[go: up one dir, main page]

JPS60228929A - Converter condition observing apparatus - Google Patents

Converter condition observing apparatus

Info

Publication number
JPS60228929A
JPS60228929A JP59084114A JP8411484A JPS60228929A JP S60228929 A JPS60228929 A JP S60228929A JP 59084114 A JP59084114 A JP 59084114A JP 8411484 A JP8411484 A JP 8411484A JP S60228929 A JPS60228929 A JP S60228929A
Authority
JP
Japan
Prior art keywords
slag
converter
furnace
detection device
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59084114A
Other languages
Japanese (ja)
Inventor
Keiji Arima
有馬 慶治
Yujiro Ueda
裕二郎 上田
Toru Yoshida
透 吉田
Yutaka Narita
裕 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59084114A priority Critical patent/JPS60228929A/en
Priority to AU32558/84A priority patent/AU558925B2/en
Priority to ZA846914A priority patent/ZA846914B/en
Priority to EP84110571A priority patent/EP0162949B1/en
Priority to DE8484110571T priority patent/DE3468127D1/en
Priority to CA000462485A priority patent/CA1250356A/en
Priority to ES535715A priority patent/ES8602953A1/en
Priority to BR8404496A priority patent/BR8404496A/en
Publication of JPS60228929A publication Critical patent/JPS60228929A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • G01J5/004Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/047Mobile mounting; Scanning arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • G01J5/051Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path using a gas purge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0859Sighting arrangements, e.g. cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0893Arrangements to attach devices to a pyrometer, i.e. attaching an optical interface; Spatial relative arrangement of optical elements, e.g. folded beam path

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Radiation Pyrometers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は転炉を用いた鉄鋼精錬において、転炉内の状況
を直接観測する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an apparatus for directly observing conditions inside a converter in steel refining using a converter.

従来技術 転炉における溶銑・溶鋼の精錬は、転炉の炉口から炉内
に挿入されたランスより噴出させる純酸素ガスを溶鋼に
吹付けて溶鋼を攪拌しつへ脱炭し、さらに転炉内に投入
された造滓剤により滓化生成する溶融スラグとの反応に
より脱燐脱硫等を行うものであるが、この滓化の過程で
スラグ組成、粘性、スラグ中の酸素量等の諸条件により
スラグがフォーミング化し、これが過度に進行するとス
ラグさらには溶鋼までも炉口より浴出するいわゆるスロ
ッピングが発生することがある。このスロッピングが発
生すると、溶鋼成分、製鋼歩留り等に大きな影響を与え
ると共に、作業効率の低下、回収ガスのカロリー低下、
赤煙の発生などの作業環境の悪化、装置の損傷など、種
、々の問題を惹起する。したがってスロッピングの発生
を極力抑制する必要がある。
Conventional technology Refining of hot metal and molten steel in a converter involves spraying pure oxygen gas onto the molten steel from a lance inserted into the furnace from the mouth of the converter to agitate and decarburize the molten steel. Dephosphorization and desulfurization are carried out through a reaction with the molten slag that is formed into slag by the slag-forming agent introduced into the slag, but during this slag formation process, various conditions such as slag composition, viscosity, and oxygen content in the slag are This causes the slag to form, and if this progresses excessively, so-called slopping may occur, in which slag and even molten steel come out from the furnace mouth. When this slopping occurs, it has a major impact on the molten steel composition, steel production yield, etc., and also reduces work efficiency, reduces the calories in the recovered gas, and
This causes various problems such as deterioration of the working environment such as the generation of red smoke and damage to equipment. Therefore, it is necessary to suppress the occurrence of slopping as much as possible.

したがって転炉炉内の状況をいち早く予測し、スロッピ
ングの発生を防止するなど適正な転炉操業を行う必要が
あり、転炉炉況の把握のため、従来種々の提案が行われ
ている。
Therefore, it is necessary to quickly predict the situation inside the converter furnace and perform appropriate converter operation such as preventing the occurrence of slopping, and various proposals have been made in the past to understand the condition of the converter furnace.

すなわち、特開昭52−101818号においては、転
炉製鋼法において吹錬中の排ガス情報をもとに酸素バラ
ンスを計算して炉内の生成酸化物すなわち溶滓量を推定
する方式が開示されている。この方式では、分析・解析
による時間のおくれは避けられず、またスロッピングの
発生要因は溶滓量の柩によるものではないので、スロッ
ピング発生予知精度は低いものであった。
That is, JP-A-52-101818 discloses a method for estimating the amount of oxides produced in the furnace, that is, slag, by calculating the oxygen balance based on exhaust gas information during blowing in the converter steel manufacturing method. ing. In this method, a time delay due to analysis is unavoidable, and since the cause of slopping is not due to the amount of slag, the accuracy of predicting the occurrence of slag is low.

また物理的測定によってスラグレベルを検知しようとす
る試みも種々なされていて、音響測定法(特開昭54−
337130号)、振動測定法(特開昭54−1144
14号)、炉内圧測定法(特開昭55−104417号
)、マイクロ波測定法(特開昭57−140812号)
炉体表面温度測定法(特開昭58−48815号)など
が提案されている。
Various attempts have also been made to detect the slag level through physical measurements, including the acoustic measurement method
337130), Vibration measurement method (Japanese Patent Application Laid-Open No. 1144-1983)
No. 14), furnace pressure measurement method (Japanese Patent Application Laid-Open No. 55-104417), microwave measurement method (Japanese Patent Application Laid-Open No. 57-140812)
A furnace body surface temperature measurement method (Japanese Patent Application Laid-Open No. 58-48815) has been proposed.

音響測定法は吹錬中に炉内より発生する音響の周波数お
よび強度の変化を把えて、スラグレベルを推定してスロ
ッピング発生を予知しようとするものであり、振動測定
法は吹錬中のランスの振動の変化、波形の推移を把えて
、スラグレベル又はスラグの状態を推定してスロッピン
グ発生を予知しようとするものであり、炉内圧測定法は
吹錬中の炉口排ガス噴出圧の変動を把えて、スロッピン
グ発生を予知しようとするものであり、マイクロ波測定
法は吹錬中に炉内にマイクロ波を直接投射してFMレー
ダーの原理によりスラグレベルを直接測定して、スロッ
ピング発生を予知しようとするものであり、炉体表面温
度測定法は炉体の上部および下部の放射エネルギーを温
度として把え、その温度変化、ピーク値などからスロッ
ピングの発生とその量を検知しようとするものである。
The acoustic measurement method attempts to predict the occurrence of slopping by estimating the slag level by ascertaining the changes in the frequency and intensity of the sound generated from inside the furnace during blowing, while the vibration measurement method attempts to predict the occurrence of slopping during blowing. This method attempts to predict the occurrence of slopping by estimating the slag level or slag condition by understanding changes in the vibration of the lance and the transition of the waveform.The furnace pressure measurement method is used to predict the occurrence of slopping by estimating the slag level or state of the lance. The microwave measurement method aims to predict the occurrence of slag by understanding the fluctuations, and the microwave measurement method projects microwaves directly into the furnace during blowing and directly measures the slag level using the principle of FM radar. This method attempts to predict the occurrence of slopping, and the furnace body surface temperature measurement method captures the radiant energy at the top and bottom of the furnace body as temperature, and detects the occurrence and amount of slopping from temperature changes and peak values. This is what I am trying to do.

上述した音響測定法、振動測定法、炉内圧測定法、炉体
表面温度測定法はいずれも間接的測定法であり、スラグ
レベルおよびスラグの状態を定量的に把握することがで
きず、スロッピングの予知精度は低い。マイクロ波測定
法は、スラグレベルの直接的測定が可能であるが、吹錬
中の転炉内は、溶湯、スラグ、ガス等が極めて複雑な動
きをしているため、異常を検出あるいは推定することは
容易でないうえ、信号処理等にも高度な技術が必要であ
るため、装置が高価になることは避けられなかった。
The acoustic measurement method, vibration measurement method, furnace pressure measurement method, and furnace body surface temperature measurement method described above are all indirect measurement methods, and cannot quantitatively grasp the slag level and slag condition. The prediction accuracy of is low. The microwave measurement method can directly measure the slag level, but since the molten metal, slag, gas, etc. move in an extremely complex manner inside the converter during blowing, it is difficult to detect or estimate abnormalities. This is not easy, and requires advanced technology for signal processing, etc., so it is inevitable that the equipment will be expensive.

これらに対し本出願人は前記問題点を根本的に解決する
ために、炉内光の強度または、波長変化もしくはその双
方を検出して転炉異常反応を検出する方法を発明し、先
に特願昭58−37872号として出願した。
In order to fundamentally solve the above-mentioned problems, the present applicant has invented a method for detecting abnormal reactions in converter furnaces by detecting the intensity of light in the furnace, or changes in wavelength, or both. The application was filed as Application No. 58-37872.

発明の目的 本発明は、該出願のさらに改良を図るもので、吹錬中の
炉内の滓化状況を必要な時期により精確に、より速く、
直接的に観測する装置を提供し、高精度の転炉操業に活
用させようとするものである。
OBJECTS OF THE INVENTION The present invention aims to further improve the application, and it is possible to check the slag formation inside the furnace during blowing more accurately, more quickly, and at the required time.
The aim is to provide a device for direct observation and use it for high-precision converter operation.

発明の構成・作用 本発明の構成は、転炉近傍の支持架台に移動自在に装架
された先導体検出装置と、該検出装置と前記架台に沿っ
て移動せしめ、前記検出装置先端受光部を転炉側壁に設
けられた貫通孔内に挿入離脱自在に臨ませる移動装置と
、前記検出装置からの入力信号から炉内光の強度及びも
しくは波長の特性を検出する装置からなる転炉炉況観測
装置である。
Structure and Function of the Invention The structure of the present invention includes a leading body detection device movably mounted on a support pedestal near the converter, and a guide body detection device that is moved along the pedestal and a light receiving portion at the tip of the detection device. Converter furnace status observation consisting of a moving device that can be inserted into and removed from a through hole provided in the side wall of the converter, and a device that detects the intensity and/or wavelength characteristics of light inside the furnace from the input signal from the detection device. It is a device.

以下本発明装置を図面に基いて具体的に説明する。The apparatus of the present invention will be specifically explained below based on the drawings.

第1図は本発明の装置の全貌を模式的に示した説明図で
ある。第1図に示すように転炉lの側壁2に炉内3まで
貫通する貫通孔4を設ける。この貫通孔は、出鋼孔であ
ってもよく、図の如く出鋼孔とは別に設けてもよい。転
炉lの近傍に支持架台5を設け、この架台に沿って移動
できる先導体検出装置6が装架されている。先導体検出
装置6の先端受光部7は、先導体検出装置6に連接した
移動装置8によって貫通孔4に挿入離脱自在に臨ませる
ことができる。上述のように1.先導体検出装置は貫通
孔内に挿入離脱自在であるため、実際に炉内状況を観察
する必要のあるときのみ挿入することにより不要の熱負
荷や粉塵などの悪環境から免れることができる。而して
本発明では貫通孔として出鋼作業時のみ溶湯が流出する
出鋼孔を利用することができる。また、貫通孔は吹錬時
等の直立した状態や、出鋼あるいは溶銑装入中の如く傾
倒した状態でも、溶湯に浸漬しない側壁2の任意の場所
に設けることも可能である。本発明における転炉側壁と
はかかる意味で用いるものである。
FIG. 1 is an explanatory diagram schematically showing the overall appearance of the apparatus of the present invention. As shown in FIG. 1, a through hole 4 is provided in the side wall 2 of the converter l, which penetrates into the furnace interior 3. This through hole may be a tapping hole, or may be provided separately from the tapping hole as shown in the figure. A support pedestal 5 is provided near the converter l, and a leading body detection device 6 that can move along this pedestal is mounted. The tip light receiving section 7 of the guide body detection device 6 can be inserted into and removed from the through hole 4 by a moving device 8 connected to the guide body detection device 6 . As mentioned above, 1. Since the guide body detection device can be inserted into and removed from the through hole, it can be inserted only when it is actually necessary to observe the inside of the reactor, thereby avoiding unnecessary heat loads and adverse environments such as dust. Thus, in the present invention, a tapping hole through which molten metal flows out only during the tapping operation can be used as the through hole. Furthermore, the through-holes can be provided at any location on the side wall 2 that is not immersed in molten metal, either in an upright state during blowing or in a tilted state such as during tapping or charging hot metal. The converter side wall in the present invention is used in this sense.

先導体検出装置で把えた炉内光は、コネクタ9によって
末端に装着されている光電変換素子10で電気的信号に
変換され、この電気信号は前記検出装置からの入力信号
となって画像処理装置11に入力し、ここで炉内光の強
度及びもしくは波長の特性を検出し、この検出信号は、
炉内状況ディスプレイ装置12又はスラグレベルディス
プレイ装置13 ・によって表示され、炉況を観測する
ことができる。
The in-furnace light detected by the guide body detection device is converted into an electrical signal by a photoelectric conversion element 10 attached to the end by a connector 9, and this electrical signal becomes an input signal from the detection device and is sent to an image processing device. 11, where the intensity and/or wavelength characteristics of the light inside the furnace are detected, and this detection signal is
It is displayed by the furnace condition display device 12 or the slag level display device 13, and the furnace condition can be observed.

さらに要部について説明する。Further, the main parts will be explained.

第2図は貫通孔と先導体検出装置の構造の1例と挿入時
のシール状態を示す一部断面図である。
FIG. 2 is a partial sectional view showing an example of the structure of the through hole and the guide body detection device, and the sealed state at the time of insertion.

転炉炉壁の内張レンガ2aおよび転炉炉体鉄皮2bに直
径約 150■の孔を穿ち、耐火レンガ4bで内張すし
た貫通孔筒体4aを転炉炉体鉄皮に溶接する。貫通孔筒
体4aには貫通孔フランジ4cをとりつげ、シールギャ
ップ4dをボルトで取付ける。シールキャップ4dは炉
の外側に向って拡ったコーン状のシール面を有している
。−刀先導体を内臓するプローブ6aにはシールキャッ
プ4dのコーン面に密着する形状のシールコーン8bが
取付けである。調整バー60と調整ナツトadによりシ
ールコーンとプローブ先端7の長さは調整可能になって
いる。図示のスプリング8eは、スプリングガイド6f
の外側に付されていて、シールコーンを密着させる機能
をもつが、プローブは前述の移動装置によって移動しロ
ックすることができるので、スプリングは必らずしも必
要ではないが、密着をより充分にするためには装備する
ことは好ましい。
A hole with a diameter of about 150 cm is bored in the lining brick 2a of the converter wall and the converter body shell 2b, and the through-hole cylinder 4a lined with fireproof bricks 4b is welded to the converter body shell. . A through-hole flange 4c is attached to the through-hole cylinder 4a, and a seal gap 4d is attached with bolts. The seal cap 4d has a cone-shaped sealing surface that widens toward the outside of the furnace. - A seal cone 8b shaped to closely fit the cone surface of the seal cap 4d is attached to the probe 6a containing the sword tip body. The lengths of the seal cone and probe tip 7 can be adjusted using an adjustment bar 60 and an adjustment nut ad. The illustrated spring 8e is a spring guide 6f.
The spring is attached to the outside of the seal cone and has the function of keeping the seal cone in close contact.Since the probe can be moved and locked by the above-mentioned moving device, the spring is not necessarily necessary, but it can improve the close contact. It is preferable to equip it in order to

架台5には例えば第3図(A)、CB)、(C)に示す
ようにたとえば1対の支持架台レール5aが取付けられ
、レール5aに沿って移動架台15が移動する。移動架
台15には車輪15aがレール5aの上下面を挟む形で
取付けられサイドロール15bで一対のレールの内側を
走行するように組立てられている。
For example, a pair of support pedestal rails 5a are attached to the pedestal 5, as shown in FIGS. 3(A), CB), and 3(C), and the movable pedestal 15 moves along the rails 5a. Wheels 15a are attached to the movable frame 15 so as to sandwich the upper and lower surfaces of the rails 5a, and the wheels 15a are assembled so as to run inside the pair of rails with side rolls 15b.

プローブ6aには貫通孔に対して後端寄りに取付金具6
gが取付けられ、ポルl−15cによって移動架台15
にルーズに連結される。移動架台15にはプ 10一ブ
支持台15dを設け、プローブ6aが支持台15d上面
に自由に載置される。
The probe 6a has a mounting bracket 6 near the rear end with respect to the through hole.
g is attached, and the movable frame 15 is mounted by Pol l-15c.
loosely connected to. The movable frame 15 is provided with a probe support stand 15d, and the probe 6a is freely placed on the upper surface of the support stand 15d.

移動装置は、プローブの載置された移動架台15を、支
持架台レール5aに沿って、プローブの先端にある検出
装置の受光部を貫通孔内に挿入離脱するよう移動する装
置であって、移動架台に直接移動機構を取付けた自走式
のものであってもよいし、移動架台とは別に設置する移
動機構により、例えばロッド、ワイヤー、歯車等を介し
て電動、空気圧、油圧等の力を伝達して移動してもよい
The moving device is a device that moves the movable pedestal 15 on which the probe is mounted along the support pedestal rails 5a so that the light receiving part of the detection device at the tip of the probe is inserted into and removed from the through hole. It may be a self-propelled type with a moving mechanism attached directly to the stand, or it may be a self-propelled type with a moving mechanism attached directly to the stand, or a moving mechanism installed separately from the moving stand may be used, for example, to apply electric, pneumatic, hydraulic, etc. power via rods, wires, gears, etc. It may be transferred and moved.

第3図は油圧を用いる一例であって、油圧シリンダー8
aの力はロッド8bによってプローブの取付金具6hに
伝達され、プローブ全体を移動させる。
FIG. 3 shows an example of using hydraulic pressure, and the hydraulic cylinder 8
The force a is transmitted to the probe fitting 6h by the rod 8b, and moves the entire probe.

この場合、取付金具とロッドの接合部は第3図(D)、
(E)に示すように緩く取付けられる。
In this case, the joint between the mounting bracket and the rod is shown in Figure 3 (D).
It is loosely attached as shown in (E).

プローブ8aは前述のように、移動架台にもロッドにも
緩く接合していること、および移動架台15のサイドロ
ール15bとシール5aとの間に遊びがあるために、プ
ローブ6aは多少の変位は可能で、これによって貫通孔
のシールキャップ4dとプローブのシールコーン6bと
の密着が容易になる。
As mentioned above, since the probe 8a is loosely connected to the movable frame and the rod, and there is play between the side roll 15b of the movable frame 15 and the seal 5a, the probe 6a will not be displaced to some extent. This facilitates close contact between the seal cap 4d of the through hole and the seal cone 6b of the probe.

光導体を内蔵するプローブ6aは、最も一般的には2重
管とし、内管に光導体を蔵し、外管と内管との空隙には
、プローブの先端方向に不活性ガスを流して冷却し、あ
るいはプローブ先端の受光部を清浄にするようにする。
The probe 6a with a built-in light guide is most commonly a double tube, with the light guide housed in the inner tube and an inert gas flowing toward the tip of the probe in the gap between the outer tube and the inner tube. Cool the probe or clean the light receiving part at the tip of the probe.

本発明で光導体とは例えば石英系光ファイバのごとく高
温物体から放射される放射光を低損失で伝送する導体を
言う。
In the present invention, a light guide refers to a conductor, such as a quartz optical fiber, that transmits radiation light emitted from a high-temperature object with low loss.

プローブ先端の受光部から光導体により伝送される光は
、光電子変換素子により電気拍に変換され炉内の苛酷な
環境から離れた場所に送られ、光の強度及びもしくは波
長の特性を検出する装置、例えばI’TVカメラと受信
機の組合せ、分光器と光電子増倍管の組合せ、光温度計
による温度プロフィル検出装置、あるいは光学フィルタ
ーとレンズを組合せたCOD素子を応用した装置等にお
いて、転炉々況が観測される。
A device that detects the intensity and/or wavelength characteristics of the light by converting the light transmitted from the light-receiving part at the tip of the probe into electrical pulses by a photoelectronic conversion element and sending it to a location away from the harsh environment inside the furnace. For example, in a combination of an I'TV camera and a receiver, a combination of a spectrometer and a photomultiplier tube, a temperature profile detection device using a photothermometer, or a device that applies a COD element that combines an optical filter and a lens, etc. The situation is observed.

以上のような構成の観測装置による転炉炉況観測の具体
例について述べる。
A specific example of converter furnace status observation using the observation device configured as described above will be described.

転炉に溶湯17を装入し、先導体検出装置を移動装置を
使って貫通孔に挿入する。ついでランス18から酸素が
吹き込まれて吹錬が開始され、増滓剤等の諸原料を装入
しスラグ滓化が進行する。その状況を第4図に模式的に
示した。
Molten metal 17 is charged into the converter, and the guide body detection device is inserted into the through hole using a moving device. Next, oxygen is blown in from the lance 18 to start blowing, and various raw materials such as a slag thickener are charged to progress the formation of slag slag. The situation is schematically shown in Figure 4.

第4図(I)は滓化量の比較的少ない炉内の状況を想定
したもので、先導体検出装置6の円形受光面の視野に第
4図(工′)に示すように炉内の高温ガス雰囲気18が
白色に見える。さらに滓化が進行してスラグ16の量が
増すと、スラグの表面はランスから噴出する酸素および
吹錬反応により発生するCOガス等により激動し、上部
のガス雰囲気よりも低温の、エマルジョン状態のスラグ
は、受光面視野に黄色の波形状に捉えられる。エマルジ
ョン状態のスラグが第4図(DI)のごとくいわゆるス
ロッピングをおこして炉外に溢れ出るようになれば、受
光面の視野は第4図(■′)のごとく、全面が黄色系色
彩を呈する。
Figure 4 (I) assumes a situation in the furnace where the amount of slag is relatively small, and the field of view of the circular light-receiving surface of the guide body detection device 6 shows the inside of the furnace as shown in Figure 4 (D'). The high temperature gas atmosphere 18 appears white. As slag formation further progresses and the amount of slag 16 increases, the surface of the slag is agitated by the oxygen ejected from the lance and the CO gas generated by the blowing reaction, resulting in an emulsion state at a lower temperature than the upper gas atmosphere. The slag is seen as a yellow wave in the field of view of the light receiving surface. When the slag in the emulsion state causes so-called slopping and overflows out of the furnace as shown in Figure 4 (DI), the field of view of the light receiving surface becomes yellowish in color over the entire surface as shown in Figure 4 (■'). present.

これらの変化を前述の如く例えばテレビの画像として連
続的に目視できるが、さらにスラグの状況を経時的に記
録させることもできる。すなわち滓化がある程度進行し
てスラグ上部のガスの温度がスラグの温度よりも高くな
るとガスとスラグの発する光の波長と強度の関係は、第
5図のごとく明確な差を示すので、例えば青色透過フィ
ルターを通し、波長域分離を行い、スラグの強度がドミ
ナントに現われる波長域の、映像中に占める面積割合を
演算処理して経時的にプロットすることによって第6図
の如くきわめて明瞭に炉内のスラグの状況を把握するこ
とができる。第6図においてAは吹錬スタート初期の、
ガス温度が低いときにおこる擬似スラグ信号であり、B
は面積割合が急上昇してスロッピングの発生を示すもの
である。
As mentioned above, these changes can be visually observed continuously, for example, as images on a television, but it is also possible to record the state of the slag over time. In other words, when slag formation progresses to a certain extent and the temperature of the gas above the slag becomes higher than the temperature of the slag, the relationship between the wavelength and intensity of light emitted by the gas and slag shows a clear difference as shown in Figure 5. By separating the wavelength range through a transmission filter, calculating the area ratio occupied in the image in the wavelength range where the slag intensity appears dominant, and plotting it over time, the inside of the furnace can be clearly seen as shown in Figure 6. The situation of slag can be grasped. In Figure 6, A is at the beginning of the blowing process.
This is a pseudo slag signal that occurs when the gas temperature is low, and B
The area ratio suddenly increases, indicating the occurrence of slopping.

しかしてスロッピング発生の前には該面積割合の変化が
激しく起っていることが読み取れるので、これによって
スロッピングの予知ができ、これに対応する操業アクシ
ョン例えばランスがらの酸素流量の削減、コークス粉お
よび石炭粉などのスロッピング抑制剤の投入等を行い、
操業の正常化を図ることができる。
Since it can be seen that the area ratio changes drastically before slopping occurs, slopping can be predicted, and corresponding operational actions such as reducing the oxygen flow rate in the lance, coking Adding slopping inhibitors such as powder and coal powder,
It is possible to normalize operations.

なお本発明の装置は転炉の大きさその他を勘案し、1つ
の転炉に複数個設置すれば、炉況観測の精度をより上げ
得ることは論を俟たない。
It goes without saying that the accuracy of furnace condition observation can be further improved by installing a plurality of devices of the present invention in one converter, taking into consideration the size of the converter and other factors.

発明の効果 以上詳述したように、本発明の装置により転炉内の状況
を刻々観測することができるため、効率的で安定した操
業が可能になり、鉄鋼端線上極めて大きな価値を有する
ものである。
Effects of the Invention As detailed above, the device of the present invention allows the situation inside the converter to be observed moment by moment, which enables efficient and stable operation, and is extremely valuable in terms of steel production. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、第2図は貫通孔と先導
体検出装置の挿入時のシール状態を示す断面図、第3図
(A)は支持架台と移動装置の全体図、第3図(B)、
(C)、CD)、(E)は部分説明図である。第4図は
本発明装置の稼働時の説明図、第5図は吹錬中のスラグ
とスラグ上部ガスの放射する光の波長と強度の関係を示
す図、S6図は本装置による炉内観測ディスプレーの一
例を示す吹錬時間と面積割合の関係図である。 1@争・転炉、21I・・側壁、2a・・命レンガ、2
b・・・鉄皮、3・#命炉内、4・・・貫通孔、4a・
・・貫通孔筒体、4b・・・耐火レンガ、4c・・・貫
通孔フランジ、4d・・Φシールキャップ、5・・・支
持架台、5a−・・支持架台レール、6・・・先導体検
出装置、6a・・・プローブ、6b・・・シールコーン
、6C・・・m 整バー、6d・・・調整ナツト、8e
・争・スプリング、6f・・・スプリングガイド、6g
Φ・Φ取付金具、6h・・・取付金具、7・番・先端受
光部、8・・φ移動装置、8a・−・油圧シリンダー、
8b・・・ロッド、9・拳・コネクタ、lO・・・光電
変換素子、11−・・画像処理装置、12・・・炉内状
況ディスプレイ装置、13・・・スラグレベルディスプ
レイ装置、15・・ψ移動架台、15a・・・車輪、 
15b・・Φサイドロール、 15c*・・ポルト、 
15d・・・プローブ支持台、16・Φ・スラグ、17
・・・溶鋼、18拳拳・高温ガス雰囲気、18・参〇ラ
ンス。 特許出願人 新日本製鐵株式会社 代理人 弁理士 井 上 雅 生 第3図(A) 第3図(B) 第3図(C) 第3図(D) 第4図
FIG. 1 is a detailed explanatory diagram of the present invention, FIG. 2 is a sectional view showing the sealed state of the through hole and the guide body detection device when inserted, and FIG. 3 (A) is an overall view of the support frame and the moving device. Figure 3 (B),
(C), CD), and (E) are partial explanatory views. Figure 4 is an explanatory diagram of the device of the present invention when it is in operation, Figure 5 is a diagram showing the relationship between the wavelength and intensity of the light emitted by the slag during blowing and the gas above the slag, and Figure S6 is the observation inside the furnace using this device. It is a relationship diagram of blowing time and area ratio showing an example of a display. 1@War/Converter, 21I...Side wall, 2a...Life brick, 2
b... Iron skin, 3. # inside the life reactor, 4... through hole, 4a.
...Through hole cylinder, 4b... Firebrick, 4c... Through hole flange, 4d... Φ seal cap, 5... Support pedestal, 5a... Support pedestal rail, 6... Leading body Detection device, 6a...Probe, 6b...Seal cone, 6C...m Adjustment bar, 6d...Adjustment nut, 8e
・War・Spring, 6f...Spring guide, 6g
Φ/Φ mounting bracket, 6h...Mounting bracket, No. 7/Tip light receiving section, 8...φ moving device, 8a...Hydraulic cylinder,
8b... Rod, 9. Fist/connector, lO... Photoelectric conversion element, 11-... Image processing device, 12... Furnace situation display device, 13... Slag level display device, 15... ψ movable frame, 15a...wheels,
15b...Φ side roll, 15c*...porto,
15d... Probe support stand, 16, Φ, slug, 17
... Molten steel, 18 fist, high temperature gas atmosphere, 18.3 lance. Patent Applicant Nippon Steel Corporation Agent Patent Attorney Masaru Inoue Figure 3 (A) Figure 3 (B) Figure 3 (C) Figure 3 (D) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 転炉近傍の支持架台に移動自在に装架された先導体検出
装置と、該検出装置を前記架台に沿って移動せしめ、前
記検出装置先端受光部を、転炉側壁に設けられた貫通孔
内に挿入離脱自在に臨ませる移動装置と、前記検出装置
からの入力信号から炉内光の強度及びもしくは波長の特
性を検出する装置からなる転炉炉況観測装置。
A guide body detection device is movably mounted on a support pedestal near the converter, and the detection device is moved along the pedestal, and the light receiving section at the tip of the detection device is inserted into a through hole provided in the side wall of the converter. A converter furnace status observation device comprising a moving device that can be inserted into and removed from the converter, and a device that detects the intensity and/or wavelength characteristics of light inside the furnace from the input signal from the detection device.
JP59084114A 1984-04-27 1984-04-27 Converter condition observing apparatus Pending JPS60228929A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP59084114A JPS60228929A (en) 1984-04-27 1984-04-27 Converter condition observing apparatus
AU32558/84A AU558925B2 (en) 1984-04-27 1984-08-30 Monitoring and controlling the slag-forming conditions in the basic oxygen steel converter
ZA846914A ZA846914B (en) 1984-04-27 1984-09-04 Method and apparatus for measuring slag-forming conditions within converter
EP84110571A EP0162949B1 (en) 1984-04-27 1984-09-05 Method and apparatus for measuring slag-forming conditions within converter
DE8484110571T DE3468127D1 (en) 1984-04-27 1984-09-05 Method and apparatus for measuring slag-forming conditions within converter
CA000462485A CA1250356A (en) 1984-04-27 1984-09-05 Method and apparatus for measuring slag-forming conditions within converter
ES535715A ES8602953A1 (en) 1984-04-27 1984-09-06 A METHOD TO PERFORM A BLOW IN A STEEL REFINE CONVERTER WHILE OBSERVING THE TRAINING CONDITIONS OF SLAG IN ITS CONTAINER.
BR8404496A BR8404496A (en) 1984-04-27 1984-09-06 PROCESS AND APPARATUS FOR THE OBSERVATION OF CONDITIONS FOR FORMING SLAG IN A CONVERTER POT AND PROCESS FOR PERFORMING A TOP AND LOWER PUMPING CONVERTER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59084114A JPS60228929A (en) 1984-04-27 1984-04-27 Converter condition observing apparatus

Publications (1)

Publication Number Publication Date
JPS60228929A true JPS60228929A (en) 1985-11-14

Family

ID=13821490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59084114A Pending JPS60228929A (en) 1984-04-27 1984-04-27 Converter condition observing apparatus

Country Status (2)

Country Link
JP (1) JPS60228929A (en)
ZA (1) ZA846914B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403472B1 (en) * 1999-12-23 2003-11-01 재단법인 포항산업과학연구원 Area measuring apparatus of naked molten metal stainless VOD process and its method
KR100775499B1 (en) 2006-12-18 2007-11-12 주식회사 포스코 Refining furnace tap temperature measuring device
CN113355479A (en) * 2021-05-12 2021-09-07 首钢京唐钢铁联合有限责任公司 Method and system for detecting related limit abnormity of steelmaking converter sublance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403472B1 (en) * 1999-12-23 2003-11-01 재단법인 포항산업과학연구원 Area measuring apparatus of naked molten metal stainless VOD process and its method
KR100775499B1 (en) 2006-12-18 2007-11-12 주식회사 포스코 Refining furnace tap temperature measuring device
CN113355479A (en) * 2021-05-12 2021-09-07 首钢京唐钢铁联合有限责任公司 Method and system for detecting related limit abnormity of steelmaking converter sublance

Also Published As

Publication number Publication date
ZA846914B (en) 1985-04-24

Similar Documents

Publication Publication Date Title
EP3620542B1 (en) Converter operation monitoring method and converter operation method
US4651976A (en) Method for operating a converter used for steel refining
KR20040023812A (en) Molten metal temperature measuring instrument and method
EP0162949B1 (en) Method and apparatus for measuring slag-forming conditions within converter
JPS60228929A (en) Converter condition observing apparatus
US5830407A (en) Pressurized port for viewing and measuring properties of a molten metal bath
US4749171A (en) Method and apparatus for measuring slag-foam conditions within a converter
GB2083182A (en) Improvements in or relating to tuyeres for metallurgical vessels
CN217324152U (en) Device for observing internal working state of blast furnace taphole
CN212459004U (en) Top-blown furnace slag temperature measurement sampling device
JP2012107304A (en) Converter blowing method
US20040105153A1 (en) Device for reception and transmission of electromagnetic waves emitted by a material sample
JP3440267B2 (en) Evaluation method of arc burial in slag of arc melting furnace
CN111947978A (en) Temperature measurement and sampling device and method for top-blown furnace slag
JPS60228928A (en) Detection of slopping
JPS6148737A (en) Detection method of converter slag forming
GR65194B (en) Machine which renders compact the carbonized mazes in the coverings of metallurgic furnaces
EP1134295A1 (en) Submergible probe for viewing and analyzing properties of a molten metal bath
JPS60228931A (en) Converter sloping detection device
JPS5828654A (en) Slotting prediction method
JPS62228423A (en) Method for collecting information on refining
CN213113394U (en) Process monitoring device for front-mounted tapping furnace of smelting reduction furnace
JPS6225727B2 (en)
JPH09256010A (en) Method for measuring temperature distribution of coke in raceway and instrument therefor
JPH0238510A (en) Method for prediction-restraining slopping