[go: up one dir, main page]

JPS60230965A - Low alloy steel for shaft of turbine generator - Google Patents

Low alloy steel for shaft of turbine generator

Info

Publication number
JPS60230965A
JPS60230965A JP8816184A JP8816184A JPS60230965A JP S60230965 A JPS60230965 A JP S60230965A JP 8816184 A JP8816184 A JP 8816184A JP 8816184 A JP8816184 A JP 8816184A JP S60230965 A JPS60230965 A JP S60230965A
Authority
JP
Japan
Prior art keywords
steel
toughness
turbine generator
alloy steel
low alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8816184A
Other languages
Japanese (ja)
Inventor
Kiyoshi Uchida
清 内田
Masaaki Kano
狩野 征明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8816184A priority Critical patent/JPS60230965A/en
Publication of JPS60230965A publication Critical patent/JPS60230965A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To obtain the titled steel which is less expensive than a 3.5% Ni-Mo-V steel and has superior toughness and hardness by using an increased amount of Mn in place of part of Ni in the 3.5% Ni-Mo-V steel having a specified composition, regulating the relation among the amounts of Mn, Ni and Cr, and restricting the amounts of Si, P and Mo. CONSTITUTION:This low alloy steel consists of, by weight, 0.13-0.30% C, <=0.10% Si, 0.60-2.00% Mn, <=0.010% P, 0.40-2.00% Cr, 0.20-2.50% Ni, 0.10- 0.50% Mo, 0.05-0.15% V, 0.005-0.040% Al, 0.0050-0.0150% N (Ni+2Mn+2Cr= 4-8%) and the balance Fe. The steel is the low alloy Mn steel having a reduced Ni content, and the temper embrittlement is prevented by regulating the amounts of Mn, Ni and Cr as mentioned above and restricting the amounts of Si, P and Mo.

Description

【発明の詳細な説明】 この発明はタービン発電機軸に使用される低合金鋼に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low alloy steel used for a turbine generator shaft.

一般にタービン発電機軸、すなわちタービン発電機の回
転子軸あるいはタービン軸は、毎分数千回転の高速で回
転するものであるため、運転中の破壊事故防止の観点か
ら、優れた靭性と高い機械的強度を有することが要求さ
れる。そのだめタービン発電機軸には、従来から、強度
および靭性に優れた3、5%NiM□V鋼が使用されて
いる。この3、5 S NiMoV鋼は、Ni 3.2
5〜3.75 To 、M。
In general, the turbine generator shaft, i.e., the rotor shaft or turbine shaft of a turbine generator, rotates at a high speed of several thousand revolutions per minute, so it must have excellent toughness and high mechanical strength to prevent accidents during operation. It is required to have strength. Therefore, 3.5% NiM□V steel, which has excellent strength and toughness, has been used for the turbine generator shaft. This 3,5S NiMoV steel has Ni 3.2
5-3.75 To, M.

0925〜0.35%、■009〜0.15チ程度を含
有し残部が実質的にFeよシなるものであるが、この鋼
は高価なNiを多量に含有するため製造コストが高い欠
点がある。そこで3.5%NiMoV鋼と同等かまたは
それ以上の強度、靭性を備えしかも安価なタービン発電
機軸用低合金鋼の開発が強く望まれている。
This steel contains approximately 0.0925% to 0.35%, and 0.09% to 0.15%, with the remainder being essentially Fe.However, this steel has the disadvantage of high manufacturing costs because it contains a large amount of expensive Ni. be. Therefore, there is a strong desire to develop low-alloy steel for turbine generator shafts that has strength and toughness equal to or greater than 3.5% NiMoV steel and is inexpensive.

ところでタービン発電機軸用低合金鋼においてその靭性
を低下させることなく製造コストを引下げる方法として
は、上述の3.5 Z NiMoV鋼とは若干具なる鋼
種系ではあるが、3.5%NiCrMoV鋼において安
価なCuを含有させることにより高価なNi量を少なく
シ、低コスト化を図る方法が例えば特公昭50−753
0号により提案されている。しかしながらこの方法では
Cuを多量に含有させるため、熱間鍛造時の赤熱脆化が
生じ易くなる問題がある。またCuはそねほど安価な元
素ではないため、NiをCuに置き換えてもコスト低減
の効果は少ない。したがってこの提案の方法では、強靭
性その他の特性を損なうことなく製造コストを引下げる
という目的を充分に達成することは困難であった。
By the way, as a way to reduce the manufacturing cost of low-alloy steel for turbine generator shafts without reducing its toughness, 3.5% NiCrMoV steel, which is a slightly different steel type from the above-mentioned 3.5 Z NiMoV steel, has been proposed. For example, Japanese Patent Publication No. 50-753 discloses a method of reducing the amount of expensive Ni by incorporating inexpensive Cu into the material, thereby reducing costs.
It is proposed by No. 0. However, in this method, since a large amount of Cu is contained, there is a problem that red heat embrittlement is likely to occur during hot forging. Further, since Cu is not such an inexpensive element, even if Ni is replaced with Cu, the cost reduction effect is small. Therefore, with this proposed method, it was difficult to sufficiently achieve the objective of reducing manufacturing costs without impairing toughness and other properties.

この発明は以上の事情を背景としてなされたもので、前
述のような現用されている3、5%NiMoV鋼より充
分に安価でしかも優れた強靭性を有するタービン発電機
軸用低合金鋼を提供することを目的とするものである。
This invention was made against the background of the above-mentioned circumstances, and it is an object of the present invention to provide a low-alloy steel for turbine generator shafts that is sufficiently cheaper than the currently used 3.5% NiMoV steel and has superior toughness. The purpose is to

現用されている3、5%NiMoV鋼における高価なN
iに対する代用元素としては、よシ安価であってしかも
焼入性、強靭性、その他の特性を低下させないものでな
ければならない。そのような条件を満足する元素゛とし
ては、前記提案で使用されているCuよシもさらに安価
なMnの方が有望と考えられる。しかしながらMnは焼
もどし脆化感受性を著しく高める元素として知られてお
シ、そのため従来一般のタービン発電機軸用低合金鋼で
はむしろMn量は低く制限するのが通常である。すなわ
ち直径500鰭以上の大質員の発電機軸材においては、
焼もどし後の冷却1屯度が必然的に遅くなシ、冷却中の
焼もどし脆化が問題となるため、Mnは通常0、60 
%以下に制限されている。しかるに本発明者等は、高価
なNiiを極力低くするべく安価なMnの添加量を大幅
に増加させた場合でも、焼もどし脆化の発生を抑制し得
る方策を見出すべく種々実験・検討を重ねた結果、Ni
を低くしたMn系の低合金鋼でも、Mn 、 Ni 、
 Crの量を相互に関連を持たせである範囲内に調整す
るとともにSi 、 P 。
Expensive N in currently used 3.5% NiMoV steel
As a substitute element for i, it must be very inexpensive and must not deteriorate hardenability, toughness, or other properties. As an element that satisfies such conditions, Mn, which is cheaper than Cu used in the above proposal, is considered to be more promising. However, Mn is known to be an element that significantly increases the susceptibility to tempering embrittlement, and therefore, in conventional low-alloy steel for turbine generator shafts, the Mn content is generally limited to a low level. In other words, for large generator shaft materials with a diameter of 500 fins or more,
Since the cooling strength after tempering is inevitably slow and tempering embrittlement during cooling becomes a problem, Mn is usually 0.60.
% or less. However, the present inventors have conducted various experiments and studies in order to find a method that can suppress the occurrence of temper embrittlement even when the amount of cheap Mn added is significantly increased in order to reduce the expensive Nii as much as possible. As a result, Ni
Even in Mn-based low alloy steel with low Mn, Ni,
The amount of Cr is adjusted within a certain range in relation to each other, as well as Si and P.

Mo量を制限することによって焼もどし脆化を防止でき
、その結実現用の3.5%NiMoV鋼よりも安価でし
かも優れた強靭性を有するタービン発電機軸に適した低
合金鋼を提供し得ることを見出し、この発明をなすに至
ったのである。
By limiting the amount of Mo, tempering embrittlement can be prevented, and it is possible to provide a low-alloy steel suitable for turbine generator shafts that is cheaper than the 3.5% NiMoV steel used to achieve this, and has superior toughness. They discovered this and came up with this invention.

すなわちこの発明のタービン発電機軸用低合金鋼は、C
0,13〜0.30%、SiO,IO%以丁、Mn 0
.60〜2.00 To 、P O,01096以Ts
 CrO,40〜2.00 eIbSNi O,20〜
2.50 %、M。
That is, the low alloy steel for turbine generator shaft of this invention is C
0.13~0.30%, SiO, IO%, Mn 0
.. 60~2.00 To, P O, 01096 or more Ts
CrO, 40~2.00 eIbSNi O, 20~
2.50%, M.

0、10〜0.50 slV 0.05〜0.15%、
AJo、 005〜0.040チ、NO,0050〜0
.0150−を含有し、かつ、Ni + 2Mn + 
2Crが4〜8−の範囲内となるように調整し、残部が
Feおよび不可避的不純物よりなることを特徴とするも
のである。
0, 10-0.50 slV 0.05-0.15%,
AJo, 005~0.040chi, NO, 0050~0
.. 0150- and Ni + 2Mn +
It is characterized in that 2Cr is adjusted to be within the range of 4 to 8-, and the remainder consists of Fe and inevitable impurities.

以下この発明のタービン発電機軸用低合金鋼についてさ
らに詳細に説明する。
Below, the low alloy steel for turbine generator shafts of the present invention will be explained in more detail.

先ずこの発明における各成分限定理由を説明する。First, the reasons for limiting each component in this invention will be explained.

CO,13〜0.30チ: Cは焼入性および強度の向上に有効な元素であfi、C
O,13%未満では良好な焼入性と所定の強度を確保す
ることができない。一方C量が0.30チを越えれば靭
性が著しく劣化するから、C含有量は0.13〜0.3
0%の範囲内とする必要がある。
CO, 13-0.30chi: C is an element effective in improving hardenability and strength.
If O is less than 13%, good hardenability and predetermined strength cannot be ensured. On the other hand, if the C content exceeds 0.30 inches, the toughness will deteriorate significantly, so the C content should be 0.13 to 0.3
It must be within the range of 0%.

SiO,lOチ以丁: Siは焼もどし脆化感受性を高める元素であって、この
発明の鋼では特にMnおよびCrを多量に含むために焼
もどし脆化感受性が高くなる傾向にあるから、Si含有
量を可及的に低くすることが望ましい。但しSiが0.
10 %以下であれば焼もどし脆化を起さないことから
、Siは010チ以丁と規定した。
SiO, 1O: Si is an element that increases the susceptibility to temper embrittlement, and the steel of this invention tends to have a high susceptibility to temper embrittlement, especially since it contains large amounts of Mn and Cr. It is desirable to keep the content as low as possible. However, if Si is 0.
Since tempering embrittlement does not occur if the Si content is 10% or less, Si is specified as less than 0.10%.

Mn 0.60〜2.00 % : Mnは焼入性を高め、強靭性を向上させるに有効な元素
であシ、シかも安価な元素であって、この発明では極め
て重要な元素である。すなわちこの発明の鋼は高価なN
iの添加量減少による強度、靭性の低下を安価なMnの
添加の増加によって補なうものであシ、その効果を得る
ためにはMn 0.60%以上の添加が必要である。こ
のようにMn添加量を増加させた場合、焼もどし脆化感
受性が一般には高くなるが、この発明の鋼の場合にはM
n 、 Cr 。
Mn 0.60-2.00%: Mn is an effective element for improving hardenability and toughness, and is also an inexpensive element, and is an extremely important element in this invention. In other words, the steel of this invention is expensive N
The decrease in strength and toughness due to the decrease in the amount of i added is compensated for by increasing the addition of inexpensive Mn, and in order to obtain this effect, it is necessary to add 0.60% or more of Mn. When the amount of Mn added is increased in this way, the susceptibility to tempering embrittlement generally increases, but in the case of the steel of this invention, Mn
n, Cr.

Ni量を相互に関連を持たせて調整しかつP、Si。Adjust the amount of Ni in relation to each other, and adjust the amount of P and Si.

Mo量を制限することによって0.60%以上のMn添
加でも焼もどし脆化感受性を抑えて、強靭性を確保する
ことができる。但しMn量が2.00%を越えればこの
発明の鋼でも焼もどし脆化感受性が高くなシ、かえって
靭性が劣化する。したがってMn量は0.60〜2.0
0%の範囲内とした。
By limiting the amount of Mo, it is possible to suppress the susceptibility to tempering embrittlement and ensure toughness even when Mn is added in an amount of 0.60% or more. However, if the Mn content exceeds 2.00%, even the steel of the present invention will not be susceptible to tempering embrittlement, and the toughness will deteriorate. Therefore, the amount of Mn is 0.60 to 2.0
It was set within the range of 0%.

po、oto%以下: Pは焼もどし脆化感受性を高める元素であるから、P含
有量は可及的に少ないことが望ましいが、0.0IO’
1以下であれば焼もどし脆化が起らないから、o、ot
o%以下に制限した。
po, oto% or less: Since P is an element that increases the susceptibility to tempering embrittlement, it is desirable that the P content be as low as possible, but 0.0IO'
If it is less than 1, tempering embrittlement will not occur, so o, ot
It was limited to 0% or less.

Cr O,40〜2.00 To : Crは焼入性、強度を高める元素であって、Mnととも
にこの発明の鋼における強化組織を得るために必要であ
F)、Crが0.40%未満ではこの効果が少ない。一
方Crが2.00チを越えれば焼もどし脆化感受性が高
まるから、Crは0,40〜2.00%の範囲内に限定
した。
CrO, 40-2.00 To: Cr is an element that improves hardenability and strength, and is necessary together with Mn to obtain the reinforcing structure in the steel of this invention (F), Cr is less than 0.40% This effect is small. On the other hand, if Cr exceeds 2.00%, the susceptibility to tempering embrittlement increases, so Cr was limited to a range of 0.40 to 2.00%.

Mo 0.10=0.50%: Moは焼もどし脆化の抑制に有効な元素である。Mo 0.10=0.50%: Mo is an element effective in suppressing temper embrittlement.

この発明の鋼において焼もどし時の徐冷中に生じる焼も
どし脆化を防止するためには、Mo 0.10−以上が
必要である。しかしながら焼もとし脆化抑制効果は0.
50 S以上では少な(,0,5(lを越えるMoの添
加は無意味である。したがってM。
In order to prevent tempering embrittlement that occurs during slow cooling during tempering in the steel of this invention, Mo 0.10- or more is required. However, the effect of suppressing embrittlement due to burning is 0.
Above 50 S, the addition of Mo in excess of (,0,5(l) is meaningless. Therefore, M.

は0.10〜0.501の範囲に限定した。was limited to a range of 0.10 to 0.501.

V O,05〜0.15%: ■は焼もどし軟化抵抗を病めて強度を向上させる元素で
ある。所定の強度を得るには0.05 %以上の添加が
必要であるが、■が0.15%を越えれば靭性が劣化す
るから、■は0.05〜015チの範囲に限定した。
VO, 05-0.15%: (1) is an element that improves strength by reducing resistance to temper softening. Although it is necessary to add 0.05% or more to obtain a predetermined strength, if ■ exceeds 0.15%, the toughness deteriorates, so ■ was limited to a range of 0.05 to 0.15 inches.

AA!0.005〜0.040チ、NO,0050〜0
.015(1: A/およびNは、鋼中でA#Jを形成して結晶粒を微細
化することにより焼もどし脆化の抑制に有効に作用する
。そのためにはAlは0.005以上、Nは0.005
0%以上が必要であるが、A/が0、040%を越える
かまたはNが0.00150チを越えれば靭性が劣化す
るから、A/は0.005〜0、040%、Nは0.0
050〜0.0150%の範囲に限定した。
AA! 0.005~0.040chi, NO,0050~0
.. 015 (1: A/ and N effectively suppress tempering embrittlement by forming A#J in steel and refining crystal grains. For this purpose, Al should be 0.005 or more, N is 0.005
0% or more is required, but if A/ exceeds 0.040% or N exceeds 0.00150 inches, the toughness will deteriorate, so A/ is 0.005 to 0.040% and N is 0. .0
It was limited to a range of 0.050% to 0.0150%.

Ni 0120〜2.50チ: Niは強度、靭性の向上に有効な元素であるが、Ni0
.20%未満ではその効果が発揮されない。しかしなが
らNiは高価な元素であるところから、この発明ではN
iの代シに安価なMnを用いるので、Niは250%以
丁とし、020〜250チの範囲に限定した。
Ni0120~2.50ch: Ni is an effective element for improving strength and toughness, but Ni0
.. If it is less than 20%, the effect will not be exhibited. However, since Ni is an expensive element, in this invention
Since cheap Mn is used as a substitute for i, Ni is limited to 250% or more and is limited to a range of 0.020 to 250.

さらにこの発明の鋼では、Ni (%)、2XMn(%
)。
Furthermore, in the steel of this invention, Ni (%), 2XMn (%
).

2xcr(%)の和、すなわちNi + 2Mn + 
2Crの値が4〜8%となるようにNi 、 Mn 、
 Crの添加量を相互に関連を持たせて調整する必要が
ある。その理由は次の通りである。すなわちN 、 M
n 、 Crはいずれも靭性の向上に有効な元素である
が、必要以上に増加すると焼もどし脆化によって逆に紛
性劣化を招く。そこで本発明者等が靭性に対するNi。
The sum of 2xcr (%), i.e. Ni + 2Mn +
Ni, Mn, so that the value of 2Cr is 4 to 8%
It is necessary to adjust the amount of Cr added in relation to each other. The reason is as follows. That is, N, M
Both n and Cr are elements effective in improving toughness, but if they increase more than necessary, they will cause deterioration of powderiness due to tempering embrittlement. Therefore, the present inventors investigated Ni for toughness.

Mn 、 Crの複合効果について調査するべ(、Ni
The combined effect of Mn and Cr should be investigated (, Ni
.

Mn 、 Cr量をそれぞれ種々変化させてVノクチシ
ャルピー衝撃試験における破面遷移温度vTrsを調べ
たところ、第1図に示すような結果が得られた。第1図
から、破面遷移温度が0℃程度以丁の高靭性は、第1図
の斜線領域、すなわちNi + 2Mn+2Crが4〜
8%の範囲内の領域でのみ得られることが判明した。N
i + 2Mn + 2Crが8チを越えれば焼もどし
脆化による靭性劣化を招き、−万Ni+ 2Mn + 
2Crが4チ未満ではそれらの元素による靭性向上効果
が充分に得られない。したがってこの発明の低合金鋼で
はNi +2Mn + 2Crが4〜8%の範囲を満足
することを条件とした。
When the fracture surface transition temperature vTrs in the V-noctic Charpy impact test was investigated by varying the amounts of Mn and Cr, the results shown in FIG. 1 were obtained. From Fig. 1, high toughness when the fracture surface transition temperature is about 0°C is found in the shaded area in Fig. 1, that is, when Ni + 2Mn + 2Cr is 4~
It has been found that this is only possible in areas within 8%. N
If i + 2Mn + 2Cr exceeds 8 inches, toughness will deteriorate due to tempering embrittlement, and -10,000Ni + 2Mn +
If 2Cr is less than 4, the effect of improving toughness due to these elements cannot be sufficiently obtained. Therefore, in the low alloy steel of the present invention, the condition is that Ni + 2Mn + 2Cr satisfies the range of 4 to 8%.

なお上述の各成分のほかは、Feおよびその他の不可避
的不純物とすれば良い。
In addition to the above-mentioned components, Fe and other unavoidable impurities may be used.

またこの発明の低合金鋼の製造方法は従来公知の方法に
従えば良く、所要成分の溶湯を溶製して鋼塊に鋳造し、
鍛造後、焼鈍し、さらに焼入れ焼もどしすれば良い。
Furthermore, the method for producing the low alloy steel of the present invention may be carried out in accordance with conventionally known methods, such as melting a molten metal with the required components and casting it into a steel ingot.
After forging, it may be annealed, and then quenched and tempered.

実施例 第1表の試料番号1〜11に示す成分の実験鋼塊を溶製
し、熱間鍛造により25■厚の鋼板とし、焼鈍処理およ
び焼入れ、焼もどし処理を施してから、引張試験および
衝撃試験を行なった。ここで焼鈍処理条件は、90 o
’cx 5 hr加熱後Z冷却速度30℃へrで冷却と
した。焼入条件は、860℃×5 hr保持後、4 v
minの冷却速度で焼入れとした。
EXAMPLES Experimental steel ingots having the components shown in sample numbers 1 to 11 in Table 1 were melted, hot forged into 25mm thick steel plates, annealed, quenched, and tempered, and then subjected to tensile testing and An impact test was conducted. Here, the annealing treatment conditions are 90 o
'cx After heating for 5 hours, cooling was performed at a Z cooling rate of 30°C. The quenching conditions were: 860°C x 5 hr hold, 4 V
Hardening was performed at a cooling rate of min.

さらに焼もどし条件は、630℃X l Ohr保持後
、冷却速度25 ′c/hrで冷却とした。これらの熱
処理条件は、直径1000n程度の発電機軸材の中心部
の熱処理条件に相当する。なお第1表に示す各試料1〜
11のうち、A1〜A5の鋼はいずれもこの発明の条件
範囲内の組成のものであって、Ni+ 2Mn + 2
Crの値も4〜8%の範囲を充足しているものである。
Further, the tempering conditions were as follows: after holding at 630°C x 1 Ohr, cooling was performed at a cooling rate of 25'c/hr. These heat treatment conditions correspond to the heat treatment conditions for the center of a generator shaft material having a diameter of about 1000 nm. In addition, each sample 1~ shown in Table 1
Of No. 11, steels A1 to A5 all have compositions within the condition range of this invention, and have a composition of Ni + 2Mn + 2
The Cr value also satisfies the range of 4 to 8%.

一方試料番号6の比較鋼は現用のタービン発電機軸材と
して知られる3、 5 % NiMoV、鋼であシ、M
n 、歯、 Cr量がこの発明の範囲を外れている。ま
た試料番号7の比較鋼は、Si 、 Mn。
On the other hand, the comparison steel of sample number 6 is made of 3.5% NiMoV, steel, M
n, teeth, and Cr content are outside the scope of this invention. In addition, the comparative steel of sample number 7 is made of Si and Mn.

Pがこの発明の範囲を外れ、試料番号8の比較鋼はMO
がこの発明の範囲を外れ、さらに試料番号9の比較鋼は
Mnがこの発明の範囲を外れている。さらに試料番号t
o、xiの比較鋼は、Nム+2Mn+2Crの値がこの
発明の範囲を外れている。
P is out of the range of this invention, and the comparison steel of sample number 8 is MO
is out of the scope of the present invention, and furthermore, the comparative steel of sample number 9 has Mn out of the scope of the present invention. Furthermore, sample number t
In the comparative steels of o and xi, the value of N+2Mn+2Cr is outside the range of the present invention.

上述のような各試料についての試験結果を第2表に示す
。第2表から明らかなように、現用の3、5 ’ir 
NiMoV鋼に相当する試料番号6の比較鋼に対して、
試料番号7〜11の比較鋼はいずれもtlぼ同等の引張
性能を有するものの、衝撃特性が著しく劣る。すなわち
、この発明の条件範囲を外れた低合金鋼では良好な靭性
を得ることができない。
Test results for each sample as described above are shown in Table 2. As is clear from Table 2, the current 3,5'ir
For comparison steel of sample number 6, which corresponds to NiMoV steel,
Although the comparative steels of sample numbers 7 to 11 all have approximately the same tensile performance, their impact properties are significantly inferior. In other words, good toughness cannot be obtained with low alloy steel that falls outside the range of conditions specified in the present invention.

一方、SiおよびP含有量を制限しがっ適量のMn。On the other hand, an appropriate amount of Mn limits the Si and P contents.

Nl 、 Cr 、 Moを含有する本発明@(試料番
号1〜5)では、現用の3.5 % NiMoV鋼(試
料番号6)よシもNi含有量が低いにもかかわらず、強
度、低温靭性に優れていることが明らかである。
The present invention @ (sample numbers 1 to 5) containing Nl, Cr, and Mo has lower strength and low-temperature toughness than the current 3.5% NiMoV steel (sample number 6), despite having a lower Ni content. It is clear that it is superior to

以上の実施例からも明らかなように、この発明のタービ
ン発電機軸用低合金鋼は、現用されている3、5%Ni
MoV鋼より安価でしかも強度、靭性に優れたものであ
シ、タービン発電機の回転子軸あるいはタービン軸に使
用される軸材、特に大径の軸材に適用して有用なもので
ある。
As is clear from the above examples, the low-alloy steel for turbine generator shafts of the present invention contains 3.5%Ni, which is currently in use.
It is cheaper than MoV steel and has superior strength and toughness, and is useful for shaft materials used in rotor shafts or turbine shafts of turbine generators, especially large diameter shaft materials.

第2表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は衝撃遷移温度に及ぼす鋼中のNi 、 Mn 
−Criの影響を示す相関図である。
Figure 1 shows the effects of Ni and Mn in steel on impact transition temperature.
- It is a correlation diagram showing the influence of Cri.

Claims (1)

【特許請求の範囲】[Claims] CO,13〜0.30チ(重量係、以下同じ)、Si 
0.10%以下、Mn 0.60〜2.00 %、Po
、otos以下、CrO,40〜2.0O1、Ni0、
20〜2.50 %、Mo 0.10〜0.50 fb
、■0.05〜0,15%、AIo、 005〜0.0
40チ、NO,0050へ−0,0150チを含有し、
かつNi+2 Mn + 2 Crが4〜8−の範囲内
となるように調整し、残部がFeおよび不可避的不純物
よりなることを特徴とするタービン発電機軸用低合金鋼
CO, 13 to 0.30 inches (weight, same below), Si
0.10% or less, Mn 0.60-2.00%, Po
, otos or less, CrO, 40-2.0O1, Ni0,
20-2.50%, Mo 0.10-0.50 fb
, ■0.05~0.15%, AIo, 005~0.0
40 chi, containing -0,0150 chi to NO,0050,
A low alloy steel for a turbine generator shaft, which is adjusted so that Ni+2Mn+2Cr is within a range of 4 to 8-, and the remainder is Fe and inevitable impurities.
JP8816184A 1984-05-01 1984-05-01 Low alloy steel for shaft of turbine generator Pending JPS60230965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8816184A JPS60230965A (en) 1984-05-01 1984-05-01 Low alloy steel for shaft of turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8816184A JPS60230965A (en) 1984-05-01 1984-05-01 Low alloy steel for shaft of turbine generator

Publications (1)

Publication Number Publication Date
JPS60230965A true JPS60230965A (en) 1985-11-16

Family

ID=13935197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8816184A Pending JPS60230965A (en) 1984-05-01 1984-05-01 Low alloy steel for shaft of turbine generator

Country Status (1)

Country Link
JP (1) JPS60230965A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765849A (en) * 1986-05-28 1988-08-23 Uddeholm Tooling Aktiebolag Low-alloy steel material, die blocks and other heavy forgings made thereof
US5288455A (en) * 1991-03-20 1994-02-22 Hitachi, Ltd. Steel for rotor shafts of electric machines and method and product thereof
CN111304539A (en) * 2020-04-09 2020-06-19 莆田学院 High-speed high-power-density motor rotating shaft and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765849A (en) * 1986-05-28 1988-08-23 Uddeholm Tooling Aktiebolag Low-alloy steel material, die blocks and other heavy forgings made thereof
US5288455A (en) * 1991-03-20 1994-02-22 Hitachi, Ltd. Steel for rotor shafts of electric machines and method and product thereof
EP0505085B2 (en) 1991-03-20 2003-07-09 Hitachi, Ltd. Steel for rotor shafts of electric machines
CN111304539A (en) * 2020-04-09 2020-06-19 莆田学院 High-speed high-power-density motor rotating shaft and preparation method thereof
CN111304539B (en) * 2020-04-09 2021-02-09 莆田学院 A high-speed and high-power density motor shaft and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JPH02290950A (en) Ferritic heat resisting steel excellent in strength at high temperature
JP3439197B2 (en) Low alloy heat resistant steel, heat treatment method thereof, and turbine rotor
JPS60215719A (en) Manufacture of electric welded steel pipe for front fork of bicycle
JP2947913B2 (en) Rotor shaft for high temperature steam turbine and method of manufacturing the same
JPS6141968B2 (en)
JPS6352090B2 (en)
JPS60230965A (en) Low alloy steel for shaft of turbine generator
JPS5845360A (en) Low alloy steel with temper embrittlement resistance
JP3504835B2 (en) Low alloy heat resistant cast steel and cast steel parts for steam turbines
JPS63145750A (en) Low alloy steel for turborotor
JPH07103447B2 (en) High purity heat resistant steel
JPH021901B2 (en)
JP3325146B2 (en) Manufacturing method for high yield strength steel sheet with low yield ratio
CN113881904B (en) Chromium alloy for engine valve seat ring and preparation method thereof
JP2004018897A (en) High-chromium alloy steel and turbine rotor using this
JP2521547B2 (en) Low-temperature steel manufacturing method
JP3576328B2 (en) Low alloy heat resistant steel and steam turbine rotor
JP3338241B2 (en) Cr-Mo steel with excellent hardenability
JPS6112970B2 (en)
JP3620098B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
JPH05195068A (en) Manufacture of high-and low-pressure integrated turbine rotor
JP2583114B2 (en) Low carbon Cr-Mo steel sheet with excellent weld cracking resistance
JPH10152759A (en) Maraging steel excellent in toughness