[go: up one dir, main page]

JPS60229291A - Forming method of magnetic bubble transfer path - Google Patents

Forming method of magnetic bubble transfer path

Info

Publication number
JPS60229291A
JPS60229291A JP8525184A JP8525184A JPS60229291A JP S60229291 A JPS60229291 A JP S60229291A JP 8525184 A JP8525184 A JP 8525184A JP 8525184 A JP8525184 A JP 8525184A JP S60229291 A JPS60229291 A JP S60229291A
Authority
JP
Japan
Prior art keywords
transfer path
magnetic
temperature
ions
magnetic bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8525184A
Other languages
Japanese (ja)
Inventor
Hisao Matsudera
久雄 松寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8525184A priority Critical patent/JPS60229291A/en
Publication of JPS60229291A publication Critical patent/JPS60229291A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To form a magnetic bubble transfer path having a sufficiently large difference (DELTAHk) between anisotropic magnetic fields of non-implantation area and an implantation area and an excellent temperature characteristic by implanting ions and again implanting them after annealing at a prescribed temperature. CONSTITUTION:After a mask for shielding the ion implantation is formed on a magnetic garnet monocrystal film, ions are implanted for forming a magnetic bubble transfer path. When the path is annealed at 600 deg.C or above, the lattice distortion caused by the ion implantation returns to a small value, while Curie temperature returns to an approximately original temperature. On the other hand a magnetic anisotropic constant value will not return to its original value but becomes smaller. When a small amount of ions are implanted under this condition on the outer circumference of the transfer path to the extent where the difference is produced in the inner surface direction of anisotropy, the magnetic bubble transfer path can be formed which has a slight decrease in the Curie temperature, a sufficiently large DELTAHk and excellent transfer and temperature characteristics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気バブル素子、なかんずく、イオン注入Kx
!ll磁気バブルの転送路を設ける磁気バブル素子の転
送路形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a magnetic bubble element, particularly an ion-implanted Kx
! The present invention relates to a method for forming a transfer path for a magnetic bubble element, which provides a transfer path for magnetic bubbles.

(従来技術とその問題点) 近年、高密度の記憶容量をもつ同体ファイルメモリとし
てイオン注入方式磁気バブル素子の開発がすすめられて
いる。
(Prior art and its problems) In recent years, the development of ion-implanted magnetic bubble elements has been progressing as an all-in-one file memory with high-density storage capacity.

イオン注入方式磁気バブル素子のドライブNtK必要と
される特性は、該層内の磁化を面内に倒しうるように該
層内の一軸磁気異方性定数値が負になり、その下部の非
注入領域との異方性磁界の差ΔHkが充分大きいことで
ある。
The characteristics required for the drive NtK of the ion-implanted magnetic bubble element are that the uniaxial magnetic anisotropy constant value in the layer is negative so that the magnetization in the layer can be tilted in-plane, and the non-implanted region below The difference ΔHk between the anisotropic magnetic fields is sufficiently large.

従来、本素子ではへ)(kはイオン注入による格子歪か
ら研歪効果を利用して得ている。
Conventionally, in this device, k is obtained by utilizing the grinding strain effect from the lattice strain caused by ion implantation.

従来、第1図のように磁気バブル転送路として非磁性ガ
ーネット基板の上に成長した磁性ガーネシト単結晶薄範
上に典型的な形状として数珠玉状の注入イオン遮蔽のた
めのマスクパターン1を形成したうえからイオン注入す
ることにより、イオン注入層2を形成し数珠玉状の非注
入領域3の外(Il+填、界に沿って磁気バブルが転送
する磁気バブル転送路を形成している。
Conventionally, as shown in Fig. 1, a mask pattern 1 for shielding implanted ions having a typical bead shape was formed on a magnetic garnet single crystal thin layer grown on a non-magnetic garnet substrate as a magnetic bubble transfer path. By implanting ions from above, an ion-implanted layer 2 is formed, and a magnetic bubble transfer path is formed in which magnetic bubbles are transferred along the Il+ field outside the bead-shaped non-implanted region 3.

このイオン注入工程では、注入イオンとして、水素、ヘ
リウム、ネオンイオ渇:主に検討されているが充分大負
な、Δ)(kを得るために、その注入iは水素イオンの
場合は’l X 10”/Cl11から4×10′6/
cd の注入量が、一方ヘリウムあるいViAtンイオ
々用いる場合は各々、4×lO′s/C1dから5X1
0”/c11、及びl x IQ ′4/adから2x
lQ14/c++!必要とされている。
In this ion implantation process, the implanted ions are hydrogen, helium, and neon ions.In order to obtain Δ)(k, which is mainly studied but has a sufficiently large negative value, if the implantation i is a hydrogen ion, 'lX 10”/Cl11 to 4×10’6/
On the other hand, when using helium or ViAt ion, the amount of cd implanted varies from 4×1O's/C1d to 5×1
0”/c11, and 2x from l x IQ '4/ad
lQ14/c++! is necessary.

水素注入の場合は注入量が大きいため、製造のコストが
大きい。
In the case of hydrogen injection, the amount of injection is large, so the manufacturing cost is high.

いずれの場合もイオン注入工程によってイオン注入層(
ドライブ層と以下では称す)のキュリ一温度は#1ぼ歪
量に応じて低下し、注入量を多くし、歪を大きくし、磁
気異方性の変化を大きくする程キュリ一温度の低下は大
きくなり、素子動作が良好なように磁気異方性の変化を
生じさせるために必要な注入量の注入を行なうと、50
℃から100℃程度キュリ一温度の低下が生じ、素子温
#特性を劣化させる問題があった。
In either case, the ion implantation process results in an ion implantation layer (
The Curie temperature of the drive layer (hereinafter referred to as the drive layer) decreases according to the amount of #1 strain, and as the amount of implantation increases, the strain increases, and the change in magnetic anisotropy increases When implanted at the dose necessary to cause a change in magnetic anisotropy for good device operation,
There was a problem in that the Curie temperature decreased by about 100° C. and the device temperature characteristics deteriorated.

(発明の目的) 本発明けこのような点に鑑みてなされたものでその目的
は充分大きなΔHk含有し、かつ良好な温度特性を有す
る磁気バブル転送路形成方法を提供するKある。
(Object of the Invention) The present invention has been made in view of the above points, and the object thereof is to provide a method for forming a magnetic bubble transfer path having a sufficiently large ΔHk content and good temperature characteristics.

(発明の構成) 即ち本発明Fia性ガーネット単結晶薄膜士にイオン注
入すること罠より形成する磁気バブル転送路の形成方法
において、該磁性ゾメーネット単結晶薄膜上に、注入イ
オンを遮蔽する数珠玉状のマスクパターンを形成したの
ち、イオン注入し、600℃以上の温度でアニールした
のち、再びイオン注入注入する工程を含むことを特徴と
するS気ノ()。
(Structure of the Invention) That is, in the method of forming a magnetic bubble transfer path formed by ion implantation into a Fia garnet single crystal thin film according to the present invention, bead-shaped beads are placed on the magnetic zomenet single crystal thin film to shield implanted ions. S keno() is characterized in that it includes a step of forming a mask pattern, implanting ions, annealing at a temperature of 600° C. or higher, and then implanting ions again.

ル転送路形成方法である。This is a method for forming a transfer path.

(本発明の概要) 本発明ではイオン注入方式磁気バブル素子のドライブ層
のキュリ一温度の低下を抑制するためにドライブ層とし
て必要とされる、負の一軸異方性を得石ために、従来の
ようにそれ&専らイオン注入による歪誘導研気異方性に
よるのでは々く、その一部を磁性ガーネット膜が有して
いる正の成長誘導磁気異方性を抑制することにより達成
する。
(Summary of the present invention) In the present invention, in order to obtain the negative uniaxial anisotropy required for the drive layer in order to suppress the drop in the Curie temperature of the drive layer of the ion-implanted magnetic bubble element, As shown in FIG. 2, this is achieved by suppressing the positive growth-induced magnetic anisotropy that the magnetic garnet film has, although it is largely due to the strain-induced abrasive anisotropy caused by ion implantation.

即ち、転送路形成用マスクを形成したのち、正成長誘導
磁気異方性を抑制するために、イオン注入し、その後少
くとも600℃以上の温度でアニールし、このイオン注
入工程で生じた格子歪量fOチないし、小さい量に戻す
ことKより、キュリ一温度も注入前のキュリ一温度ない
し、それに近い温度に戻る。しかしながら、磁気異方性
のみはアニールによっても元に戻らず磁気異方性定数値
は小さくなる。これは注入によって、注入層内の格子が
乱された結果、成長誘導磁気異方性が抑制されたためで
ある。
That is, after forming a mask for forming a transfer path, ions are implanted in order to suppress positive growth induced magnetic anisotropy, and then annealing is performed at a temperature of at least 600°C to remove lattice strain caused by this ion implantation process. By returning the amount fO to a small amount, the Curie temperature returns to the Curie temperature before injection, or to a temperature close to it. However, only the magnetic anisotropy does not return to its original state even after annealing, and the magnetic anisotropy constant value decreases. This is because the growth-induced magnetic anisotropy was suppressed as a result of the injection disturbing the lattice within the injection layer.

この工程の後、再びイオン注入を行なう。これは前工程
で磁気異方性が小さくなっており磁気バブル転送路の外
周上に磁気異方性の面内方向l(よる差を生じさせるに
充分な量でよく、したがって注入による歪によるキュリ
一温度の低下の程度は従来に比べ小さいため、素子温度
特性の向上が図れる。
After this step, ion implantation is performed again. This is due to the fact that the magnetic anisotropy has been reduced in the previous process, and the amount required is sufficient to cause a difference in the magnetic anisotropy in the in-plane direction l (L) on the outer periphery of the magnetic bubble transfer path. Since the degree of decrease in temperature is smaller than in the past, the element temperature characteristics can be improved.

(実施例) 以下では本発明を実施例により更に詳細に説明する。(Example) The present invention will be explained in more detail below with reference to Examples.

GGG基板上に液相法で成長した負の磁歪定数をもつi
性ガーネ、ト膜(YSmLuCaBi ) s (Fe
te) sO□ (膜厚1.27Am、特性長1=0.
12ttm、p和磁束密度6soGauss、 Ku 
46000 erg/d。
i with negative magnetostriction constant grown by liquid phase method on GGG substrate
YSmLuCaBi s (Fe
te) sO□ (film thickness 1.27 Am, characteristic length 1=0.
12ttm, p sum magnetic flux density 6soGauss, Ku
46000 erg/d.

λ+l+1 =>2.s x 10″)上に数珠玉状の
周期4μmのバブル転送路形成用マスクをプラズマCV
DKより厚さ1μmのSin、を用い形成したのち、ネ
オンイオンを加速エネルギー200KeV、ドーズ量5
 x 10”/i及び加速エネルギー80KeVドーズ
量1.33 X 10 ” /C1/I で注入した後
、空気中、1000℃で1時間アニールした後ヘリ内ム
イオンを加速エネルギー】00Ke■22×】OI5/
ml 及び加速エネルギー40KeVドーズ貴1.OX
 10 /7注入したのち空気中300℃で1時間アニ
ールして磁気バブル転送路を形成した。
λ+l+1 =>2. Plasma CV
After forming DK using 1 μm thick Sin, neon ions were accelerated at 200 KeV and at a dose of 5.
x 10"/i and acceleration energy 80KeV dose 1.33 /
ml and acceleration energy at a dose of 40 KeV 1. OX
After injecting 10/7, it was annealed in air at 300° C. for 1 hour to form a magnetic bubble transfer path.

本実施例では転送路形成用マスクとして5iO−を使用
したが、これはアルミナ等高融点の物質であれば本発明
の効果はかわらない。
In this embodiment, 5iO- was used as the mask for forming the transfer path, but the effects of the present invention will remain the same if it is a material with a high melting point such as alumina.

比較例として、実施例と同一特性の礎性ガーネツト膜上
に厚さ5000Aの金により転送路形成用マスクを形成
したのち、ヘリウム、イオンを加速エネルギー100K
eV、ドーズ量47 ×10” / cI 。
As a comparative example, a transfer path forming mask was formed using gold with a thickness of 5000A on a basic garnet film having the same characteristics as the example, and then helium and ions were accelerated at an energy of 100K.
eV, dose 47 × 10”/cI.

及び加速エネルギー40KcV 、ドーズ量2.2 X
IO’/cdで注入したのち、空気中300℃で1時間
アニールしてバブル転送路を形成した。
and acceleration energy 40KcV, dose amount 2.2X
After implantation at IO'/cd, it was annealed in air at 300° C. for 1 hour to form a bubble transfer path.

本実施例による磁気バブル転送特性は、常温においては
既知の磁気バブル転送路形成方法によって形成した転送
路(比較例)の転送特性と同程度のものが得られ、△H
kは比較例が26000eTあるのに対し本宙施例け2
9000e得られた。しかも、比較例のドライブ層のキ
ュリ一温度が145℃であるのKくらべ、本発明の実施
例のドライブ島のキュリ一温度は168℃と高かった。
The magnetic bubble transfer characteristics according to this example are comparable to those of a transfer path (comparative example) formed by a known magnetic bubble transfer path formation method at room temperature, and △H
k is 26,000eT in the comparative example, whereas this example is 26,000eT.
9000e was obtained. Moreover, the Curie temperature of the drive layer of the comparative example was 145°C, whereas the Curie temperature of the drive island of the example of the present invention was as high as 168°C.

ネオン注入工程後のアニール工程を実施例の1000℃
以外でも行った結果アニール温度が低くてもΔ)lkの
増加の効果はあり、1000℃アニールの場合より大き
かった。キュリ一温度は若干低いが比較例よりは大きい
The annealing process after the neon implantation process was performed at 1000°C as in the example.
As a result of conducting the annealing process at other temperatures, the effect of increasing Δ)lk was found even when the annealing temperature was low, which was greater than in the case of 1000° C. annealing. Curie temperature is slightly lower, but higher than the comparative example.

但し、600℃より低い温度であると結晶性が劣化する
ことがあった。l (100℃以上でも△I−1k増加
の効果けみられ、キュリ一温度は−Jl、 M6例以上
の高い温度となり180℃を越える。
However, if the temperature was lower than 600° C., the crystallinity sometimes deteriorated. (Even above 100°C, the effect of increasing △I-1k can be seen, and the Curie temperature becomes -Jl, a temperature higher than M6 cases, exceeding 180°C.

1050℃以上ではバブル膜特性が変化するが、この場
合はアニールによるバブル膜特性の変化を考燻して、は
じめのバブル膜を用いれば問題はない。
At 1050° C. or higher, the bubble film properties change, but in this case, there is no problem if the original bubble film is used, taking into account the change in bubble film properties due to annealing.

又、本実施例の加速エネルギー200Ke V及び80
KeVのネオン注入工程のかわりに、■加速x ネ/L
/ギー2ooKeV、ドーズ量9 X 10”/d及び
加速エネルギー80 K、 e V 、ドーズ量、3.
8 X to14/dのチツ素イオンを注入する工程を
行ない磁気バブル転送路を形成した。
Moreover, the acceleration energy of this example is 200Ke V and 80
Instead of KeV neon injection process, ■ Acceleration x Ne/L
/Gee 2ooKeV, dose 9 x 10"/d and acceleration energy 80 K, eV, dose, 3.
A step of implanting 8×to14/d nitrogen ions was performed to form a magnetic bubble transfer path.

又、■加速エネルギー70KeV 、ドーズ量、1 x
 In 17/crI及び加速エネルギー35KeV、
ドーズ量4.5 X 10”/dの水素分子イオンを注
入する工程を行ない磁気バブル転送路を形成した。
Also, ■ acceleration energy 70KeV, dose amount, 1 x
In 17/crI and acceleration energy 35KeV,
A magnetic bubble transfer path was formed by implanting hydrogen molecule ions at a dose of 4.5 x 10''/d.

このように、ネオン注入の工程を各々、チッ素及び水素
イオン注入で置きかえた転送路形成方法に於てもΔHk
[ネオン注入の場合と同程度の値が得らhl、キュリ一
温度の低下もネオン注入の場合と同程度であった。
In this way, even in the transfer path formation method in which the neon implantation step is replaced with nitrogen and hydrogen ion implantation, ΔHk
[A value similar to that obtained with neon injection was obtained, and the decrease in Curie temperature was also similar to that obtained with neon injection.

このように、イオン種はネオン、水素、チッ素の他ヘリ
ウム、ホ゛ロン等イオン種によらず同じ効果がある。
In this way, the effect is the same regardless of the ionic species, such as neon, hydrogen, nitrogen, helium, and phoron.

又、本実施例のヘリウム注入工程のかわりに、水素注入
工程あるいはネオン注入工程を行なっても本発明の効果
が得られることはあきらかである。
Furthermore, it is clear that the effects of the present invention can be obtained even if a hydrogen injection process or a neon injection process is performed instead of the helium injection process of this embodiment.

このように本発明e〔よってキュリ一温度が高く温度特
性が良好かつ、八Hkが大きく転送特性が良好な磁気バ
ブル転送路を捉供することができ、磁気バブル素子製造
上益する所非常に大きい。
As described above, the present invention can provide a magnetic bubble transfer path which has a high Curie temperature and good temperature characteristics, a large Hk and a good transfer characteristic, and has great advantages in manufacturing magnetic bubble elements. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気バブル転送路の形状を示す図である。 l 注入マスクパターン 2 イオン注入ドライブ層 3 非注入領域 71 図 手続補正書(自発) 59.11.〜5 昭和 年 、S褒状 日 特許庁長官 殿 1、事褌の表示 昭和59年椅評 願第085251号
2、り朗の名称 磁気バブル転送路形成方法3、補正を
する者 事件との関係 出 願 人 東京都港区芝五丁目33番1号 4、代理人 5、補正の対象 明細叫の発明の詳細な説明の欄 64 補正の内容 明細書第9頁第5行目〜第7行目に 「又、本実施例のヘリウム注入工程のかわりに、水素注
入工程あるいはネオン注入工程を行なっても本発明の効
果が得られることはあきらかである。」とあるのを [又、本実施例のヘリウム注入工程のかわりに、たとえ
ば水素イオンを加速エネルギー80 keVl、 3 
X 101/d及び加速エネルギー40 key。 6 X 10”/7注入した工程でおきかえても同様な
効果が得られる。このように本実施例のヘリウム注入工
程のかわりに他のイオン、即ち水素イオン注入工程、あ
るいは、ネオン注入工程を行なっても本発明の効果が得
られることはあきらかである。]と補正する。
FIG. 1 is a diagram showing the shape of a magnetic bubble transfer path. l Implantation mask pattern 2 Ion implantation drive layer 3 Non-implantation region 71 Drawing procedure amendment (voluntary) 59.11. 〜5 Showa year, S commendation, Japan Patent Office Commissioner 1, Indication of matter 1985 Chair review, Application No. 085251 2, Name of Rirou, Magnetic bubble transfer path formation method 3, Relationship with the case of the person making the amendment Applicant: 5-33-1-4 Shiba, Minato-ku, Tokyo, Agent 5, Detailed explanation of the invention claimed in the specification subject to amendment, column 64, Statement of contents of amendment, page 9, lines 5 to 7 ``Also, it is clear that the effects of the present invention can be obtained even if a hydrogen injection step or a neon injection step is performed instead of the helium injection step of this embodiment.'' Instead of the helium implantation step, for example, hydrogen ions can be accelerated with an energy of 80 keVl, 3
X 101/d and acceleration energy 40 keys. A similar effect can be obtained by replacing the helium implantation step with the 6×10”/7 implantation step.In this way, instead of the helium implantation step in this embodiment, other ion implantation steps, such as a hydrogen ion implantation step or a neon implantation step, are performed. It is clear that the effects of the present invention can be obtained even if

Claims (1)

【特許請求の範囲】[Claims] 磁性ガーネット単結晶薄膨上にイオン注入することKよ
り形成する磁気バブル転送路の形成方法において、磁性
ガーネット単結晶薄膜上に、注入イオンを遮蔽するマス
クパターンを形成したのちイオン注入し、600℃以上
の温度でアニールしたのち、再びイオン注入する工程を
含むことを特徴とする磁気バブル転送路形成方法。
In the method for forming a magnetic bubble transfer path formed by ion implantation onto a thin expanded magnetic garnet single crystal, a mask pattern is formed on the magnetic garnet single crystal thin film to shield implanted ions, and then the ions are implanted at 600°C. A method for forming a magnetic bubble transfer path comprising the step of annealing at a temperature above and then implanting ions again.
JP8525184A 1984-04-27 1984-04-27 Forming method of magnetic bubble transfer path Pending JPS60229291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8525184A JPS60229291A (en) 1984-04-27 1984-04-27 Forming method of magnetic bubble transfer path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8525184A JPS60229291A (en) 1984-04-27 1984-04-27 Forming method of magnetic bubble transfer path

Publications (1)

Publication Number Publication Date
JPS60229291A true JPS60229291A (en) 1985-11-14

Family

ID=13853348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8525184A Pending JPS60229291A (en) 1984-04-27 1984-04-27 Forming method of magnetic bubble transfer path

Country Status (1)

Country Link
JP (1) JPS60229291A (en)

Similar Documents

Publication Publication Date Title
US4460412A (en) Method of making magnetic bubble memory device by implanting hydrogen ions and annealing
JPS6129127B2 (en)
JPS60229291A (en) Forming method of magnetic bubble transfer path
US3932688A (en) Composite magnetic film
US4556582A (en) Method of fabricating magnetic bubble memory device
JPS58142510A (en) Manufacture of magnetic bubble element
EP0091122B1 (en) Magneto-optical recording medium
US3946372A (en) Characteristic temperature-derived hard bubble suppression
US3420756A (en) Process for producing a ferromagnetic thin film
US4532180A (en) Garnet film for ion-implanted magnetic bubble device
JPS60229293A (en) Forming method of magnetic bubble transfer path
EP0139556B1 (en) Process for producing ion implanted bubble device
JPS6242390A (en) Induced anisotropy magnetic field enhancement method
JPS60241211A (en) Forming method of transfer path for magnetic bubble
JPS58111119A (en) Thin film magnetic head
JPS62107494A (en) Ion implantation magnetic bubble element
JPS6132470A (en) Manufacture of mos type semiconductor device
JPS58141492A (en) Magnetic bubble element
JPS58111118A (en) Thin film magnetic head
JPS6117065B2 (en)
JPS59127292A (en) Ion implantation type magnetic bubble memory element
JPS61187305A (en) Garnet film for ion implantation type magnetic bubble element
JPS59175087A (en) How to make a magnetic bubble memory element
JPH03230342A (en) magneto-optical recording medium
JPS5819789A (en) Bubble magnetic domain element