[go: up one dir, main page]

JPS60231190A - Echo detector - Google Patents

Echo detector

Info

Publication number
JPS60231190A
JPS60231190A JP8881084A JP8881084A JPS60231190A JP S60231190 A JPS60231190 A JP S60231190A JP 8881084 A JP8881084 A JP 8881084A JP 8881084 A JP8881084 A JP 8881084A JP S60231190 A JPS60231190 A JP S60231190A
Authority
JP
Japan
Prior art keywords
signal
gain
water
reflected
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8881084A
Other languages
Japanese (ja)
Other versions
JPH0316628B2 (en
Inventor
Kenichi Kobayashi
研一 小林
Takaya Matsuse
隆哉 松瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koden Electronics Co Ltd
Original Assignee
Koden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koden Electronics Co Ltd filed Critical Koden Electronics Co Ltd
Priority to JP8881084A priority Critical patent/JPS60231190A/en
Publication of JPS60231190A publication Critical patent/JPS60231190A/en
Publication of JPH0316628B2 publication Critical patent/JPH0316628B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/529Gain of receiver varied automatically during pulse-recurrence period

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable the thorough detection of reflected waves from inside the bottom of water by keeping the gain of a receiving amplifier suppressed between the transmission of a wave pulse and the proximity of tye reception of the reflected wave from the wave propagation characteristic boundary. CONSTITUTION:A trigger pulse generated from a control circuit 11 is provided to a transmitter 12 from which an ultrasonic carrier frequency pulse signal is applied to a transmitter/receiver 14 through a transmission-reception switching circuit 13. Consequently, the transmitter/receiver 14 is excited to emit an ultrasonic pulse into water. The reflected signal from the bottom 15 of water is received with the transmitter/receiver 14 to be converted into an electrical signal, which is received with a receiver 16 via the transmission-reception switching circuit 13. Here, until the reflected signal from the wave propagation characteristic boundary, namely, the bottom 15 of water is received, the gain of the amplifier in the receiver 16 is kept suppressed and thus the gain of the receiving amplifier is elavated by an STC signal from an STC signal generator 26 from the proximity of the reception of the reflected signal.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、音波や、電波のような波動を・母ルスとし
て送波し、その反射波を受信して反射物を探知する反響
探知機に関する。
[Detailed Description of the Invention] "Industrial Application Field" This invention is an echo detector that transmits waves such as sound waves or radio waves as a base wave, receives the reflected waves, and detects reflective objects. Regarding.

「従来技術」 従来この種の反響探知機としての、例えば魚群探知機に
おいては、第1図Aに示すように送信トリガーパルスを
発生し、これよシ超音波ノJ?ルスを水中に放射し、そ
の反射波を受波するか、その受波信号を増幅するための
増幅器の利得を、第1図Bに示すように、送信トリが一
ノクルスの発生と同時に抑圧し、そのトリが一ノ!ルス
の後縁より直ちに、その利得を徐々傾回復、つまり上昇
する。
``Prior Art'' Conventionally, in this type of echo detector, for example, a fish finder, a transmission trigger pulse is generated as shown in FIG. As shown in Figure 1B, the transmitter radiates a wave into the water and receives the reflected wave, or suppresses the gain of the amplifier used to amplify the received signal at the same time as the one-noculus occurs. , that bird is Ichino! Immediately from the trailing edge of the loop, its gain is gradually restored, that is, increased.

遠方からの反射波はその伝搬途中における減衰量が、多
くなるが、その減衰量が多くなる程、その反射波は大き
な利得で増幅され、反射物での反射強度が同一ならば距
離に関係なく、一様なレベルで受信出来るようにされて
hた。このような利得制御は一般にSTC(感度時間制
御)といわれている。
Reflected waves from far away have a greater amount of attenuation during their propagation, but the greater the attenuation, the greater the gain amplification of the reflected waves.If the reflected intensity at the reflecting object is the same, regardless of the distance. , so that it can be received at a uniform level. Such gain control is generally called STC (sensitivity time control).

とζろで、例えば水底の下の地中に入射し、その水底内
の埋設物や水底下の伝搬損失の状態を探知する場合は、
水底までに距離が比較的長い為、その水底下よフの反射
波を受波するときには受信増幅器の利得を上昇する作用
がなくなった状態となっておシ、水底下の内部からの反
射波を充分検出出来ない。或いは比較的浅い水底におい
ても、受信増幅器はすでにある程度利得が上昇している
ため、その利得の上昇出来る範囲が狭くなっており、こ
の点で充分な利得上昇が出来ない。特に水中における音
波の伝搬損失に対し、水底下の地中内における音波の減
衰は更に大きい為、下底内部からの反響信号を受信する
状態においては、水中あ・らの反響信号を受信する状態
よりも速く上昇させることが望ましい。しかし従来のS
TCにおいては、先に述べたよ°うに、水底下の反射信
号を受信する状態では既に利得の上昇が終わって、最大
利得となってしまっていたシ、利得が上昇出来る範囲が
狭い状態となってお9、その水底下内の状態を充分探知
することは困難であった。
For example, when entering the ground below the water bed and detecting objects buried in the water bed or the state of propagation loss under the water bed, for example,
Since the distance to the bottom of the water is relatively long, when receiving reflected waves from below the bottom of the water, there is no effect to increase the gain of the receiving amplifier, and the reflected waves from inside the bottom of the water are no longer active. Cannot be detected sufficiently. Alternatively, even at a relatively shallow water bottom, the gain of the receiving amplifier has already increased to some extent, so the range in which the gain can be increased is narrow, and in this respect, the gain cannot be increased sufficiently. In particular, compared to the propagation loss of sound waves underwater, the attenuation of sound waves in the ground beneath the water is even greater. It is desirable to rise faster than However, the conventional S
As mentioned earlier, in the TC, the gain has already finished increasing and reached the maximum gain when receiving the reflected signal below the water bottom, and the range in which the gain can be increased is narrow. 9. It was difficult to fully detect the conditions under the water.

この発明の目的は、例えば水底内部からの反射波を充分
に検知することを可能とした反響探知機を提供するもの
である。
An object of the present invention is to provide an echo detector that is capable of sufficiently detecting reflected waves from, for example, the inside of the water bottom.

「発明の構成」 この発明によれば、波動パルスの送波から受信増幅器の
利得を抑圧し、波動伝搬特性境界からの反射波の受信時
点の近傍まで、その受信増幅器の利得を抑圧状態とし、
その後、利得上昇を開始させる。従って例えば水底の下
を探知する場合において、その水底反射波、いわゆる底
信号を受信してから受信増幅器の利得が上昇しはじめ、
従ってその利得上昇範囲を広く、且つ、上昇速度を速く
することが出来、水底下における波動の急速な減衰に対
応して十分な利得で水底下からの反射信号を受信するこ
とが出来る。
"Structure of the Invention" According to the present invention, the gain of the receiving amplifier is suppressed from the time of transmitting the wave pulse, and the gain of the receiving amplifier is kept in the suppressed state up to the vicinity of the time of receiving the reflected wave from the wave propagation characteristic boundary.
After that, start increasing the gain. Therefore, for example, when detecting beneath the water bottom, the gain of the receiving amplifier begins to rise after receiving the reflected waves from the water bottom, the so-called bottom signal.
Therefore, the gain increase range can be widened and the rate of increase can be increased, and the reflected signal from below the seabed can be received with sufficient gain to cope with the rapid attenuation of waves under the seabed.

「実施例」 次にこの発明による反響探知機の一例として、水中探知
機を図面を参照して説明しよう。第2図において、制御
回路11から第1図Aに示したように、トリガー・ぐル
スが発生され、そのトリが−パルスは送信機12に与え
られ、送信機12から超音波搬送周波数パルス信号が送
受切替回路13を通じて送受波器14に与えられ、送受
波器14が励振され、これより水中内に超音波パルスが
、この例にお−ては、水底15に向って放射される。
Embodiment Next, as an example of an echo detector according to the present invention, an underwater detector will be described with reference to the drawings. In FIG. 2, a trigger pulse is generated from the control circuit 11 as shown in FIG. is applied to the transducer 14 through the transmission/reception switching circuit 13, the transducer 14 is excited, and an ultrasonic pulse is emitted into the water, in this example, toward the bottom 15 of the water.

水中等からの反射信号は送受波器14で受波され、電気
信号に変換されて送受切替回路13を通じて受信機16
にで受信される。
The signal reflected from water etc. is received by the transducer 14, converted into an electrical signal, and passed through the transceiver switching circuit 13 to the receiver 16.
Received in.

その反射信号は例えば第1図Cに示すように、トリガー
パルスに対応する、いわゆる発信信号17、更に、例え
ば魚群等の水中の途中に存在する物からの反射信号18
、続いて水底15からの大きなレベルの反射信号19が
受信され、更に水底15の下(内部)において、その地
質や埋設物に応じた反射信号21が、続いて受信される
The reflected signals include, for example, as shown in FIG.
Then, a high-level reflected signal 19 from the water bottom 15 is received, and further below (inside) the water bottom 15, a reflected signal 21 corresponding to the geology and buried objects is subsequently received.

この反射受信信号は、A−D変換器22でデジタル信号
に変換されて、バッハメモリ23に記憶され、そのバッ
ハメモリ23に記憶された反射信号は主メモリ24に転
送される。主メモリ24は繰返し読み出され、その各反
射信号は一本の表示線として表示器25に表示される。
This reflected reception signal is converted into a digital signal by the A-D converter 22 and stored in the Bach memory 23, and the reflected signal stored in the Bach memory 23 is transferred to the main memory 24. The main memory 24 is repeatedly read out, and each reflected signal is displayed on the display 25 as one display line.

表示器25は主走査及び副走査によって方形表示面を水
平垂直走査するもので、例えばテレビジョン受像機と同
様なものが使用される。その表示面に、各反射信号によ
る表示線が古いものの順に順次平行に配列表示される。
The display 25 scans a rectangular display surface horizontally and vertically by main scanning and sub-scanning, and is, for example, a device similar to a television receiver. On the display surface, display lines based on the respective reflected signals are arranged and displayed in parallel in order of oldest to oldest.

STC信号発生器26が設けられ、STC信号発生器2
6の出力によって、受信機16内の受信増幅器の利得が
制御される。STC信号発生器26は、例えば第3図に
示すように、電源端子27に抵抗器28の一端が接続さ
れ、抵抗器28の他端はコンデンサ29を通じて接地さ
れる。そのコンデンサ29と並列に、トランジスタ31
が接続され、トランジスタ31のベースは入力端子32
に接続され、これに高レベルが与えられて、トランジス
タ31が導通状態にある時は、コンデンサ29の電圧は
0であり、端子32が低レベルになり、トランジスタ3
1が不導通になると端子27から、抵抗器28及びコン
デンサ29の特定数に応じて、コンデンサ29の電圧が
上昇し、この電圧が端子33よ、!7 STC信号とし
て第2図の受信機16内の増幅器へ供給され、その利得
が制御される。
An STC signal generator 26 is provided, and the STC signal generator 2
The output of 6 controls the gain of the receive amplifier in receiver 16. In the STC signal generator 26, for example, as shown in FIG. 3, one end of a resistor 28 is connected to a power supply terminal 27, and the other end of the resistor 28 is grounded through a capacitor 29. In parallel with the capacitor 29, a transistor 31
is connected, and the base of the transistor 31 is connected to the input terminal 32.
When the transistor 31 is in a conductive state because the transistor 31 is in a conductive state, the voltage on the capacitor 29 is 0, the terminal 32 is at a low level, and the transistor 3
1 becomes non-conductive, the voltage across the capacitor 29 increases from terminal 27, depending on the specific number of resistors 28 and capacitors 29, and this voltage increases from terminal 33 to ! 7 is supplied as an STC signal to the amplifier in the receiver 16 of FIG. 2, and its gain is controlled.

この実施例においては、波動伝搬特性境界、即ち、この
例では、水中と、水底の地質との境界である水底15か
らの反射信号、いわゆる底信号19(第1図C)を受信
するまでの間、受信機16における増幅器の利得上昇を
抑圧し、底信号19を受信する付近からSTC信号発生
器26よりのSTC信号により受信機16の利得上昇を
開始させる。
In this embodiment, the wave propagation characteristic boundary, i.e., in this example, the boundary between the water and the geology of the bottom, is the reflected signal from the water bottom 15, so-called bottom signal 19 (FIG. 1C). During this period, the gain increase of the amplifier in the receiver 16 is suppressed, and the gain increase of the receiver 16 is started by the STC signal from the STC signal generator 26 from the vicinity of receiving the bottom signal 19.

例えば第2図において、底栓出回路34が設けられ、こ
の底栓出回路34は底信号19を検出するものであって
、従来の魚群探知機に一般に設けられているものと同様
のものを使用することが出来る。この底栓出回路34か
らの底積出出力と制御回路11からのトリガーパルスと
をSTC抑圧回路35へ供給する。STC抑圧回路35
は、例えばフリツノ70ツノより構成されておシ、制御
回路11からのトリガーノぐルスによってフリラグフロ
ッグはセットされ、その高レベルのセット出力はスイッ
チ36を通じてSTC信号発生器26に供給され、底栓
出回路34から水底が第1図Eに示すように検出される
と、その検出出力によりSTC抑圧回路350ノリツブ
フロップをリセットする。
For example, in FIG. 2, a bottom stopper circuit 34 is provided which detects the bottom signal 19 and is similar to that generally provided in conventional fish finders. It can be used. The bottom discharge output from the bottom plug discharge circuit 34 and the trigger pulse from the control circuit 11 are supplied to the STC suppression circuit 35. STC suppression circuit 35
For example, the trigger noggle from the control circuit 11 sets the frilag frog, and its high-level set output is supplied to the STC signal generator 26 through the switch 36, and the bottom plug is When the water bottom is detected from the output circuit 34 as shown in FIG. 1E, the detection output resets the STC suppression circuit 350 noritubflop.

よってSTC抑圧回路35から第1図りに示すような抑
圧信号が発生し、これがSTC信号発生器26の例えば
第3図における端子32に与えられる。
Therefore, the STC suppression circuit 35 generates a suppression signal as shown in FIG. 1, which is applied to the STC signal generator 26, for example, at the terminal 32 in FIG.

この抑圧信号が発生している間、トランジスタ31は導
通状態となって、端子33は、はぼ接地レベルに近い値
とされ、受信機16の増幅器の利得は抑圧された小さな
値とされる。
While this suppression signal is being generated, the transistor 31 is conductive, the terminal 33 is set to a value close to the ground level, and the gain of the amplifier of the receiver 16 is set to a suppressed small value.

底信号19の検出(第1図E)によってSTCの抑圧が
解除され、これより ST、C信号発生器26から第1
図Fに示すように、利得を上昇させる信号が徐々に大と
なシ、つまり第3図のコンデンサ29に充電される電圧
が上昇し、このSTC信号によって受信機16の増幅利
得が上昇される。
Upon detection of the bottom signal 19 (Fig. 1E), the suppression of the STC is released, and from this, the first signal is transmitted from the ST, C signal generator 26.
As shown in FIG. F, the signal that increases the gain gradually increases, that is, the voltage charged in the capacitor 29 in FIG. .

この構成によれば、水底15からの反射信号19が得ら
れると、その時点から利得が上昇し、この利得を大幅に
上昇させることができ、かつ急速に、上昇させることが
出来る。従って水底15内、つまシ水底よシも下の地質
内からの反射信号21は、その水底からの距離に応じて
、急速に減衰されるが、これに応じて受信機16の利得
を急速に上昇させることが出来る。
According to this configuration, when the reflected signal 19 from the water bottom 15 is obtained, the gain increases from that point on, and this gain can be increased significantly and rapidly. Therefore, the reflected signal 21 from within the water bottom 15 or from within the geology below the water bottom is rapidly attenuated depending on the distance from the water bottom, and the gain of the receiver 16 is accordingly rapidly attenuated. It can be raised.

このように底信号19を自動的に検出して、送信トリガ
ー・ぐルスから底信号検出までの間、STCの制御にお
ける利得上昇を抑圧されるが、その抑圧範囲を自由に設
定するようにすることも出来る。
In this way, the bottom signal 19 is automatically detected and the gain increase in STC control is suppressed from the transmission trigger signal to the detection of the bottom signal, but the suppression range can be freely set. You can also do that.

例えば第2図において制御回路11よりのトリガーパル
スを単安定マルチパイブレイタ37へ供給し、単安定マ
ルチパイブレイタ37よりの出力をSTC抑圧回路35
に代えてスイッチ36を通じてSTC信号発生器26に
供給する。この単安定マルチパイブレイタ37よシ、第
1図りに示すような抑圧信号を発生し、この抑圧期間を
、単安定マルチパイブレイク370時定数を手動設定す
ることに自由に選定できるようにされる。例えば反射信
号の受信状態を見て、単安定マルチパイブレイタ37の
出力パルス幅を適当に決定すれば良い。その為には、例
えば第4図に示すようにA−D変換器22の出力をバッ
ファ回路38を通じて転送用バッハ回路39に供給する
ようにすると共に、A−D変換器22の出力を遅延回路
41を通じて転送用バッファ回路39に供給するように
する。
For example, in FIG. 2, the trigger pulse from the control circuit 11 is supplied to the monostable multivibrator 37, and the output from the monostable multivibrator 37 is sent to the STC suppression circuit 35.
Instead, it is supplied to the STC signal generator 26 through the switch 36. This monostable multipibrator 37 generates a suppression signal as shown in the first diagram, and the suppression period can be freely selected by manually setting the monostable multipibrake 370 time constant. Ru. For example, the output pulse width of the monostable multivibrator 37 may be appropriately determined by looking at the reception state of the reflected signal. To do this, for example, as shown in FIG. 4, the output of the A-D converter 22 is supplied to a transfer Bach circuit 39 through a buffer circuit 38, and the output of the A-D converter 22 is supplied to a delay circuit. 41 to the transfer buffer circuit 39.

転送用バッファ回路39は、例えばランダムアクセスメ
モリ、いわゆるRAMであって、表示器25の1本の表
示線の画素数が256であるとする時、その半分の12
8画素分をそれぞれ転送用バッファ回路39中の部分3
9ap39bに記憶するようにする。A−D変換器22
よシバッファ回路38を通じて制御回路11から低速度
で反射受信信号(第1図C)を領域39aに書込み、そ
の書込みは水底反射波19が必ず得られる壕での適当な
設定期間TIの終りまで行い、その書込みサンプル数は
128である。
The transfer buffer circuit 39 is, for example, a random access memory, so-called RAM, and when the number of pixels of one display line of the display device 25 is 256, half of that number, 12
Portion 3 of the transfer buffer circuit 39 for each of the 8 pixels
9ap39b. A-D converter 22
A reflected reception signal (FIG. 1C) is written in the area 39a from the control circuit 11 at a low speed through the horizontal buffer circuit 38, and the writing is continued until the end of an appropriate set period TI in the trench where the bottom reflected wave 19 is definitely obtained. , the number of writing samples is 128.

一方底信号の検出から直ちに遅延回路41の出力を転送
用バッファメモリの領域39bに、高速度パルスで、一
定期間T2の間を128のす/グル数として取p込む。
On the other hand, immediately after the detection of the bottom signal, the output of the delay circuit 41 is taken into the area 39b of the transfer buffer memory as a high-speed pulse as 128 pulses/glue during a certain period T2.

遅延回路41の遅延量はバッファ回路38の出力に対し
、僅か遅れ、表示面に水底が表示されるようにする。こ
のようにして転送用バッファメモリ39に普通表示用の
期間TIにおける128画素分のデータと、水底内の表
示用の期間T2における128画素分のデータとが得ら
れると、これらデータを主メモリ24に1本の表示線デ
ータとして転送する。その結果、第5図に示すように表
示器25の表示面43には、その上半部分に発振線信号
17に対応した発振線44が、魚群反射信号18に対応
した魚群像45が、底信号19に対応した水底線46が
それぞれ表示される。表示面43の下半部には、塵検出
による底信号19に対応した水底線47が、又水底の下
における地中内の媒質変化或いは埋設物等に対応した反
射信号21に対応した像49が表示される。この表示面
43の上半における普通表示の水底線46の深さを見な
がら第2図における単安定マルチパイブレイク37の時
定数を調整し、その出力パルス(STC抑圧信号)の幅
を適当な値にすることができる。
The delay amount of the delay circuit 41 is slightly delayed with respect to the output of the buffer circuit 38, so that the bottom of the water is displayed on the display screen. In this way, when data for 128 pixels in the normal display period TI and data for 128 pixels in the period T2 for underwater display are obtained in the transfer buffer memory 39, these data are transferred to the main memory 24. It is transferred as one display line data. As a result, as shown in FIG. 5, on the display surface 43 of the display 25, an oscillation line 44 corresponding to the oscillation line signal 17 is displayed on the upper half thereof, and a fish school image 45 corresponding to the fish school reflection signal 18 is displayed on the bottom. Bottom lines 46 corresponding to the signals 19 are displayed. In the lower half of the display surface 43, there is a bottom line 47 corresponding to the bottom signal 19 from dust detection, and an image 49 corresponding to the reflected signal 21 corresponding to changes in the underground medium or buried objects under the water bottom. is displayed. While observing the depth of the normal display water bottom line 46 in the upper half of the display surface 43, adjust the time constant of the monostable multi-pie break 37 in FIG. 2, and adjust the width of its output pulse (STC suppression signal) to an appropriate value. Can be a value.

「発明の効果」 以上述べたようにこの発明によれば、例えば水中探知機
に適用して、水底下の反射状態、つまシ地質や埋設物等
の状態を検知する場合に、水底よ。
``Effects of the Invention'' As described above, the present invention can be applied to, for example, an underwater detector to detect the state of reflections under the water, the geological formations, buried objects, etc.

シ下の弱い反射信号を、充分感度を上げて、つまシ利得
を上げて検出することができる。しかもこの場合、水底
より下の地中部分は水中よりも更に減衰量が大きいので
、STC信号発生回路26の時定数を小さくして受信機
利得上昇速度を大とすることが出来る。例えば従来の水
中探知におけるSTCの利得上昇速度の3倍〜6倍程度
に速くすることが出来、つま9第3図における時定数を
IA〜1/3 程度小さくする。又、水底より下の部分
の探知範囲は、その下の部分が、ヘドロであったり、堅
い岩であったりしてその探知範囲か異なり、その状態に
応じて探知範囲を設定することが出来、例えば10m〜
40m程度に設定される。よってその設定探知範囲内に
おいて利得上昇が最高値になるようにすれば良い。
It is possible to detect a weak reflected signal at the bottom by sufficiently increasing the sensitivity and increasing the gain. Moreover, in this case, since the amount of attenuation in the underground portion below the water bottom is even greater than that in the water, the time constant of the STC signal generation circuit 26 can be reduced to increase the rate of increase in receiver gain. For example, the gain increase speed of STC in conventional underwater detection can be increased by about 3 to 6 times, and the time constant in FIG. 3 can be reduced by about IA to 1/3. Also, the detection range below the water bottom varies depending on whether it is sludge or hard rock, and the detection range can be set depending on the situation. For example 10m~
The distance is set at approximately 40m. Therefore, it is only necessary to set the gain increase to the maximum value within the set detection range.

なお、この発明は、このような音波による反響探知機の
みならず、例えば、いわゆる地中レーダーにおいても、
たくさん積った雪の上から地中に向って電波を放射して
地中内からの反射波を受信探知する場合においても、雪
と地中との境界即ち波動伝搬特性の界面からの反射が受
信される近くまでは利得上昇を抑圧し、そのあとに、利
得上昇が行われるようにする等、その他の反響探知機に
も適用することが出来る。
Note that this invention is applicable not only to echo detectors using such sound waves, but also to so-called underground radars, for example.
Even when emitting radio waves from the top of a large pile of snow toward the ground and receiving and detecting the reflected waves from within the ground, reflections from the boundary between the snow and the ground, that is, the interface of wave propagation characteristics. It can also be applied to other echo detectors, such as suppressing the gain increase until near reception and then increasing the gain.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の詳細な説明に供する為のタイムチ
ャート、第2図は、この発明を水中探知機忙適用した例
を示すブロック図、第3図は、STC信号発生回路の一
例を示す接続図、第4図は普通表示と水底下の表示とを
行う為のデータの取9込み部分を示すブロック図、第5
図は普通表示と海底下の表示の例を示す図である。 11:制御回路、12:送信機、13:送受切替回路、
14:送受波器、15:水底、16:受信機、22 :
 A −D 変換器、23 :ノぐラフアメモリ、24
:主メモリ、25:表示器、26 : STC信号発生
回路、34:底検出器、35:STC抑圧回路、37:
単安定マルチノN”lイブレイタ。 特許出願人 株式会社光電製作所 代理人 弁理士 草 野 卓 尤 1 図 オ 3図 定 4 図 第5図 手続補正書(自発) 2、発明の名称 反響探知機 3、補正をする者 事件との関係 特許出願人株式会社
光電製作所 5、補正の対象 明細書中発明の詳細な説明の欄7、補
正の内容 (11明細書9頁14行「バッハ回路39」を「バッフ
ァ回路39」に訂正する。 以 −に
Fig. 1 is a time chart for explaining the present invention in detail, Fig. 2 is a block diagram showing an example in which the invention is applied to an underwater detector, and Fig. 3 is an example of an STC signal generation circuit. Figure 4 is a block diagram showing the data intake part for normal display and underwater display, Figure 5 is a connection diagram shown.
The figure shows an example of a normal display and a sub-seafloor display. 11: control circuit, 12: transmitter, 13: transmission/reception switching circuit,
14: Transducer/receiver, 15: Bottom, 16: Receiver, 22:
A-D converter, 23: Nogurahua memory, 24
: Main memory, 25: Display, 26: STC signal generation circuit, 34: Bottom detector, 35: STC suppression circuit, 37:
Monostable Multino N"l Ibrator. Patent applicant: Kohden Seisakusho Co., Ltd. Agent, Patent attorney: Takuya Kusano 1 Figure O 3 Figure 4 Figure 5 Procedural amendment (voluntary) 2. Name of the invention Echo detector 3. Person making the amendment Relationship to the case Patent applicant Koden Seisakusho Co., Ltd. 5, subject of the amendment Detailed explanation of the invention in the specification column 7, contents of the amendment (11 Specification page 9 line 14 “Bach circuit 39” changed to “Bach circuit 39”) Corrected to ``Buffer circuit 39.''

Claims (1)

【特許請求の範囲】[Claims] (1)波動・千ルスを送波し、その反射波を受波し、そ
の受波信号を増幅する増幅器の利得を、時間経過と共に
上昇するようにされた反響探知機において、上記波動・
ぐルスの送波から、波動伝搬特性境界からの反射波を受
波する付近までの間、上記増幅器の利得上昇を、抑圧す
る手段を設けたことを特徴とする反響探知機。
(1) In an echo detector in which the gain of the amplifier that transmits the wave, 1,000 rus, receives the reflected wave, and amplifies the received signal is increased over time, the wave
1. An echo detector characterized in that the echo detector is provided with means for suppressing the increase in gain of the amplifier from the time when the wave is transmitted to the vicinity where the reflected wave from the boundary of the wave propagation characteristic is received.
JP8881084A 1984-05-01 1984-05-01 Echo detector Granted JPS60231190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8881084A JPS60231190A (en) 1984-05-01 1984-05-01 Echo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8881084A JPS60231190A (en) 1984-05-01 1984-05-01 Echo detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP33425289A Division JPH0320689A (en) 1989-12-22 1989-12-22 Echo detector

Publications (2)

Publication Number Publication Date
JPS60231190A true JPS60231190A (en) 1985-11-16
JPH0316628B2 JPH0316628B2 (en) 1991-03-06

Family

ID=13953244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8881084A Granted JPS60231190A (en) 1984-05-01 1984-05-01 Echo detector

Country Status (1)

Country Link
JP (1) JPS60231190A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465568A (en) * 1977-11-02 1979-05-26 Omron Tateisi Electronics Co Ultrasonic system object detector
JPS5559363A (en) * 1978-10-23 1980-05-02 Shell Int Research Method and means of detecting position of submarine pipleline or cable
JPS57101775A (en) * 1980-12-18 1982-06-24 Nippon Soken Inc Ultrasonic distance detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465568A (en) * 1977-11-02 1979-05-26 Omron Tateisi Electronics Co Ultrasonic system object detector
JPS5559363A (en) * 1978-10-23 1980-05-02 Shell Int Research Method and means of detecting position of submarine pipleline or cable
JPS57101775A (en) * 1980-12-18 1982-06-24 Nippon Soken Inc Ultrasonic distance detector

Also Published As

Publication number Publication date
JPH0316628B2 (en) 1991-03-06

Similar Documents

Publication Publication Date Title
JP4015191B2 (en) Narrow field of view electromagnetic sensor system and method
US5757320A (en) Short range, ultra-wideband radar with high resolution swept range gate
JPS58152546A (en) Reflective wave receiver system of ultrasonic diagnostic apparatus
JPS60231190A (en) Echo detector
US4855965A (en) Time ramped gain for borehole televiewer
JPH0320689A (en) Echo detector
JPH05196733A (en) Single fish discriminating circuit of fish finder
US5231608A (en) Ultrasonic object detecting apparatus
US5008862A (en) Object detecting switch device
JP2543610B2 (en) Submarine reflected wave position detector
JP3182512B2 (en) Buried object exploration antenna
JPS6111682A (en) Radar type underground surveying device
JPH05180928A (en) Underwater detecting device
GB2100431A (en) Detection of ultrasonic signals from disturbed liquid interfaces or surfaces
JPS58160879A (en) Deciding device of bottom material
Yan et al. Design and realization of a compact, low-cost, ultra wideband ground penetrating radar system
RU2205424C1 (en) Facility for radar sounding of underlying surface
JPS63120271A (en) Radar-type underground investigation apparatus
US4052692A (en) Accentuator circuit for underwater acoustical devices
JPH0672924B2 (en) Fish finder alarm generator in fish finder
JP2760625B2 (en) Non-carrier pulse radar
JPS63206679A (en) Stagger trigger type pulse radar apparatus
JPS60200183A (en) Method and apparatus for removing ringing of embedded article searching apparatus
JPS6122276A (en) Altitude depth sonar
Woodward et al. Sea bed characteristics using non-linear acoustics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees