JPS60231466A - High density silicon carbide sintered body - Google Patents
High density silicon carbide sintered bodyInfo
- Publication number
- JPS60231466A JPS60231466A JP59087466A JP8746684A JPS60231466A JP S60231466 A JPS60231466 A JP S60231466A JP 59087466 A JP59087466 A JP 59087466A JP 8746684 A JP8746684 A JP 8746684A JP S60231466 A JPS60231466 A JP S60231466A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- sintered body
- weight
- oxide
- aluminum oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/575—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、耐酸化性、耐熱衝撃性、耐食性及び高温強度
とともに高密度を持つ炭化ケイ素焼結体に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silicon carbide sintered body having high density as well as oxidation resistance, thermal shock resistance, corrosion resistance and high temperature strength.
近年、炭化ケイ素焼結体の耐酸化性、耐熱衝撃性、耐食
性及び高温強度が優れている特長を活かし、各種構造用
材料、腐食性液体用の逆止弁やシール材、高温炉用熱交
換器用材さらには強度の耐摩耗用部材へその用途が拡大
されるに至り、気孔が殆ど存在せずより強度が大なる焼
結体が要望されるようになった。In recent years, silicon carbide sintered bodies have been exploited for their excellent oxidation resistance, thermal shock resistance, corrosion resistance, and high-temperature strength to be used in various structural materials, check valves and sealing materials for corrosive liquids, and heat exchangers for high-temperature furnaces. As the use of sintered materials has expanded to include equipment materials and even strong wear-resistant materials, there has been a demand for sintered bodies with virtually no pores and greater strength.
炭化ケイ素の製造方法としては、(イ)気相反応法、(
ロ)反応焼結法、(ハ)熱間焼結法があるが、(イ)の
方法は均質且つ緻密な炭化ケイ素が得られるが通常薄膜
しか造り得す実際上は各種材料のコーティング法にしか
適しておらず、(ロ)の方法は通常炭化ケイ素あるいは
二酸化ケイ素や炭化ケイ素の粉末を混合し、これを焼成
する方法で形状の大なる物は得られるが緻密な物は得難
く現状では耐火物や発熱体の製造に応用されているに過
ぎない。従って形状が太き(、かつ緻密な焼結体を得る
には上記(ハ)の方法が最適であるといえる。Methods for producing silicon carbide include (a) gas phase reaction method, (
(b) Reactive sintering method and (c) Hot sintering method. Method (a) can obtain homogeneous and dense silicon carbide, but it can usually only produce a thin film. In practice, it is a coating method for various materials. The method (b) is usually a method of mixing silicon carbide, silicon dioxide, or silicon carbide powder and firing it, and although it is possible to obtain objects with a large shape, it is difficult to obtain dense objects, and at present, It is only applied to the production of refractories and heating elements. Therefore, it can be said that the above method (c) is optimal for obtaining a sintered body that is thick (and dense) in shape.
ところが炭化ケイ素は、共有結合性の大きな化合物であ
るために硬く、強靭でかつ高温においても安定した物質
であるためにそれ単味では焼結性が著しく悪く実用に供
し得る焼結体を得ることは困難であるところから、種々
の焼結助剤を混入す報告(R,八IIfegro et
al、 Journal of CeramicSo
ciety、 1956年、39巻、 386〜389
P ’)や、特開昭49−7311号公報、特開昭4
9−99308号公報、特開昭50−78609号公報
、特開昭51−65111号公報、特開昭52−671
6号公報、特開昭53−67711号公報及び特開昭5
3−84013号公報等で、八1.Fe、B。However, since silicon carbide is a compound with large covalent bonds, it is hard, tough, and stable even at high temperatures, so it has extremely poor sinterability when used alone, making it difficult to obtain a sintered body that can be put to practical use. Since it is difficult to do so, there are reports of mixing various sintering aids (R, 8 II Fegro et al.
al, Journal of CeramicSo
ciety, 1956, vol. 39, 386-389
P'), JP-A-49-7311, JP-A-4
9-99308, JP 50-78609, JP 51-65111, JP 52-671
Publication No. 6, JP-A-53-67711, and JP-A-Sho 5
No. 3-84013, etc., 81. Fe,B.
B4C等を焼結助剤として用いれば気孔が少なく強度が
大なる焼結体が得られる旨が報告されている。It has been reported that if B4C or the like is used as a sintering aid, a sintered body with fewer pores and greater strength can be obtained.
ところで焼結体の強度は種々の要因で決まるが(イ)気
孔率、(ロ)表面傷、(ハ)粒子の大きさはその強度に
及ばず影響が大なるものである。By the way, the strength of a sintered body is determined by various factors, but (a) porosity, (b) surface flaws, and (c) particle size do not affect the strength and have a large influence.
この中(ロ)の表面傷は加工を留意することで回避でき
、又(イ)の気孔率については上述のごとく種々の焼結
助剤を用い気孔率が非常に小さい焼結体を得ることでほ
ぼ解決できるが、しかしまだミクロ的にはかなり気孔を
含んでいる。さらに、(ハ)の粒子の大きさの問題は最
も困難で焼結時に粒成長が起こり、微細粒状の焼結体が
得難くそのことが強度をある限度以上にすることができ
ない原因となっている。これらの事実についてはBを焼
結助剤として用いた炭化ケイ素焼結体についてプロチー
!’7カ等(S、 Prochazka et、 al
、、 awe。The surface scratches in (B) can be avoided by paying attention to processing, and the porosity in (B) can be avoided by using various sintering aids as described above to obtain a sintered body with very low porosity. However, it still contains a lot of pores on a microscopic level. Furthermore, the problem of particle size (c) is the most difficult, as grain growth occurs during sintering, making it difficult to obtain fine grained sintered bodies, which is the reason why it is not possible to increase the strength above a certain limit. There is. Regarding these facts, please read about the silicon carbide sintered body using B as a sintering aid! '7 etc. (S, Prochazka et al.
,, awe.
aram、 Soc、 Bull、 52885〜89
1 (1973) )が結晶粒が成長し、その強度があ
まり大とならない旨を報告していることからも明らかで
ある。aram, Soc, Bull, 52885-89
1 (1973)) reported that crystal grains grow and their strength does not become very large.
その為、上記欠点を解消すべく本発明者は特願昭和58
−190361号出願において、炭イしケイ素焼結体中
に酸化エルビウムと酸化アルミニウムとを、それぞれ単
独組成で存在せしめた高密度でかつ結晶粒が微細な炭化
ケイ素焼結体を開示した。しがしながら、この焼結体で
もさらに2μ謡前後のボアがあり、また結晶粒も8.5
μ鯖程度の大きなものが見られ、さらに高密度で且つ微
細な結晶粒を持つ炭化ケイ素焼結体が要求される。Therefore, in order to eliminate the above-mentioned drawbacks, the inventor of the present invention applied for a patent application in 1983.
In the application No. 190361, a silicon carbide sintered body with high density and fine crystal grains was disclosed, in which erbium oxide and aluminum oxide were present in the silicon carbide sintered body as individual compositions. However, this sintered body also has a bore of around 2 μm, and the crystal grains are also 8.5 mm.
Silicon carbide sintered bodies are found to be as large as μ mackerel, and a silicon carbide sintered body with higher density and finer crystal grains is required.
−[発明が解決しようとする問題点〕
本発明の目的は、従来の炭化ケイ素焼結体材料よりも微
細なボアと組織を持つ高緻密質の炭化ケμ蒙以下、結晶
粒度が5μ翔以下の高緻密質の炭化ケイ素焼結体材料を
提供せんとするものである。- [Problems to be Solved by the Invention] The purpose of the present invention is to create a highly dense carbide material with finer bores and structures than conventional silicon carbide sintered materials, with a grain size of less than 5 μm and a grain size of less than 5 μm. The present invention aims to provide a highly dense silicon carbide sintered material.
本発明の炭化ケイ素焼結体は、酸化エルビウムと酸化ア
ルミニウムとを複合酸化物の形で含有している。The silicon carbide sintered body of the present invention contains erbium oxide and aluminum oxide in the form of a composite oxide.
例えば、複合酸化物の一つとして次式に示すガーネット
の形で存在せしめることができる。For example, as one of the composite oxides, it can exist in the form of garnet shown in the following formula.
Era(AI、Er)t(AIOa)+ −−−−−−
−−(1)(Er、AI)s^It(AlO2)s −
−−−−−−−−−(2>前記式(1)〜(2)で表さ
れるガーネット粉末としては、例えば酸化アルミニウム
粉末と酸化エルビウム粉末との混合粉末を高温(通常は
1300〜1600℃程度)で固相反応させて得られる
多結晶粉末などを用いることができる。Era(AI, Er)t(AIOa)+ --------
--(1) (Er, AI)s^It(AlO2)s -
-------------(2> As the garnet powder represented by the above formulas (1) and (2), for example, a mixed powder of aluminum oxide powder and erbium oxide powder is heated at a high temperature (usually 1300 to 1600 It is possible to use polycrystalline powder obtained by solid-phase reaction at a temperature of about 30°F (°C).
かかる固相反応においては、必ずしも
Er5AIz(AlO2)s組成の生成物を生ずるとは
限らず一一曲訃6(鮨五r置栖面伶1−T口]と(2)
に示す組成のガーネットが得られることが多い。In such a solid-phase reaction, a product having the composition Er5AIz(AlO2)s is not necessarily produced;
Garnets with the composition shown are often obtained.
それ以外にEr3A12(^104)3の組成のガーネ
ットを用いることもできる。またガーネット以外にEr
x Al +1−Xl 03 (ここでx〈1)で表さ
れる組成でも使用可能である。In addition, garnet having a composition of Er3A12(^104)3 can also be used. In addition to Garnet, Er
A composition represented by x Al +1-Xl 03 (here x<1) can also be used.
複合酸化物における酸化エルビウムの量は少なくとも2
重量%なければ対理論密度が低く、がっ抗折力その他の
緒特性も良くないが、15重量%と多量になると結晶粒
子の成長が見られ、それに伴って抗折力や衝撃値が低下
しその他の特性も殆ど低下する傾向にある。従って、そ
の量は12重量%以内とする。The amount of erbium oxide in the composite oxide is at least 2
If it is less than 15% by weight, the theoretical density will be low and the transverse rupture strength and other mechanical properties will not be good, but if the amount is as high as 15% by weight, the growth of crystal grains will be observed, and the transverse rupture strength and impact value will decrease accordingly. However, most of the other properties also tend to deteriorate. Therefore, the amount should be within 12% by weight.
一方、酸化アルミニウムの量は3重量%にもなると抗折
力などの特性の低下が見られ、また無添加だと酸化エル
ビウムと酸化アルミニウムとのガーネットの添加効果が
全(ないので、好ましくは2重量%以下とする。On the other hand, when the amount of aluminum oxide reaches 3% by weight, a decrease in properties such as transverse rupture strength is observed, and if no addition is made, the effect of adding garnet to erbium oxide and aluminum oxide is not at all, so it is preferable to % by weight or less.
この複合酸化物の組織緻密化の機構についてはまだ正確
には解明し得てはないが、焼結に際して、低い活性エネ
ルギーによって、炭化ケイ素中に固溶することによって
炭化ケイ素の焼結が促進されるためであると考えられる
。Although the mechanism of the densification of the structure of this composite oxide has not yet been precisely elucidated, the sintering of silicon carbide is promoted by solid solution in silicon carbide due to low activation energy during sintering. This is thought to be due to the
更に、本発明は、高緻密化の焼結促進剤として下記成分
群から選ばれる元素又はその酸化物、窒化物、ホウ化物
あるいは炭化物などの化合物のうちの少なくとも1種以
上を0.5〜6.0重量%添加する。この機能を有する
元素としては、チタニウム、バナジウム、クロム、マン
ガン、マグネシウム、イツトリウム、ジルコニウム、ニ
オブ、モリブデン、バリウム、ランタン、セリウム、ガ
ドリウム、ハフニウム、タンタル、タングステン、トリ
ウム、セシウム等を挙げることができる。Furthermore, the present invention uses at least one element selected from the following component group as a sintering accelerator for high densification or a compound such as its oxide, nitride, boride, or carbide in an amount of 0.5 to 6 Add .0% by weight. Examples of elements having this function include titanium, vanadium, chromium, manganese, magnesium, yttrium, zirconium, niobium, molybdenum, barium, lanthanum, cerium, gadolinium, hafnium, tantalum, tungsten, thorium, and cesium.
さらに焼結を促進させる第2の添加元素の量は0.3重
里%ではほとんど効果がなく最低0.5重量%は必要で
、あまり多量となり6重里%を越えるといずれも結晶粒
子の成長がみられ特性が低下する。これらの元素の焼結
体に及ぼす機構については未だ、明らかではないが、前
記複合酸化物との相乗効果により、ミクロ的気孔が非常
に少ないものになることが実験の結果確かめられている
。Furthermore, the amount of the second additive element that promotes sintering is almost ineffective at 0.3 wt.%, and a minimum of 0.5 wt.% is required; if the amount is too large and exceeds 6 wt.%, crystal grain growth will occur. Visibility characteristics deteriorate. Although the mechanism by which these elements affect the sintered body is not yet clear, it has been confirmed through experiments that the synergistic effect with the composite oxide results in very few microscopic pores.
また、炭化ケイ素の一部をBe、 Bed、 B、 B
4Cで置換することもできる。この場合、酸化エルビウ
ムと酸化アルミニウムとの複合酸化物を適正量添加する
ことにより緻密で微細粒な組織を持つ焼結体とすること
ができる。この場合の置換量は0.5重量%位までは、
無置換の物と比べて大差はないが3.0重量%にもなる
と抗折力や硬さの低下がみられるためその置換量は2重
量%以下、好ましくは0.5〜2重量%とする必要があ
る。In addition, a part of silicon carbide is Be, Bed, B, B
It can also be replaced with 4C. In this case, by adding an appropriate amount of a composite oxide of erbium oxide and aluminum oxide, a sintered body having a dense and fine-grained structure can be obtained. In this case, the amount of substitution is up to about 0.5% by weight.
There is not much difference compared to the unsubstituted product, but when it reaches 3.0% by weight, the transverse rupture strength and hardness decrease, so the amount of substitution is 2% by weight or less, preferably 0.5 to 2% by weight. There is a need to.
更に、炭化ケイ素には遊離炭素を0.5〜2重量%含有
しても、その結果には影響がないことも実験によって確
かめられている。Furthermore, it has been confirmed through experiments that even if silicon carbide contains 0.5 to 2% by weight of free carbon, the results are not affected.
本発明の焼結体の製造に当たっては、複合酸化物、焼結
促進剤などは炭化ケイ素中に均一に分散していることが
必要である。In producing the sintered body of the present invention, it is necessary that the composite oxide, sintering accelerator, etc. be uniformly dispersed in silicon carbide.
また、本発明の焼結体の製造に当たっては、ホットプレ
ス法及び旧P法などの熱間焼結法が好適に利用できる。Further, in manufacturing the sintered body of the present invention, hot sintering methods such as the hot press method and the old P method can be suitably used.
緻密で強度が大なる焼結体を得るためにはホットプレス
温度は、1900℃以上が必要であるが、2100℃と
もなれば粒成長が激しくなるために十分に緻密化する以
前に過度な粒成長が生起し気孔が残存する。また圧力に
ついては、100kg / cm ”以上あれば十分で
その上限については特に限定されるものではない。焼結
雰囲気は真空中あるいは不活性ガス中でなすことがまた
、■P法の場合は不活性ガス中でなすことが望ましい。In order to obtain a dense and strong sintered body, a hot press temperature of 1900°C or higher is required; however, if the temperature reaches 2100°C, grain growth will become intense, resulting in excessive grain formation before sufficient densification. Growth occurs and pores remain. Regarding the pressure, a pressure of 100 kg/cm or more is sufficient, and the upper limit is not particularly limited.The sintering atmosphere should be in a vacuum or an inert gas; It is preferable to do this in an active gas.
また普通焼結方法にてもほぼ同等の焼結体を得ることが
でき、この時の温度は無加圧の不活性ガス中では205
0℃〜2300℃、10 atm以下の加圧ガス中では
、2000℃〜2250℃の温度範囲で得ることができ
る。Also, almost the same sintered body can be obtained using the ordinary sintering method, and the temperature at this time is 205°C in an unpressurized inert gas.
It can be obtained in a temperature range of 2000°C to 2250°C in a pressurized gas of 0°C to 2300°C and 10 atm or less.
実施例1
先ず、純度99.9%、平均粒子径0.4μmの酸化ア
ルミニウム粉末と、純度99.9%、平均粒子径0.8
μmの酸化エルビウム粉末とを、第1表に示した組成で
混合し、この混合粉末を1300〜1600℃において
3〜IO時間加熱してガーネットを合成した。Example 1 First, aluminum oxide powder with a purity of 99.9% and an average particle size of 0.4 μm and an aluminum oxide powder with a purity of 99.9% and an average particle size of 0.8
[mu]m erbium oxide powder was mixed with the composition shown in Table 1, and the mixed powder was heated at 1300 to 1600[deg.] C. for 3 to IO hours to synthesize garnet.
得られたガーネットを平均0.5μmに微粉砕し、第1
表に示した組成になるように純度98.5%、平均粒子
径0.5μmの炭化ケイ素粉末と純度99.9%1平均
粒子径1μmの酸化マグネシア粉末とを添加配合した。The obtained garnet was finely ground to an average size of 0.5 μm, and
Silicon carbide powder with a purity of 98.5% and an average particle size of 0.5 μm and magnesia oxide powder with a purity of 99.9% and an average particle size of 1 μm were added and blended to obtain the composition shown in the table.
同配合物をボールミル混合機により15時時間式混合粉
砕を行った後、これを充分に乾燥して焼結用原料とし、
50 X 50+n角、高さ60mの黒鉛型内に上記各
種焼結用原料を充填して高周波コイルに挿入した。19
50℃で200kg/cm”の圧力を加え60分間保持
し、次いで圧力を抜いて放冷することにより50 X
50 X 5.5 mの目的の焼結体を得た。The same compound was mixed and pulverized for 15 hours using a ball mill mixer, and then thoroughly dried to be used as a raw material for sintering.
A graphite mold measuring 50×50+n square and 60 m in height was filled with the various sintering materials described above and inserted into a high-frequency coil. 19
A pressure of 200 kg/cm" was applied at 50°C, held for 60 minutes, and then the pressure was released and allowed to cool.
A desired sintered body of 50 x 5.5 m was obtained.
各々の焼結体をダイヤモンド砥石で切断研削して各10
個の3 x 4 X35龍の試験片を作成し、各種試験
に供した。得られた測定値を同第1表に示す。Cut and grind each sintered body with a diamond grindstone to obtain 10 pieces each.
A number of 3 x 4 x 35 dragon test pieces were prepared and subjected to various tests. The obtained measured values are shown in Table 1.
また、各試験片の組織観察によって、ポアサイズ2μm
前後と大きい物はX印で、1μm以下の微細なものは○
印で示す。In addition, by observing the structure of each test piece, the pore size was 2 μm.
Large objects are marked with an X, and fine objects of 1 μm or less are marked with an ○.
Indicated by a mark.
第1表−1(娼餠ゆ
第1表−2ω煎例)
実施例2
実施例1で得た試料を10X10X5u+の板にダイヤ
モンド砥石で切断し、@200のダイヤモンド砥石で表
面研削を行ない10 X 1(lfi面を内径8fiの
ノズルを有するサンドブラスト機にて空気圧5kg/e
ll”で砥粒(メチコライトC,No40)を噴射距離
50+n+で噴射させ、重量減を測定した。その結果を
第2表に示す。Table 1-1 (Table 1-2 ω roasting example) Example 2 The sample obtained in Example 1 was cut into a 10X10X5U+ plate with a diamond grindstone, and the surface was ground with a @200 diamond grindstone. 1 (The lfi surface was blasted with an air pressure of 5 kg/e using a sandblasting machine with a nozzle with an inner diameter of 8 fi.
Abrasive grains (Methycolite C, No. 40) were sprayed at a spraying distance of 50+n+ using a 100mm-sized sample, and the weight loss was measured. The results are shown in Table 2.
第2表
実施例3
実施例1で得た試料を1010X10X5の板にダイヤ
モンド砥石で切断し、′200のダイヤモンド砥石で全
面研削を行ないその供試体を1300℃の大気中に20
時間放置し、その時の単位面積当たりの重量増加量を測
定した。その結果を第3表に示す。Table 2 Example 3 The sample obtained in Example 1 was cut into a 1010 x 10 x 5 plate with a diamond grinding wheel, and the entire surface was ground with a '200 diamond grinding wheel, and the specimen was placed in the atmosphere at 1300°C for 20
The sample was left to stand for a period of time, and the amount of weight increase per unit area at that time was measured. The results are shown in Table 3.
第3表
実施例4
実施例1で得た試料を3 X 4 X35mmにダイヤ
モンド砥石で全面研削を行ない、その供試体の大気中9
50℃でのシャルピー衝撃値を測定した。その結果を第
4表に示す。Table 3 Example 4 The entire surface of the sample obtained in Example 1 was ground to a size of 3 x 4 x 35 mm with a diamond grindstone, and the specimen was placed in the atmosphere.
Charpy impact value at 50°C was measured. The results are shown in Table 4.
第4表
実施例5
実施例1で得た試料を供試体として高温疲労試験を行っ
た。方法としては、部分繰返し、曲げ試験機を用い、大
気中1000℃の条件で、支点間距離を20mとし、1
325回/分の割合で繰返し応力を与えた。その繰返し
応力の与え方は、図面に示すように繰返し、上限応力を
σ11aX+ 繰返し下限応力をσljn +平均応力
をσm、応力振幅をσaとし、i−σa/σMとする時
、σmax −15kir/cd+ i=0.73なる
条件で行った。その結果を第5表に示す。Table 4 Example 5 A high temperature fatigue test was conducted using the sample obtained in Example 1 as a specimen. The method used was partial repetition, using a bending tester, in the atmosphere at 1000°C, with a distance between supports of 20m, and 1
Repeated stress was applied at a rate of 325 times/min. The method of applying the repeated stress is as shown in the drawing, where the upper limit stress is σ11aX+, the lower limit stress is σljn, the average stress is σm, the stress amplitude is σa, and when i−σa/σM, σmax −15kir/cd+ The test was carried out under the condition that i=0.73. The results are shown in Table 5.
第5表
実施例6
先ず、純度99,9%、平均粒子径0.4 μmの酸化
アルミニウム粉末を10重量%と、純度99.9%、平
均粒子径0.8μ霧の酸化エルビウム粉末90重量%と
を混合し、この混合粉末を1400℃、5時間加熱して
ガーネットを合成した。次いで得られたガーネットを平
均0.5μmに微粉砕した。その粉末を10重量%とさ
らに焼結を促進させる第2の添加元素を第6表に示すよ
うな割合で添加し、残部98.5重量%、平均粒子径0
.5μmの炭化ケイ素粉末になるように各種配合し、ボ
ールミル混合機により、15時時間式温合粉砕を行った
後、実施例1と同様な方法で焼結体を作り調査した結果
を同じく第6表に示す。Table 5 Example 6 First, 10% by weight of aluminum oxide powder with a purity of 99.9% and an average particle size of 0.4 μm, and 90% by weight of erbium oxide powder with a purity of 99.9% and an average particle size of 0.8 μm. % and heated this mixed powder at 1400° C. for 5 hours to synthesize garnet. The obtained garnet was then finely ground to an average size of 0.5 μm. 10% by weight of the powder and a second additional element that promotes sintering were added in the proportions shown in Table 6, and the remainder was 98.5% by weight, with an average particle size of 0.
.. Various types of silicon carbide powder were mixed to obtain 5 μm silicon carbide powder, and heated and pulverized for 15 hours using a ball mill mixer. A sintered body was prepared in the same manner as in Example 1, and the results of the investigation were also shown in Example 6. Shown in the table.
第6表 実施例7 次ぎに用いる炭化ケイ素粉末の一部をBe、 Bed。Table 6 Example 7 A portion of the silicon carbide powder used next is Be and Bed.
B、B、Cで置換した場合についての実施例を示す1先
ず、純度99.9%、平均粒子径0.4μmの酸化アル
ミニウム粉末と、純度99.9%、平均粒子径0.1μ
mの酸化エルビウム粉末とを第7表に示した組成で混合
し、この混合粉末を1300〜1600℃13〜10時
間加熱してガーネットを合成した。次いで得られたガー
ネットを平均0.5μmに微粉砕し、第7表に示した組
成になるように純度98.5%、平均粒子径0.5μm
の炭化ケイ素粉末と純度99.9%。Example 1 showing the case of substitution with B, B, and C 1 First, aluminum oxide powder with a purity of 99.9% and an average particle size of 0.4 μm, and an aluminum oxide powder with a purity of 99.9% and an average particle size of 0.1 μm.
and erbium oxide powder in the composition shown in Table 7, and this mixed powder was heated at 1300 to 1600°C for 13 to 10 hours to synthesize garnet. Next, the obtained garnet was finely ground to an average particle size of 0.5 μm, and the purity was 98.5% and the average particle size was 0.5 μm so that the composition shown in Table 7 was obtained.
silicon carbide powder and purity 99.9%.
平均粒子径1μmの酸化マグネシア粉末とを添加配合し
、ボールミル混合機により15時時間式混合粉砕を行っ
た後、実施例1に記載したのと同様な方法によって、温
度1950℃にてホットプレス焼結させ各種特性を調査
した測定値を第7表に示す。Magnesia oxide powder with an average particle size of 1 μm was added and blended, mixed and pulverized for 15 hours using a ball mill mixer, and then hot press baked at a temperature of 1950°C in the same manner as described in Example 1. Table 7 shows the measured values obtained by investigating various characteristics.
第7表
本発明では、上記各実施例に示すように、酸化アルミニ
ウムと酸化エルビウムとの複合酸化物と焼結を促進させ
る各種元素を添加することで焼結体の密度を高め、かつ
結晶体を5μm以下と微細となし、ポアサイズが1μm
以下と非常に微細な高靭な焼結体を得ることができる。Table 7 In the present invention, as shown in the above examples, the density of the sintered body is increased by adding a composite oxide of aluminum oxide and erbium oxide and various elements that promote sintering, and the crystalline structure is increased. The pore size is considered fine as 5 μm or less, and the pore size is 1 μm.
A very fine and tough sintered body can be obtained.
これに対し、第1表−2の比較例で示すような酸化アル
ミニウムと酸化エルビウムとからなる混合粉末を用いた
場合には、ポアサイズが2μm前後と大きくなっている
。On the other hand, when a mixed powder of aluminum oxide and erbium oxide as shown in the comparative example in Table 1-2 is used, the pore size is as large as about 2 μm.
(発明の効果〕
本発明の焼結体は非常に高緻密質であり、しかもボアの
大きさが1.0μm以下と非常に微細でさらに結晶粒度
が5μm以下と微細な組織を持ち、実用上の緒特性にお
いても優れている。(Effects of the Invention) The sintered body of the present invention is extremely dense, has a very fine bore size of 1.0 μm or less, and has a fine structure with a crystal grain size of 5 μm or less. It also has excellent mechanical properties.
従って、耐酸化性、耐熱衝撃性、耐食性、高温強度等を
要求される各種構造用部材や摩耗用部材として広範に利
用することができるものである。Therefore, it can be widely used as various structural members and wear members that require oxidation resistance, thermal shock resistance, corrosion resistance, high-temperature strength, etc.
しかも、本発明の焼結体はホー/ ドブレス法あるいは
旧P法などにより製造できるので大型の焼結体の製造が
容易である。普通焼結方法にて焼結したものも、熱間加
圧焼結とほぼ同等の焼結体が得られるという効果がある
。Moreover, since the sintered body of the present invention can be manufactured by the Ho/Dobres method or the old P method, it is easy to manufacture a large sintered body. Sintering using the normal sintering method also has the effect of producing a sintered body almost equivalent to hot pressure sintering.
添付図面は実施例6における高温疲労試験の説明図であ
る。The attached drawing is an explanatory diagram of the high temperature fatigue test in Example 6.
Claims (1)
ム:2重量%以下、および残部:炭化ケイ素よりなり、
且つ前記酸化エルビウムと酸化アルミニウムとが全て複
合酸化物として存在することを特徴とする高密度炭化ケ
イ素焼結体。 2、 炭化ケイ素粉末の一部がBe+ BeO,B、
84Cによって置換されていることを特徴とする特許請
求の範囲第1項記載の高密度炭化ケイ素焼結体−0 3、M化エルビウム:2〜12重景%、酸化アルミニウ
ム=2重量%以下、下記A成分群から選ばれる元素又は
その化合物の少なくとも1種以上: 0.5〜6.0重
量%、および残部:炭化ケイ素よりなり、且つ前記酸化
エルビウムと酸化アルミニウムとが全て複合酸化物とし
て存在することを特徴とする高密度炭化ケイ素焼結体。 A成分:チタニウム、バナジウム、クロム。 マンガン、マグネシウム7 イツトリ ウム、ジルコニウム、ニオブ、モリ ブデン、バリウム、ランタン、セリ ウム、ガドリウム、ハフニウム、タ ンクル、タングステン、トリウム及 びセシウム。 4、 炭化ケイ素粉末の一部がBe + Be O+
B * B t Cによって置換されていることを特徴
とする特許請求の範囲第3項記載の高密度炭化ケイ素焼
結体。[Claims] 1. Consisting of erbium oxide = 2 to 12% by weight, aluminum oxide: 2% by weight or less, and the balance: silicon carbide,
A high-density silicon carbide sintered body characterized in that the erbium oxide and aluminum oxide are all present as a composite oxide. 2. Part of the silicon carbide powder is Be+ BeO, B,
High-density silicon carbide sintered body-03 according to claim 1, which is substituted by 84C, erbium Mide: 2 to 12% by weight, aluminum oxide = 2% by weight or less, At least one element or compound thereof selected from the following A component group: 0.5 to 6.0% by weight, and the remainder: silicon carbide, and the erbium oxide and aluminum oxide are all present as a composite oxide A high-density silicon carbide sintered body characterized by: A component: titanium, vanadium, chromium. Manganese, magnesium 7 yttrium, zirconium, niobium, molybdenum, barium, lanthanum, cerium, gadolinium, hafnium, tankard, tungsten, thorium and cesium. 4. Part of silicon carbide powder is Be + Be O+
The high-density silicon carbide sintered body according to claim 3, characterized in that B*B t C is substituted.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59087466A JPS60231466A (en) | 1984-04-27 | 1984-04-27 | High density silicon carbide sintered body |
GB8516336A GB2177116B (en) | 1984-04-27 | 1985-06-28 | High-density sintered article of silicon carbide |
US07/129,856 US4874725A (en) | 1984-04-27 | 1987-12-04 | High-density sintered article of silicon carbid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59087466A JPS60231466A (en) | 1984-04-27 | 1984-04-27 | High density silicon carbide sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60231466A true JPS60231466A (en) | 1985-11-18 |
JPH044992B2 JPH044992B2 (en) | 1992-01-30 |
Family
ID=13915669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59087466A Granted JPS60231466A (en) | 1984-04-27 | 1984-04-27 | High density silicon carbide sintered body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS60231466A (en) |
GB (1) | GB2177116B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005298304A (en) * | 2004-04-15 | 2005-10-27 | Nippon Steel Corp | High-density silicon carbide ceramics and method for producing the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5298470A (en) * | 1989-09-22 | 1994-03-29 | The Carborundum Company | Silicon carbide bodies having high toughness and fracture resistance and method of making same |
DE10342580A1 (en) * | 2003-09-15 | 2005-04-14 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Liquid phase densified silicon carbide ceramics with high oxidation resistance in a moist atmosphere |
CN112321274B (en) * | 2020-12-08 | 2022-08-09 | 中北大学 | High-strength and high-toughness coal gangue ceramic plate, preparation method thereof and preparation method of composite plate thereof |
CN112479729B (en) * | 2021-01-05 | 2022-07-05 | 中钢集团洛阳耐火材料研究院有限公司 | High-strength silicon carbide-oxide composite material and preparation method thereof |
-
1984
- 1984-04-27 JP JP59087466A patent/JPS60231466A/en active Granted
-
1985
- 1985-06-28 GB GB8516336A patent/GB2177116B/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005298304A (en) * | 2004-04-15 | 2005-10-27 | Nippon Steel Corp | High-density silicon carbide ceramics and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
GB8516336D0 (en) | 1985-07-31 |
GB2177116A (en) | 1987-01-14 |
GB2177116B (en) | 1989-07-19 |
JPH044992B2 (en) | 1992-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010279557B2 (en) | Tough coated hard particles consolidated in a tough matrix material | |
CN106854080B (en) | Preparation method for reducing sintering temperature of compact superfine crystal boron carbide ceramic material | |
EP0333776B1 (en) | Improved cutting tool | |
JPS5924751B2 (en) | Sintered shaped body | |
JPS60195059A (en) | Composite sintered body | |
CN107937789B (en) | A kind of manganese steel base steel bonded carbide and preparation method thereof | |
CN113526960A (en) | Silicon carbide ceramic and hot isostatic pressing sintering process thereof | |
JPS60231466A (en) | High density silicon carbide sintered body | |
JPS61155261A (en) | Material for magnetic head slider and manufacture | |
US4874725A (en) | High-density sintered article of silicon carbid | |
CN110183231A (en) | A kind of preparation method and its ceramic material of high-strength and high ductility carbonization boryl ceramic material | |
CN114573351A (en) | Boron carbide-based composite material and preparation method thereof | |
Oppelt et al. | Processing and characterization of MMC beads based on zirconia and TRIP steel | |
JP2773976B2 (en) | Super tough monolithic silicon nitride | |
JPS6081066A (en) | High-density silicon carbide sintered body and its manufacturing method | |
JPH0364469B2 (en) | ||
KR102106486B1 (en) | Thermal spraying powder, method of forming a thermal sprayed coating layer using the same and Grate bar with thermally sprayed coating layer | |
Quadir et al. | Development of Lower Cost Si3N4 | |
JP3031730B2 (en) | Ceramics molded body and method of manufacturing ceramics molded body | |
JP5235624B2 (en) | Tungsten carbide-based cemented carbide and rotary tool using the same | |
JPS605074A (en) | Silicon carbide sintered body and its manufacturing method | |
CN116514543B (en) | Zirconia composite ceramic | |
EP0388966A2 (en) | Refractory body, method of making and use of same | |
JPH0987027A (en) | Silicon carbide sintered body excellent in toughness and manufacturing method | |
JPS6259568A (en) | Ceramic materials with excellent precision machinability |