[go: up one dir, main page]

JPS60230136A - Positive type resist composition - Google Patents

Positive type resist composition

Info

Publication number
JPS60230136A
JPS60230136A JP59086632A JP8663284A JPS60230136A JP S60230136 A JPS60230136 A JP S60230136A JP 59086632 A JP59086632 A JP 59086632A JP 8663284 A JP8663284 A JP 8663284A JP S60230136 A JPS60230136 A JP S60230136A
Authority
JP
Japan
Prior art keywords
ester
alkali
vte
dry etching
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59086632A
Other languages
Japanese (ja)
Inventor
Masashi Miyagawa
昌士 宮川
Yasuhiro Yoneda
泰博 米田
Kota Nishii
耕太 西井
Shunichi Fukuyama
俊一 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59086632A priority Critical patent/JPS60230136A/en
Publication of JPS60230136A publication Critical patent/JPS60230136A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Materials For Photolithography (AREA)

Abstract

PURPOSE:To enhance dry etching resistance and to improve sensitivity and resolution by defining the use range of esterification degree and mol.wt. of the ester produced from an alkali-soluble resin and an aromatic sulfonic acid by the fractional precipitation method. CONSTITUTION:When the ester is produced from the alkali-soluble resin and the aromatic sulfonic acid, the ranges of the esterification degree and the mol.wt. of the product to be used are defined. As such a ester, polyvinylphenol p-toluenesulfonate (VTE) obtained from polyvinylphenol (PVP) and p-toluenesuofonic acid (p-TS) has the main chains of a large number of molecules aligned in a straight chain, and the side chains are formed by the combinations of the -C6H5 groups and the p-TS groups. Such VTE esters are decomposed at the ester bonds by irradiating electron beams and solubilized in alkali, thus exhibiting the characteristics of the positive type resist. Moreover, this VTE has excellent dry etching property.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は耐トライエツチング性のみならず感度と解像度
をも向上したポジ型電子線レジストの構成に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to the construction of a positive electron beam resist that has improved not only tri-etching resistance but also sensitivity and resolution.

(b)技術の背景 半導体結晶や誘電体結晶などを基板として各種の半導体
素子やフィルタ素子などの回路素子が作られている。
(b) Background of the Technology Various semiconductor elements, filter elements, and other circuit elements are manufactured using semiconductor crystals, dielectric crystals, and the like as substrates.

ここでICやLSIなどの半導体素子に例をとると、単
位素子の小形化による集積化は益々進んでおり、導体パ
ターンは極度に微細化したものが作られている。
Taking semiconductor devices such as ICs and LSIs as an example, integration is progressing more and more due to miniaturization of unit elements, and extremely fine conductor patterns are being produced.

そしてかかる微細パターンの形成には薄膜形成技術と写
真食刻技術(ホトリソグラフィ)が使用されている。
Thin film formation technology and photolithography are used to form such fine patterns.

すなわち被処理基板上にエピタキシャル成長或いはへテ
ロエピタキシャル成長を行って半導体層を成長させるか
、或いは真空蒸着、スパッタなどの方法で金属や絶縁体
からなる薄層を形成し、これにホトレジストとホトエツ
チングとを使用する写真食刻技術により基板上の薄層を
選択エツチングして微細パターンを形成している。
That is, a semiconductor layer is grown by epitaxial growth or heteroepitaxial growth on a substrate to be processed, or a thin layer made of metal or an insulator is formed by a method such as vacuum evaporation or sputtering, and then photoresist and photoetching are used for this. A fine pattern is formed by selectively etching a thin layer on a substrate using photolithographic technology.

ここで写真食刻技術は被処理基板上にスピンコードなど
の方法でホトレジストを被覆し、これにマスクを通して
紫外線を選択露光させ、光照射部が現像液に対して溶解
度の差を生じるのを利用するものであり、像形成の型と
して光照射部が現像液に不溶となるネガタイプと可溶と
なるポジタイプとがある。
Photo-etching technology uses photoresist coating on the substrate to be processed using a method such as a spin cord, which is then selectively exposed to ultraviolet light through a mask, and takes advantage of the difference in solubility of the light irradiated areas to the developing solution. There are two types of image forming molds: a negative type in which the light irradiated area is insoluble in the developer, and a positive type in which the light irradiated area is soluble.

ここで従来の紫外線露光による微細パターンの形成は使
用波長が350乃至450nmであることから解像の理
論的限界は0.5μmとなるが、光の回折や散乱を伴う
ため実用上の限界は1乃至2μ…に留まり、1μ鋼以下
の線幅をもつパターン形成は困難である。
In conventional ultraviolet exposure to form fine patterns, the wavelength used is 350 to 450 nm, so the theoretical limit of resolution is 0.5 μm, but since it involves diffraction and scattering of light, the practical limit is 1 μm. It is difficult to form a pattern with a line width of 1 μm or less.

一方電子ビームの波長は加速電圧により異なるが0.1
A程度であり、波長が格段に短いため0.1μ鎖幅のパ
ターン形成も可能となる。
On the other hand, the wavelength of the electron beam varies depending on the accelerating voltage, but is 0.1
Since the wavelength is much shorter, it is possible to form a pattern with a chain width of 0.1μ.

本発明は微細パターン形成用のポジ型電子線レジストの
改良に関するものである。
The present invention relates to improvements in positive electron beam resists for forming fine patterns.

(C)従来技術と問題点 半導体層や絶縁層のエツチング方法には化学的方法と物
理的方法があるが、微細パターンの形成には精度の点で
後者のドライエツチング法が適しており、特にエツチン
グに方向性を持つリアクティブ・イオンエツチング法(
略称RI E)が適している。
(C) Conventional technology and problems There are chemical and physical methods for etching semiconductor layers and insulating layers, but the latter dry etching method is particularly suitable for forming fine patterns in terms of accuracy. Reactive ion etching method with directional etching (
The abbreviation RIE) is suitable.

この方法はホトエツチングにより窓開けしたレジスト膜
をマスクとしてガスイオンを衝突せしめてスパッタエツ
チングを行うもので、被処理基板のエツチング速度と較
ベレジスト膜のエツチング速度が格段に少ない性質を利
用している。
This method performs sputter etching by bombarding gas ions using a resist film with windows opened by photoetching as a mask, and takes advantage of the property that the etching rate of the resist film is much lower than that of the substrate to be processed.

ここで従来のポジ型電子線レジストとしてポリメチルメ
タアクリレート(略称PMMA)等のアクリル樹脂系の
もの、或いはポリ (ブテン−1−スルホン)(略称P
BS)等のスルホン系のものが知られている。
Here, as conventional positive electron beam resists, acrylic resin-based ones such as polymethyl methacrylate (abbreviated as PMMA), or poly(butene-1-sulfone) (abbreviated as PMMA) are used.
Sulfone-based compounds such as BS) are known.

これらのレジストは電子線、X線などの電離放射線に感
光する所謂電子線レジストとして有用ではあるが、この
レジストパターンをマスクにしてRIE法によりエツチ
ングを行う場合はスパッタイオンに対する耐ドライエツ
チング性が低くて使用できない。
Although these resists are useful as so-called electron beam resists that are sensitive to ionizing radiation such as electron beams and X-rays, when etching is performed by RIE using this resist pattern as a mask, dry etching resistance against sputtered ions is low. cannot be used.

例えばシリコン(Si )半導体基板上にアルミニウム
(AI )の蒸着膜からなる配線パターンを写真食刻技
術で形成する場合、これらのレジストをマスクとして使
用するとエツチング速度が大きいためにレジスト膜を厚
く形成する必要があり、そうするとパターン精度が低下
して目的に沿わなくなる。
For example, when forming a wiring pattern made of a deposited aluminum (AI) film on a silicon (Si) semiconductor substrate by photolithography, using these resists as a mask results in a thick resist film being formed due to the high etching rate. If this happens, the pattern accuracy will decrease and the purpose will not be met.

このように従来のポジ型電子線レジストは耐ドライエツ
チング性が劣り、使用上において問題となっていた。
As described above, conventional positive type electron beam resists have poor dry etching resistance, which has caused problems in use.

(d)発明の目的 本発明の目的は耐ドライエツチング性が高く、且つ感度
と解像庫の優れたポジ型電子線レジストの構成を提供す
るにある。
(d) Object of the Invention An object of the present invention is to provide a positive electron beam resist structure that has high dry etching resistance and excellent sensitivity and resolution.

(e)発明の構成 本発明の目的はアルカリ可溶性樹脂と芳香族スルホン酸
とのエステル化物からなるポジ型電子線レジストを製造
するに際し、分別沈澱法により、生成物のエステル化度
と分子量分布とを限定してなることを特徴とするポジ型
レジスト組成物により達成することができる。
(e) Structure of the Invention The purpose of the present invention is to determine the degree of esterification and molecular weight distribution of the product by a fractional precipitation method when producing a positive electron beam resist made of an esterified product of an alkali-soluble resin and an aromatic sulfonic acid. This can be achieved by using a positive resist composition characterized in that it contains a limited number of .

発明者等はかねてよりアルカリ可溶性樹脂と芳香族スル
ホン酸からなるポジ型電子線レジストを提案している。
The inventors have long proposed a positive electron beam resist made of an alkali-soluble resin and an aromatic sulfonic acid.

すなわち電離放射線に感応する電子線レジストの必要条
件として感度、解像性および耐ドライエツチング性を挙
げることができる。
That is, sensitivity, resolution and dry etching resistance can be mentioned as necessary conditions for an electron beam resist sensitive to ionizing radiation.

さて、先に記したPMMAやPBSなど従来のポジ型電
子線レジストの耐ドライエツチング性が劣る理由を考え
ると、これらの高分子化合物は電離放射線の照射を受け
ると被照射部の高分子の低分子への分解或いは構成原子
を結ぶボンドの切断が行われる結果として被照射部は現
像液に可溶な一状態に変化するが、この位置は何れも分
子構造で主鎖の位置で行われている。
Now, considering the reason why the dry etching resistance of conventional positive electron beam resists such as PMMA and PBS described earlier is inferior, when these polymer compounds are irradiated with ionizing radiation, the polymer in the irradiated area becomes weaker. As a result of the decomposition into molecules or the cutting of bonds connecting the constituent atoms, the irradiated area changes to a state that is soluble in the developer, but both of these positions occur at the main chain position in the molecular structure. There is.

そのため、ドライエツチング処理でイオン衝撃を受ける
際も同様に主鎖の位置で分解が生じ、そのため高いエン
チング速度を示すことになる。
Therefore, when subjected to ion bombardment during dry etching treatment, decomposition also occurs at the main chain position, resulting in a high etching rate.

そこで発明者等は電離放射線の照射による分解或いは解
離が高分子の側鎖の位置で起こるレジストを開発するこ
とにより耐ドライエツチング性を改良している。
Therefore, the inventors have improved the dry etching resistance by developing a resist in which decomposition or dissociation occurs at the side chains of the polymer upon irradiation with ionizing radiation.

ここで感度および解像性は高分子の側鎖部分で実現し、
一方耐ドライエツチング性は主鎖部分で実現する。
Here, sensitivity and resolution are achieved by the side chain portion of the polymer,
On the other hand, dry etching resistance is achieved in the main chain portion.

すなわちフェノールノボラック樹脂、タレゾールノボラ
ック樹脂、ポリビニールフェノール、ボリ 〔p−ヒド
ロキシα−メチルスチレン)などのアルカリ可溶性樹脂
とベンゼンスルホン酸、0−2m−、p−各トルエンス
ルホン酸、o −、m−。
That is, alkali-soluble resins such as phenol novolac resin, Talezol novolac resin, polyvinyl phenol, poly[p-hydroxy α-methylstyrene] and benzenesulfonic acid, 0-2m-, p-toluenesulfonic acid, o-, m- −.

p −各種メトキシ、エトキシ等のアルコキシヘンゼン
スルホン酸、αおよびβ−ナフタリンスルホン酸などの
芳香族スルホン酸とのエステル化物で構成されるレジス
トにより耐ドライエツチング性が実現されている。
Dry etching resistance has been achieved by resists composed of esters of alkoxyhenzenesulfonic acids such as p-methoxy and ethoxy, and aromatic sulfonic acids such as α and β-naphthalenesulfonic acids.

ここで代表例としてポリビニールフェノールとp−トル
エンスルホン酸とのエステル化物であるポリビニルフェ
ノールトルエンスルホン酸エステル(以下略称VTE)
について説明すると次のようになる。
Here, as a representative example, polyvinylphenol toluenesulfonic acid ester (hereinafter abbreviated as VTE) is an esterified product of polyvinylphenol and p-toluenesulfonic acid.
The explanation is as follows.

図はVTRに電子線照射を行った場合の分解反応を示す
ものであり、VTRは多数のビニールフェノール分子が
直線状に配列して主鎖が構成されており、このフェニー
ル基とトルエンスルホン酸の水素基とが結合して側鎖が
形成されている。
The figure shows the decomposition reaction when a VTR is irradiated with an electron beam.The main chain of a VTR is composed of a large number of vinyl phenol molecules arranged in a straight line, and this phenyl group and toluenesulfonic acid A side chain is formed by bonding with a hydrogen group.

かかるVTRに電子線が照射されるとVTRはポリビニ
ルフェノールとトルエンスルホン酸とのエステル結合部
で分解し、これが現像液を構成する水と反応してヒドロ
キシ基(−011)をもつポリビニールフェノールとス
ルホン酸基(−S03Fl) ヲもつトルエンスルホン
酸に分解してアルカリ現像液に可溶となり、ポジ型レジ
ストの特性を示すようになる。
When such a VTR is irradiated with an electron beam, the VTR decomposes at the ester bond between polyvinylphenol and toluene sulfonic acid, and this reacts with water constituting the developer to form polyvinylphenol with a hydroxyl group (-011). It decomposes into toluenesulfonic acid having a sulfonic acid group (-S03Fl), becomes soluble in an alkaline developer, and exhibits the characteristics of a positive resist.

このような構成をとることにより、VTRは従来のPM
MAやPBSに較べ耐ドライエツチング性が改良されて
いる。
By adopting such a configuration, the VTR can be used as a conventional PM
Dry etching resistance is improved compared to MA and PBS.

本発明は係るVTEについ゛て更に感度と解像性を改良
するもので、これはエステル化度と分子量分布を狭める
ことにより実現することができる。
The present invention further improves the sensitivity and resolution of such VTE, which can be achieved by narrowing the degree of esterification and the molecular weight distribution.

すなわち発明者等はアルカリ可溶性の樹脂と芳香族スル
ホン酸とのエステル化物からなるポジ型レジストを用い
て微細パターン実現の研究を行っている段階でエステル
化と分子量分布を限定すると解像性のみならず感度も上
昇しうろことを見いだした。
In other words, when the inventors were conducting research on realizing fine patterns using a positive resist made of an ester of an alkali-soluble resin and an aromatic sulfonic acid, it was found that limiting the esterification and molecular weight distribution could only improve resolution. They found that the sensitivity also increased.

この方法は製造過程における分別沈澱法により行うこと
ができる。
This method can be carried out by a fractional precipitation method during the manufacturing process.

以下代表例としてV T Eをとり本発明を説明する。The present invention will be explained below by taking VTE as a representative example.

(f>発明の実施例 実施例1 ポリビニールフェノール(重量平均分子19000)6
gとp−)ルエンスルホニルクロIJF10[トを50
gのテトラヒドロフランに熔解し、40℃にて撹拌しな
がら脱水ピリジン10gを30分を要して滴下した。そ
して4時間に互って攪拌を続けた後、反応液を1リツト
ルの脱イオン水に投入し、生じた沈澱を脱イオン水を用
いて洗浄した後、吸引濾過して乾燥してVTRを得た。
(f> Examples of the invention Example 1 Polyvinylphenol (weight average molecular weight 19000) 6
g and p-) luenesulfonylchloride IJF10 [50
g of tetrahydrofuran, and 10 g of dehydrated pyridine was added dropwise over 30 minutes while stirring at 40°C. After continuous stirring for 4 hours, the reaction solution was poured into 1 liter of deionized water, and the resulting precipitate was washed with deionized water, filtered with suction, and dried to obtain a VTR. Ta.

次ぎに分別法としては、得られた沈澱を2−ブタノンに
溶解した後、イソプロピルアルコール(以下略してIP
A)を白濁が生じるまで添加し、60℃にて20分間加
温し、−昼夜放置する。
Next, as a fractionation method, after dissolving the obtained precipitate in 2-butanone, isopropyl alcohol (hereinafter abbreviated as IP
A) is added until cloudiness occurs, heated at 60° C. for 20 minutes, and left to stand overnight.

液は2層に分離するので上層を傾斜法で分取し、再度S
PAを白濁が生じるまで添加する。
The liquid separates into two layers, so the upper layer is separated using the decanting method and S
Add PA until cloudiness occurs.

次ぎに60℃にて20分間にわたって加熱した後、−昼
夜放置して2層に分離した下層を傾斜法を用いて分取し
、これを1.4−ジオキサンに溶解して凍結乾燥法によ
り乾燥する。
Next, after heating at 60°C for 20 minutes, the lower layer was separated into two layers by standing for day and night. The lower layer was separated using a decanting method, dissolved in 1,4-dioxane, and dried by freeze-drying. do.

次に得られた粉末をシクロヘキサノンに溶解してレジス
ト液が作られる。
Next, a resist solution is prepared by dissolving the obtained powder in cyclohexanone.

このようにして分別したレジスト液のエステル化度の分
散は0.98であり、また分散度は1.25であった。
The dispersion of the degree of esterification of the resist solution thus separated was 0.98, and the degree of dispersion was 1.25.

次ぎにかかるレジスト液の特性評価の方法として、予め
シランカップリング剤を塗布し乾燥したSi基板の上に
レジスト液をスピンコード法で塗布し、窒素気流中で1
00℃で30分にわたって加熱してレジスト膜を形成す
る。
Next, as a method for evaluating the characteristics of the resist solution, the resist solution was coated with a silane coupling agent in advance and dried on a Si substrate using a spin code method, and then
A resist film is formed by heating at 00° C. for 30 minutes.

これに加速電圧20KVの条件で電子線の照射を行い、
IPA現像液で現像してレジストパターンを得ることが
できる。
This was irradiated with an electron beam at an accelerating voltage of 20 KV,
A resist pattern can be obtained by developing with an IPA developer.

この場合の感度は20μc/cflIであり、また1μ
mのラインアンドスペースを解像することができ、従来
法による場合の感度lOμc/dで1.5μmのライン
アンドスペースの解像性と較べて改良されていることが
判る。
The sensitivity in this case is 20 μc/cflI, and 1 μc/cflI.
It can be seen that it is possible to resolve a line and space of 1.5 μm at a sensitivity of 10 μc/d using the conventional method, which is improved compared to the resolution of a line and space of 1.5 μm.

実施例2 重量平均分子量9000のポリビニールフェノール6g
とp−トルエンスルホニルクロリド7gとを50gのテ
トラヒドロフランに溶解し、以後実施例1と同様にして
VTRを作り、IPAを良溶媒、水を貧溶媒として分別
沈澱法で実施例1と同様にして分別してエステル化度と
分子量分布の中間部分を採取した。
Example 2 6g of polyvinylphenol with a weight average molecular weight of 9000
and 7 g of p-toluenesulfonyl chloride were dissolved in 50 g of tetrahydrofuran. Thereafter, a VTR was prepared in the same manner as in Example 1, and fractionated in the same manner as in Example 1 by fractional precipitation using IPA as a good solvent and water as a poor solvent. Separately, the intermediate portion of the esterification degree and molecular weight distribution was collected.

ここでエステル化度の分散は0.98であり、また分散
度は1.25であった。
Here, the dispersion of the degree of esterification was 0.98, and the degree of dispersion was 1.25.

次ぎに実施例1と同様にしてレジスト液の調整とレジス
ト膜の形成および電子線露光を行い、現像液としてシソ
プレ社製マイクロポジットM F −312を用い12
0秒間にわたってレジスト膜を浸漬して現像し、脱イオ
ン水を使用してリンス処理を行った。
Next, in the same manner as in Example 1, a resist solution was adjusted, a resist film was formed, and electron beam exposure was performed, and Microposite MF-312 manufactured by Sisopre Co., Ltd. was used as a developer.
The resist film was developed by immersion for 0 seconds and rinsed using deionized water.

この場合の感度は30μ(/ Caであり、また1μm
のラインアンドスペースを解像することができた。
The sensitivity in this case is 30 μ(/Ca, and 1 μm
was able to resolve lines and spaces.

(g)発明の詳細 な説明したように本発明は耐ドライエツチング性の優れ
ているVTRについて感度と解像性を改良するもので、
本発明の実施により半導体ICなどの微細パターンの形
成が容易となる。
(g) Detailed Description of the Invention As described above, the present invention improves the sensitivity and resolution of a VTR with excellent dry etching resistance.
Implementation of the present invention facilitates the formation of fine patterns for semiconductor ICs and the like.

【図面の簡単な説明】[Brief explanation of drawings]

図はVTRの電子線照射による分解反応である。 しFj3 The figure shows a decomposition reaction caused by VTR electron beam irradiation. ShiFj3

Claims (1)

【特許請求の範囲】[Claims] アルカリ可溶性樹脂と芳香族スルポン酸とのエステル化
物からなるポジ型電子線レジストを製造するに際し、分
別沈澱法により、生成物のエステル化度と分子量分布と
を限定してなることを特徴とするポジ型レジスト組成物
When producing a positive electron beam resist made of an esterified product of an alkali-soluble resin and an aromatic sulfonic acid, the positive electron beam resist is characterized in that the degree of esterification and molecular weight distribution of the product are limited by a fractional precipitation method. Type resist composition.
JP59086632A 1984-04-28 1984-04-28 Positive type resist composition Pending JPS60230136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59086632A JPS60230136A (en) 1984-04-28 1984-04-28 Positive type resist composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59086632A JPS60230136A (en) 1984-04-28 1984-04-28 Positive type resist composition

Publications (1)

Publication Number Publication Date
JPS60230136A true JPS60230136A (en) 1985-11-15

Family

ID=13892399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59086632A Pending JPS60230136A (en) 1984-04-28 1984-04-28 Positive type resist composition

Country Status (1)

Country Link
JP (1) JPS60230136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514520A (en) * 1995-03-16 1996-05-07 Shipley Company, L.L.C. Radiation sensitive composition comprising polymer having inert blocking groups
US6063545A (en) * 1991-04-20 2000-05-16 Clariant Gmbh Negative-working radiation-sensitive mixture, and radiation-sensitive recording material produced with this mixture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063545A (en) * 1991-04-20 2000-05-16 Clariant Gmbh Negative-working radiation-sensitive mixture, and radiation-sensitive recording material produced with this mixture
US5514520A (en) * 1995-03-16 1996-05-07 Shipley Company, L.L.C. Radiation sensitive composition comprising polymer having inert blocking groups

Similar Documents

Publication Publication Date Title
US4396704A (en) Solid state devices produced by organometallic plasma developed resists
EP0130338B1 (en) Resist structure and processes for making and patterning it
EP0185030B1 (en) Bilevel resist
EP1315044B1 (en) Resist composition and method for manufacturing a semiconductor device using the resist composition
JPS60229026A (en) Manufacture of electronic device
EP0350873B1 (en) Method for forming pattern and method for making semiconductor device
CA1219686A (en) Process for making semiconductor devices using photosensitive bodies
US5153103A (en) Resist composition and pattern formation process
EP0395426B1 (en) Method of forming pattern by using an electroconductive composition
US4666820A (en) Photosensitive element comprising a substrate and an alkaline soluble mixture
JPH02115853A (en) Manufacturing method of semiconductor device
US5326670A (en) Process for forming resist pattern
JPS60230136A (en) Positive type resist composition
JPS5835527B2 (en) electrofunctional resin
US5306601A (en) Fine pattern forming material and pattern forming method
US4935094A (en) Negative resist with oxygen plasma resistance
US4237208A (en) Silane electron beam resists
US4500628A (en) Process of making solid state devices using silicon containing organometallic plasma developed resists
JPH0661138A (en) Substrate having resist of two-layer structure and manufacture thereof
JP2516968B2 (en) Flattening material for two-layer electron beam resist
EP0348961A2 (en) Fine pattern forming material and pattern forming method
JP2555657B2 (en) Lower layer resist for two-layer electron beam resist
JPS6256947A (en) Composition for flattened layer for resist having two-layered structure
JPS62269950A (en) Manufacture of device
JPS62113135A (en) Resist composition