 2G through the refrigerant vapor pipe line 31. Inside the heating absorber 26, the concentrated absorption liquid from the intermediate regenerator 34 is transferred by a transfer pump 32 to the spraying device 3.
5 toward one end 36A of the circulation supply path 3G. As a result, the concentrated absorption liquid absorbs the introduced refrigerant vapor on the surface of the one end portion 36A, generates latent heat of condensation, and
i! The heating medium in 836 is heated. The heat medium heated to a high temperature is circulated within the circulation supply path 36 by the circulation pump 37 . When this high-temperature heat medium circulates and passes through the other end 36B in the evaporator 1, the refrigerant liquid sprayed from the sprayer 43 is heated and turned into refrigerant vapor. As a result, the heat medium that has become low temperature circulates within the circulation supply path 36 and is heated at the other end 36B by the latent heat of condensation in the same manner as described above, and becomes high temperature again.
ところで、加熱用吸収器26内で冷媒蒸気を吸収した濃
吸収液は、高温の中温吸収液となって液溜り26aに落
下して溜る。この中温吸収液は、中潮吸収液管路39内
を流過して中間吸収器38の散布装置40に散布される
。このとき導入された冷媒蒸気を中温吸収液が吸収する
ことは前述した通りである。なお、前述の管路21の分
岐点21Aで分流しなかった残りの冷媒液は、そのまま
蒸発器1の液溜り1aに流れ込む。以後、上述の作動が
繰り返される。By the way, the concentrated absorption liquid that has absorbed the refrigerant vapor in the heating absorber 26 becomes a high-temperature, intermediate-temperature absorption liquid that falls and accumulates in the liquid reservoir 26a. This medium-temperature absorption liquid flows through the medium-temperature absorption liquid pipe line 39 and is sprayed to the spraying device 40 of the intermediate absorber 38. As described above, the medium-temperature absorption liquid absorbs the refrigerant vapor introduced at this time. Note that the remaining refrigerant liquid that was not separated at the branch point 21A of the pipe line 21 described above flows directly into the liquid reservoir 1a of the evaporator 1. Thereafter, the above-described operation is repeated.
第3図は上述の構成に加えて、濃吸収液管路33と中潮
吸収液管路39との間で熱交換を行なわせる熱交換器4
7と、稀吸収液管路41と中法吸収液管路39七の間で
熱交換を行なわせる熱交換器48とが設けられた第2の
発明の概略系統図である。なお、上述の発明と同様の構
成には同一の符号を付してその説明を省略する。In addition to the above-mentioned configuration, FIG.
7 and a heat exchanger 48 for exchanging heat between the dilute absorption liquid pipe line 41 and the medium-method absorption liquid line 397. FIG. In addition, the same code|symbol is attached|subjected to the structure similar to the above-mentioned invention, and the description is abbreviate|omitted.
このような構成によっても、上述の発明と同様に作動さ
せることができると共に、熱交換器47を介在させるこ
とにより中間再生器34の濃吸収液が移送ポンプ32を
介して加熱用吸収器26に移送される途中、加熱用吸収
器26の高温の中温吸収液によって加熱される。その結
果、濃吸収液は加熱用吸収器26のほぼ飽和温度とされ
てその内部で散布され、そのときに発生する凝縮潜熱は
殆どすべて循環供給路36の一端部36Aにおいて熱媒
に吸収される。一方、熱交換器48を介在させることに
より加熱用吸収器26から中間吸収器38へ向かう中温
吸収液によって中間吸収器38から中間再生器34への
稀吸収液が加熱される。With such a configuration, it is possible to operate in the same manner as in the above-described invention, and by interposing the heat exchanger 47, the concentrated absorption liquid of the intermediate regenerator 34 is transferred to the heating absorber 26 via the transfer pump 32. During the transfer, it is heated by the high temperature intermediate temperature absorption liquid in the heating absorber 26. As a result, the concentrated absorption liquid is brought to almost the saturation temperature of the heating absorber 26 and is dispersed therein, and almost all of the latent heat of condensation generated at this time is absorbed by the heating medium at one end 36A of the circulation supply path 36. . On the other hand, by interposing the heat exchanger 48, the diluted absorption liquid flowing from the intermediate absorber 38 to the intermediate regenerator 34 is heated by the medium temperature absorption liquid flowing from the heating absorber 26 to the intermediate absorber 38.
その結果、中間吸収器38の低温の稀吸収液はその温度
を高められ、中間再生器34内で冷媒蒸気になることが
助長され、中間再生器34内の濃吸収液の濃度が高まる
ので、加熱用吸収器26で発生する熱量が高まって循環
供給路36の一端部36A内を循環する熱媒の吸収熱量
が増大され、蒸発器1での冷媒蒸気の温度が高まる。As a result, the temperature of the low-temperature dilute absorption liquid in the intermediate absorber 38 is increased, and it is encouraged to become refrigerant vapor in the intermediate regenerator 34, and the concentration of the concentrated absorption liquid in the intermediate regenerator 34 is increased. The amount of heat generated in the heating absorber 26 increases, the amount of heat absorbed by the heat medium circulating in the one end 36A of the circulation supply path 36 increases, and the temperature of the refrigerant vapor in the evaporator 1 increases.
本発明は以上詳細に説明したように、第1の発明では、
蒸発器で冷媒液を蒸発させる熱源を、加熱用吸収器内で
発生した凝縮潜熱により高温にしだ熱媒を介して供給す
るようにしたので、吸収ヒートポンプの熱回収温度を高
める要素の1つである蒸発器における冷媒蒸気の温度を
高めることができる。したがって、再生器の濃吸収液の
濃度を高めることと相まって熱回収温度を高くすること
ができる。第2の発明においては熱交換器を介在させた
ので、前述の効果をより高い熱効率でもって発揮させる
ことができる。As described in detail above, the first invention includes:
The heat source for evaporating the refrigerant liquid in the evaporator is heated to a high temperature by the latent heat of condensation generated in the heating absorber, and is supplied via a heating medium, which is one of the elements that increases the heat recovery temperature of the absorption heat pump. The temperature of the refrigerant vapor in an evaporator can be increased. Therefore, in combination with increasing the concentration of the concentrated absorption liquid in the regenerator, the heat recovery temperature can be increased. In the second invention, since a heat exchanger is interposed, the above-mentioned effects can be exhibited with higher thermal efficiency.
第1図は従来の吸収ヒートポンプの系統図、第2図は第
1の発明の吸収ヒートポンプの系統図、第3図は第2の
発明の吸収ヒートポンプの系統図である。
1−蒸発器、3−吸収器、4−再生器、18−凝縮器、
23−吸収ヒートポンプ、25−中間蒸発器、26−加
熱用吸収器、33−濃吸収液管路、34−中間再生器、
38−中間吸収器、39−中潮吸収液管路、41−稀吸
収液管路、47.48−熱交換器
特許出願人 川崎重工業株式会社
代理人 弁理士 吉村勝俊(はが1名)第1図
第2図FIG. 1 is a system diagram of a conventional absorption heat pump, FIG. 2 is a system diagram of an absorption heat pump according to the first invention, and FIG. 3 is a system diagram of an absorption heat pump according to the second invention. 1-evaporator, 3-absorber, 4-regenerator, 18-condenser,
23-absorption heat pump, 25-intermediate evaporator, 26-heating absorber, 33-concentrated absorption liquid pipe, 34-intermediate regenerator,
38-Intermediate absorber, 39-Medium tide absorption liquid pipe, 41-Dilute absorption liquid pipe, 47.48-Heat exchanger Patent applicant Kawasaki Heavy Industries, Ltd. agent Patent attorney Katsutoshi Yoshimura (1 person) No. 1 Figure 2
Claims (2)
再生器との間で循環される吸収液により冷媒蒸気を吸収
するときに生゛じる凝縮潜熱を外部に取出す吸収器と、
前記再生器で蒸発した冷媒蒸気を吸収する中間吸収器と
、この中間吸収器で稀薄となった稀吸収液が稀吸収液管
路を介して導入されると共に前記凝縮器に冷媒蒸気を導
出する中間再生器とを備え、廃熱等の温度の低い熱源を
用いて廃熱源温度より高い温度の熱を取り出すようにし
た吸収ヒートポンプにおいて、 前記凝縮器で凝縮した冷媒液の一部を廃熱等の低温の熱
で加熱して蒸発させる中間蒸発器と、この中間蒸発器で
蒸発した冷媒蒸気が導入され、前記中間再生器で濃縮さ
れた濃吸収液が濃吸収液管路を介して導入され、冷媒蒸
気が濃吸収液に吸収されることによって発生する高い温
度の熱で加熱された熱媒を前記蒸発器に循環供給し、9
濃吸収液を9濃吸収液管路を介して中間吸収器に供給す
る加熱用吸収器と、 を有し、この加熱用吸収器で加熱された温度の商い熱媒
で、前記蒸発器の冷媒蒸発温度を高めるようにしたこと
を特徴とする吸収ヒートポンプ。(1) an evaporator that evaporates the refrigerant liquid condensed in the condenser;
an absorber that extracts latent heat of condensation generated when refrigerant vapor is absorbed by an absorption liquid circulated between the regenerator and the regenerator;
An intermediate absorber absorbs the refrigerant vapor evaporated in the regenerator, and a diluted absorption liquid that has become diluted in the intermediate absorber is introduced through a diluted absorption liquid pipe line, and the refrigerant vapor is led out to the condenser. In an absorption heat pump that is equipped with an intermediate regenerator and extracts heat at a temperature higher than the waste heat source temperature using a low-temperature heat source such as waste heat, a part of the refrigerant liquid condensed in the condenser is converted into waste heat, etc. The refrigerant vapor evaporated in the intermediate evaporator is introduced into the intermediate evaporator, and the concentrated absorption liquid concentrated in the intermediate regenerator is introduced through the concentrated absorption liquid pipe. 9. Circulating and supplying a heating medium heated with high temperature heat generated by absorption of refrigerant vapor into a concentrated absorption liquid to the evaporator;
a heating absorber for supplying the concentrated absorption liquid to the intermediate absorber through nine concentrated absorption liquid pipes; An absorption heat pump characterized by increasing the evaporation temperature.
再生器との間で循環される吸収液により冷媒蒸気を吸収
するときに生じる凝縮潜熱を外部に取出す吸収器と、前
記再生器で蒸発した冷媒蒸気を吸収する中間吸収器と、
この中間吸収器で稀薄となった稀吸収液が稀吸収液管路
を介して導入されると共に前記凝縮器に冷媒蒸気を導出
する中間再生器とを備え、廃熱等の温度の低い熱源を用
いて廃熱源温度より高い温度の熱を取り出すようにした
吸収ヒートポンプにおいて、 前記凝縮器で凝縮した冷媒液の一部を廃熱等の低温の熱
で加熱して蒸発させる中間蒸発器と、この中間蒸発器で
蒸発した冷媒蒸気が導入され、前記中間再生器で濃縮さ
れた濃吸収液が濃吸収液管路を介して導入され、゛冷媒
蒸気が濃吸収液に吸収されることによって発生する高い
温度の熱で加熱された熱媒を前記蒸発器に循環供給し、
9濃吸収液を9濃吸収液管路を介して中間吸収器に供給
する加熱用吸収器と、 前記濃吸収液管路と9濃吸収液管路との間で熱交換を行
なわせる熱交換器と、 前記稀吸収液管路と9濃吸収液管路との間で熱交換を行
なわせる熱交換器と、 を有し、前記加熱用吸収器で加熱された温度の高い熱媒
で前記蒸発器の冷媒蒸発温度を高めるようにしたことを
特徴とする吸収ヒートポンプ。(2) an evaporator that evaporates the refrigerant liquid condensed in the condenser;
an absorber that extracts to the outside latent heat of condensation generated when refrigerant vapor is absorbed by an absorption liquid circulated between the regenerator and an intermediate absorber that absorbs refrigerant vapor evaporated in the regenerator;
The intermediate absorber is equipped with an intermediate regenerator that introduces the diluted absorption liquid diluted in the intermediate absorber through the diluted absorption liquid pipe line, and also delivers refrigerant vapor to the condenser, and uses a low-temperature heat source such as waste heat. In an absorption heat pump that extracts heat at a temperature higher than the temperature of the waste heat source using The refrigerant vapor evaporated in the intermediate evaporator is introduced, and the concentrated absorption liquid concentrated in the intermediate regenerator is introduced through the concentrated absorption liquid pipe. circulating and supplying a heat medium heated with high temperature heat to the evaporator;
a heating absorber for supplying concentrated absorption liquid to an intermediate absorber via a concentrated absorption liquid line 9; and a heat exchanger for performing heat exchange between the concentrated absorption liquid line and the concentrated absorption liquid line 9. a heat exchanger for performing heat exchange between the dilute absorption liquid pipe line and the concentrated absorption liquid pipe line; An absorption heat pump characterized by increasing the refrigerant evaporation temperature of the evaporator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9168584A JPS60233472A (en) | 1984-05-07 | 1984-05-07 | Absorption heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9168584A JPS60233472A (en) | 1984-05-07 | 1984-05-07 | Absorption heat pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60233472A true JPS60233472A (en) | 1985-11-20 |
JPH0441269B2 JPH0441269B2 (en) | 1992-07-07 |
Family
ID=14033353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9168584A Granted JPS60233472A (en) | 1984-05-07 | 1984-05-07 | Absorption heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60233472A (en) |
-
1984
- 1984-05-07 JP JP9168584A patent/JPS60233472A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0441269B2 (en) | 1992-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101261054A (en) | A large temperature rise absorption heat pump unit | |
JPS61110852A (en) | Absorption heat pump/refrigeration system | |
KR0177719B1 (en) | GX Absorption Cycle System | |
JP2001082821A (en) | Absorption heat pump | |
JPS60233472A (en) | Absorption heat pump | |
JPS60235969A (en) | Absorption heat pump | |
US5293759A (en) | Direct heat recovery absorption refrigeration system | |
JPS60233473A (en) | Absorption heat pump | |
JPS5818575B2 (en) | heat pump | |
JPS58219371A (en) | Double effect absorption type heat pump | |
JPS61122428A (en) | Two-stage cycle absorption heat pump type floor heating system | |
JPH0583831B2 (en) | ||
JPH0350373Y2 (en) | ||
JPH0147714B2 (en) | ||
JPH08159591A (en) | Absorption type refrigerator | |
KR0184216B1 (en) | Ammonia absorptive refrigerator | |
JPS5849780B2 (en) | Absorption heat pump | |
JPS62225870A (en) | Absorption heat pump device | |
JPS61268961A (en) | Self-exhaust heat recovery device | |
JPS59107158A (en) | Absorption type heat pump | |
JPS5949463A (en) | Absorption type hot water machine | |
JPS5913666B2 (en) | heat pump system | |
JP2003176961A (en) | Excess hot heat utilizing method in multiple-effect absorption refrigerator and water cooler/heater | |
JPS62217065A (en) | Absorption heat pump device | |
JPS60101457A (en) | Waste-heat recovery heat exchanger for direct-fire absorption type cold and hot water machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |